Influencing Factors and Simplified Model of Film Hole Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laboratory Experiments
2.2. Numerical Model Establishment and Calibration
2.3. Simplified Kostiakov Model for Film Hole Infiltration
2.4. Error Analysis
3. Results and Discussion
3.1. Application of SWMS-2D to Film Hole Irrigation and Comparison with the Experimental Results
3.2. Different Factors Affecting Cumulative Infiltration of Film Hole Irrigation
3.2.1. Effect of Initial SWC on Cumulative Infiltration
3.2.2. Effect of Irrigation Depth on Cumulative Infiltration
3.2.3. Effect of Layered-Soil Depth on Cumulative Infiltration
3.2.4. Effect of Film Hole Diameter and Opening Ratio on Cumulative Infiltration
3.3. Establishment and Universality of a Simplified Model
3.3.1. Establishment of a Simplified Model
3.3.2. Evaluation of the Simplified Model Universality
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Matti, K.; Ward, P.J.; Moel, H.D.; Varis, O. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia. Environ. Res. Lett. 2010, 5. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.S. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2001, 82, 105–119. [Google Scholar] [CrossRef]
- Swatuk, L.; Mcmorris, M.; Leung, C.; Zu, Y. Seeing “invisible water”: Challenging conceptions of water for agriculture, food and human security. Can. J. Dev. Stud. 2015, 36, 24–37. [Google Scholar] [CrossRef]
- Deng, X.P.; Shan, L.; Zhang, H.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar] [CrossRef]
- Li, X.Y.; Gong, J.D.; Wei, X.H. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China. J. Arid Environ. 2000, 46, 371–382. [Google Scholar] [CrossRef]
- Camp, C.R. Subsurface drip irrigation: A review. Trans. ASAE 1998, 41, 1353–1367. [Google Scholar] [CrossRef]
- Tarara, J.M. Microclimate modification with plastic mulch. Hortscience 2000, 35, 169–180. [Google Scholar]
- McKenzie, C.; Duncan, L.W. Landscape fabric as a physical barrier to neonate diaprepes abbreviatus (Coleoptera: Curculionidae). FL Entomol. 2001, 84, 721–722. [Google Scholar] [CrossRef]
- Chalker-Scott, L. Impact of mulches on landscape plants and the Environment—A review. J. Environ. Hort. 2007, 25, 239–249. [Google Scholar]
- Espí, E.; Salmerón, A.; Fontecha, A.; García, Y.; Real, A.I. Plastic films for agricultural applications. J. Plast. Film Sheet 2006, 22, 85–102. [Google Scholar] [CrossRef]
- Lamont, W.J. Plastic mulches for the production of vegetable crops. Horttechnology 1993, 3, 35–39. [Google Scholar]
- Scarasciamugnozza, G.; Sica, C.; Russo, G. Plastic materials in European agriculture: Actual use and perspectives. J. Agric. Eng. 2011, 42, 15–28. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G.E. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef] [PubMed]
- Kader, M.A.; Senge, M.; Mojid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Till. Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Year Book 2014; National Bureau of Statistics of China: Beijing, China, 2014.
- Xu, S. Fim hole irrigation technology. Xinjiang Water Res. 1994, 83, 22–26. (In Chinese) [Google Scholar]
- Saeed, M.; Mahmood, S. Application of film hole irrigation on borders for water saving and sunflower production. Arab J. Sci. Eng. 2013, 38, 1347–1358. [Google Scholar] [CrossRef]
- Wu, J.; Fei, L.; Wang, W. Study on the infiltration characteristics of single filmed hole and its mathematical model under filmed hole irrigation. Adv. Water Sci. 2001, 9, 307–311. (In Chinese) [Google Scholar]
- Li, Y.; Tian, J. Research advances irrigating technique of film hole irrigation. J. Ningxia Agric. Coll. 2003, 24, 96–100. (In Chinese) [Google Scholar]
- Bautista, E.; Clemmens, A.J.; Strelkoff, T.S.; Schlegel, J. Modern analysis of surface irrigation systems with WinSRFR. Agric. Water Manag. 2009, 96, 1146–1154. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Fei, L. Experimental study on influential factors in film hole bilateral interference infiltration. J. Irrig. Drain. 2002, 22, 44–48. (In Chinese) [Google Scholar]
- Dong, Y.; Wang, B.; Jia, L.; Fei, L. Effects of different irrigation treatments on maize water consumption, growth and yield under film hole irrigation. Appl. Mech. Mater. 2014, 501–504, 1986–1992. [Google Scholar] [CrossRef]
- Šimůnek, J.; Huang, K.; Genuchten, M.T.V. The SWMS-2D Code for Simulating Water Flow and Solute Transport in Two-Dimensional Variably-Saturated Media; Version 1.0; US Salinity Laboratory, US Department of Agriculture, Agricultural Research Service: Riverside, CA, USA, 1995.
- Skaggs, T.H.; Trout, T.J.; Simunek, J.; Shouse, P.J. Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. J. Irrig. Drain. Eng. 2014, 130, 304–310. [Google Scholar] [CrossRef]
- Zhou, Q.Y.; Kang, S.Z.; Zhang, L. Comparison of APRI and Hydrus-2D models to simulate soil water dynamics in a vineyard under alternate partial root zone drip irrigation. Plant Soil 2007, 291, 211–223. [Google Scholar] [CrossRef]
- Lazarovitch, N.; Poulton, M.; Furman, A.; Warrick, A.W. Water distribution under trickle irrigation predicted using artificial neural networks. J. Eng. Math. 2009, 64, 207–218. [Google Scholar] [CrossRef]
- Mguidiche, A.; Provenzano, G.; Douh, B.; Khila, S.; Rallo, G.; Boujelben, A. Assessing hydrus-2D to simulate soil water content (SWC) and salt accumulation under an SDI system: Application to a potato crop in a semi-arid area of Central Tunisia. Irrig. Drain. 2015, 64, 263–274. [Google Scholar] [CrossRef]
- Hou, L.; Zhou, Y.; Bao, H.; Wenninger, J. Simulation of maize (Zea mays L.) water use with the HYDRUS-1D model in the semi-arid Hailiutu River catchment, Northwest China. Hydrol. Sci. J. 2016, 62, 1–11. [Google Scholar] [CrossRef]
- Kandelous, M.M.; Šimůnek, J. Numerical simulations of water movement in a subsurface drip irrigation system under field and laboratory conditions using HYDRUS-2D. Agric. Water Manag. 2010, 97, 1070–1076. [Google Scholar] [CrossRef]
- Jiang, L. Technique element of film hole infiltration on cotton. China Rural Water Hydropower 1995, 5, 3–6. (In Chinese) [Google Scholar]
- Zhang, G.; Zhu, L. Study on irrigating technique of film hole irrigation in Weibei dry plateau. Res. Soil Water Conserv. 1999, 6, 60–63. (In Chinese) [Google Scholar]
- Xing, X.; Kang, D.; Ma, X. Differences in loam water retention and shrinkage behavior: Effects of various types and concentrations of salt ions. Soil Till. Res. 2017, 167, 61–72. [Google Scholar] [CrossRef]
- Yao, W.W.; Ma, X.Y.; Li, J.; Parkes, M. Simulation of point source wetting pattern of subsurface drip irrigation. Irrig. Sci. 2011, 29, 331–339. [Google Scholar] [CrossRef]
- Maulem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef]
- Van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils; Research Report No. EPA/600/2-91/065; US Salinity Laboratory, US Department of Agriculture, Agricultural Research Service: Riverside, CA, USA, 1991. Available online: http://www.pc-progress.com/documents/programs/retc.pdf (accessed on 1 December 1991).
- Moriasi, D.; Arnold, J.; Van Liew, M.W.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Ma, X.; Fan, Y.; Wang, S.; Sun, X.; Wang, B. Simplified Infiltration Model of Film Hole Irrigation and Its Validation. Trans. Chin. Soc. Agric. Mach. 2009, 40, 67–73. (In Chinese) [Google Scholar]
- Hu, H. Soil Water and Nitrogen Transport Characteristic Experiment and Numerical Simulation of Film Hole Irrigation under Facilities. Ph.D. Dissertation, Wuhan University, Wuhan, China, 2010. (In Chinese). [Google Scholar]
Treatment | Soil Type * | Bulk Density (g/cm3) | Distance between Film Holes (cm) | Hole Diameter (cm) | Initial Water Content ** (%) | Irrigation Depth (cm) | Irrigation Amount (m3/hm2) | Irrigation Volume *** (mL) |
---|---|---|---|---|---|---|---|---|
1 | Silt loam | 1.30 | 20 | 4 | 40 | 4 | 225 | 900 |
2 | 1.40 | 20 | 4 | 60 | 6 | 450 | 1800 | |
3 | 1.30 | 30 | 6 | 60 | 6 | 225 | 2025 | |
4 | 1.40 | 30 | 6 | 40 | 4 | 450 | 4050 | |
5 | Sandy loam | 1.35 | 30 | 4 | 60 | 4 | 450 | 4050 |
6 | 1.45 | 30 | 4 | 40 | 6 | 225 | 2025 | |
7 | 1.35 | 20 | 6 | 40 | 6 | 450 | 1800 | |
8 | 1.45 | 20 | 6 | 60 | 4 | 225 | 900 |
Soil Type | Bulk Density (g/cm3) | θr (cm3/cm3) | θs (cm3/cm3) | α (1/cm) | n | l | Ks (cm/min) |
---|---|---|---|---|---|---|---|
Silt loam | 1.30 | 0.113 | 0.492 | 0.014 | 1.72 | 0.5 | 0.0208 |
1.40 | 0.123 | 0.456 | 0.017 | 1.55 | 0.5 | 0.0154 | |
Sandy loam | 1.35 | 0.057 | 0.38 | 0.025 | 1.76 | 0.5 | 0.0409 |
1.45 | 0.049 | 0.362 | 0.024 | 1.69 | 0.5 | 0.0257 | |
Sand | - | 0.045 | 0.430 | 0.145 | 2.68 | 0.5 | 0.4950 |
Sandy loam | - | 0.065 | 0.410 | 0.075 | 1.89 | 0.5 | 0.0737 |
Loam | - | 0.078 | 0.430 | 0.036 | 1.56 | 0.5 | 0.0173 |
Loamy sand | - | 0.057 | 0.040 | 0.124 | 2.28 | 0.5 | 0.2432 |
Silt | - | 0.034 | 0.460 | 0.016 | 1.37 | 0.5 | 0.0042 |
Silt loam | - | 0.067 | 0.450 | 0.020 | 1.41 | 0.5 | 0.0075 |
Sandy clay loam | - | 0.100 | 0.390 | 0.059 | 1.48 | 0.5 | 0.0218 |
Clay loam | - | 0.095 | 0.410 | 0.019 | 1.31 | 0.5 | 0.0043 |
Silty clay loam | - | 0.089 | 0.430 | 0.001 | 1.23 | 0.5 | 0.0012 |
Treatment | MAE (cm3/cm3) | RMSE (cm3/cm3) | PBIAS (%) | NS |
---|---|---|---|---|
1 | 0.013 | 0.016 | 2.947 | 0.979 |
2 | 0.022 | 0.028 | 2.711 | 0.998 |
3 | 0.026 | 0.034 | 3.648 | 0.997 |
4 | 0.011 | 0.013 | 1.962 | 0.995 |
5 | 0.020 | 0.023 | 3.508 | 0.968 |
6 | 0.011 | 0.013 | 1.438 | 0.998 |
7 | 0.013 | 0.016 | 0.461 | 0.998 |
8 | 0.026 | 0.028 | 2.762 | 0.999 |
Opening Ratio (%) | Film Hole Diameter (cm) | Silt Loam | Silt Loam | Sandy Loam | Sandy Loam | Loam | Sand | Sandy Loam | |||||||
(γd = 1.30 g/cm3) | (γd = 1.40 g/cm3) | (γd = 1.35 g/cm3) | (γd = 1.45 g/cm3) | ||||||||||||
k | α | k | α | k | α | k | α | k | α | k | α | k | α | ||
2.18 | 3 | 0.2553 | 0.877 | 0.1636 | 0.858 | 0.2919 | 0.901 | 0.199 | 0.89 | 0.1247 | 0.866 | 1.5957 | 0.96 | 0.3166 | 0.923 |
4 | 0.2104 | 0.871 | 0.135 | 0.853 | 0.2325 | 0.902 | 0.161 | 0.888 | 0.105 | 0.861 | 1.281 | 0.955 | 0.2658 | 0.912 | |
5 | 0.1811 | 0.866 | 0.1155 | 0.852 | 0.1987 | 0.901 | 0.138 | 0.886 | 0.0928 | 0.854 | 1.0895 | 0.95 | 0.2327 | 0.904 | |
Mean | 0.2156 | 0.871 | 0.138 | 0.855 | 0.241 | 0.901 | 0.166 | 0.888 | 0.1075 | 0.86 | 1.3221 | 0.955 | 0.2717 | 0.913 | |
3.14 | 2 | 0.5242 | 0.858 | 0.3354 | 0.839 | 0.6107 | 0.875 | 0.414 | 0.865 | 0.2503 | 0.849 | 3.2732 | 0.954 | 0.6146 | 0.923 |
3 | 0.3825 | 0.861 | 0.2466 | 0.841 | 0.4345 | 0.885 | 0.298 | 0.873 | 0.186 | 0.852 | 2.3225 | 0.953 | 0.4627 | 0.915 | |
4 | 0.3164 | 0.856 | 0.2052 | 0.836 | 0.3469 | 0.888 | 0.243 | 0.873 | 0.1582 | 0.846 | 1.8665 | 0.948 | 0.3912 | 0.903 | |
Mean | 0.4077 | 0.858 | 0.2624 | 0.839 | 0.464 | 0.883 | 0.318 | 0.87 | 0.1982 | 0.849 | 2.4874 | 0.951 | 0.4895 | 0.913 | |
4.91 | 3 | 0.6265 | 0.835 | 0.4062 | 0.815 | 0.7098 | 0.857 | 0.448 | 0.846 | 0.303 | 0.83 | 3.6961 | 0.937 | 0.7405 | 0.899 |
4 | 0.5152 | 0.834 | 0.335 | 0.815 | 0.5732 | 0.863 | 0.397 | 0.851 | 0.2558 | 0.828 | 2.9535 | 0.937 | 0.6232 | 0.891 | |
5 | 0.4495 | 0.83 | 0.294 | 0.813 | 0.4959 | 0.862 | 0.346 | 0.849 | 0.2321 | 0.82 | 2.5265 | 0.932 | 0.5543 | 0.881 | |
Mean | 0.5304 | 0.833 | 0.3451 | 0.814 | 0.593 | 0.861 | 0.397 | 0.849 | 0.2636 | 0.826 | 3.0587 | 0.935 | 0.6393 | 0.89 | |
7.07 | 6 | 0.6129 | 0.806 | 0.4041 | 0.788 | 0.6652 | 0.84 | 0.467 | 0.827 | 0.3208 | 0.796 | 3.2753 | 0.916 | 0.7475 | 0.859 |
13.6 | 5 | 1.408 | 0.855 | 0.9345 | 0.737 | 1.5422 | 0.776 | 1.087 | 0.768 | 0.7197 | 0.759 | 7.3773 | 0.863 | 1.6553 | 0.828 |
Opening Ratio (%) | Film Hole Diameter (cm) | Loamy Sand | Silt | Silt Loam | Sandy Clay Loam | Clay Loam | Silt Clay Loam | ||||||||
k | α | k | α | k | α | k | α | k | α | k | α | ||||
2.18 | 3 | 0.7757 | 0.967 | 0.0311 | 0.905 | 0.0445 | 0.923 | 0.0789 | 0.946 | 0.0236 | 0.922 | 0.0989 | 0.805 | ||
4 | 0.6049 | 0.969 | 0.0258 | 0.898 | 0.0426 | 0.896 | 0.0619 | 0.946 | 0.0247 | 0.886 | 0.1071 | 0.752 | |||
5 | 0.4996 | 0.973 | 0.0194 | 0.915 | 0.0314 | 0.917 | 0.0491 | 0.956 | 0.0152 | 0.93 | 0.0441 | 0.861 | |||
Mean | 0.6268 | 0.969 | 0.0255 | 0.906 | 0.0395 | 0.912 | 0.0633 | 0.95 | 0.0212 | 0.913 | 0.0833 | 0.806 | |||
3.14 | 2 | 1.6726 | 0.944 | 0.1024 | 0.827 | 0.1384 | 0.847 | 0.1731 | 0.924 | 0.0683 | 0.861 | 0.3556 | 0.686 | ||
3 | 1.2272 | 0.952 | 0.0605 | 0.864 | 0.0877 | 0.878 | 0.1277 | 0.931 | 0.0474 | 0.879 | 0.2041 | 0.737 | |||
4 | 0.9004 | 0.96 | 0.0358 | 0.903 | 0.0555 | 0.91 | 0.0941 | 0.937 | 0.0329 | 0.896 | 0.1171 | 0.791 | |||
Mean | 1.2668 | 0.952 | 0.0662 | 0.865 | 0.0939 | 0.879 | 0.1316 | 0.931 | 0.0495 | 0.879 | 0.2256 | 0.738 | |||
4.91 | 3 | 1.8915 | 0.932 | 0.1062 | 0.833 | 0.15 | 0.848 | 0.2123 | 0.904 | 0.0801 | 0.851 | 0.3878 | 0.678 | ||
4 | 1.4747 | 0.941 | 0.0709 | 0.864 | 0.1104 | 0.867 | 0.1662 | 0.911 | 0.0634 | 0.86 | 0.2464 | 0.726 | |||
5 | 1.2257 | 0.947 | 0.0581 | 0.872 | 0.0914 | 0.874 | 0.1355 | 0.919 | 0.0518 | 0.868 | 0.1781 | 0.754 | |||
Mean | 1.5306 | 0.94 | 0.0784 | 0.856 | 0.1173 | 0.863 | 0.1713 | 0.912 | 0.0651 | 0.86 | 0.2708 | 0.719 | |||
7.07 | 6 | 1.6189 | 0.929 | 0.0856 | 0.847 | 0.1336 | 0.848 | 0.1858 | 0.902 | 0.0762 | 0.843 | 0.2581 | 0.720 | ||
13.6 | 5 | 4.0632 | 0.846 | 0.3217 | 0.738 | 0.4536 | 0.746 | 0.5099 | 0.838 | 0.2412 | 0.763 | 0.9397 | 0.580 |
Soil | MAE (mm) | RMSE (mm) | PBIAS (%) | NS |
---|---|---|---|---|
Loam from Wugong | 0.190 | 0.190 | −2.131 | 0.995 |
Silt Loam from Weihe Bench | 0.391 | 0.552 | −1.082 | 0.997 |
Loam from Luochuan | 2.299 | 2.722 | −1.756 | 0.989 |
Sandy Loam from Ansai | 0.508 | 0.830 | −1.375 | 0.985 |
Sandy Loam from Yulin | 0.431 | 0.566 | 1.479 | 0.999 |
Silt Loam from Handan | 0.141 | 0.177 | −1.569 | 0.982 |
Sand from Yulin | 0.390 | 0.466 | −1.170 | 0.998 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.-B.; Fan, Y.-W.; Liu, Y.; Ma, X.-Y. Influencing Factors and Simplified Model of Film Hole Irrigation. Water 2017, 9, 543. https://doi.org/10.3390/w9070543
Li Y-B, Fan Y-W, Liu Y, Ma X-Y. Influencing Factors and Simplified Model of Film Hole Irrigation. Water. 2017; 9(7):543. https://doi.org/10.3390/w9070543
Chicago/Turabian StyleLi, Yi-Bo, Yan-Wei Fan, Ye Liu, and Xiao-Yi Ma. 2017. "Influencing Factors and Simplified Model of Film Hole Irrigation" Water 9, no. 7: 543. https://doi.org/10.3390/w9070543
APA StyleLi, Y. -B., Fan, Y. -W., Liu, Y., & Ma, X. -Y. (2017). Influencing Factors and Simplified Model of Film Hole Irrigation. Water, 9(7), 543. https://doi.org/10.3390/w9070543