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Abstract: Land Use/Cover changes are crucial for the use of sustainable resources and the delivery
of ecosystem services. They play an important contribution in the climate change mitigation due to
their ability to emit and remove greenhouse gas from the atmosphere. These emissions/removals
are subject to an inventory which must be reported annually under the United Nations Framework
Convention on Climate Change. This study investigates the use of Sentinel-2 data for analysing
lands conversion associated to Land Use, Land Use Change and Forestry sector in the Wallonia
region (southern Belgium). This region is characterized by one of the lowest conversion rates across
European countries, which constitutes a particular challenge in identifying land changes. The
proposed research tests the most commonly used change detection techniques on a bi-temporal and
multi-temporal set of mosaics of Sentinel-2 data from the years 2016 and 2018. Our results reveal
that land conversion is a very rare phenomenon in Wallonia. All the change detection techniques
tested have been found to substantially overestimate the changes. In spite of this moderate results
our study has demonstrated the potential of Sentinel-2 regarding land conversion. However, in this
specific context of very low magnitude of land conversion in Wallonia, change detection techniques
appear to be not sufficient to exceed the signal to noise ratio.

Keywords: change detection; Sentinel-2; LULUCF

1. Introduction

Land Use/Cover changes (LULCC) lie on a scale of severity that ranges from no
alteration through modifications of varying intensity to a full transformation. The rate of
change and the nature of the transitions differ in time and space. Some regions are relatively
stable (e.g., permanent forest); whereas others areas are subject to rapid and persistent
transformation (e.g., urban expansion of previously agricultural land). The increase of hu-
man population and technological development has been found to accelerate LULCC [1–3].
There is extensive literature on sudden land cover conversion resulting from manmade
or natural phenomenon such as forest deterioration, agricultural magnification, natural
disaster or urban sprawl. However, few studies focus on subtle land changes. The study
of LULCC relies on both subtle and abrupt transitions and an improved understanding
of the complex dynamic processes underlying the former would allow for more reliable
projections and more realistic scenarios of future changes [4].

According to European statistics [5] only 1.6% of land cover type has changed during
the 2006–2012 period. This number covers 39 countries which span over 5.86 million
of km2. Among European countries, Belgium has one of the lowest mean annual land
cover rates. Each year, only 0.1% of the total area (~30 km2) is converted to different land
cover classes [6]. As such it is not surprising that many studies focus on African and
Asian countries which have undergone major LULCC transformations. Africa has the
largest annual rate of forest loss and reports from African countries documented that about
0.82 million km2 of forest have been converted into other land uses between 1990 and
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2015 [7]. Asia has also experienced major LULCC conversions. As an example, Beijing’s
urban area extent has quadrupled from 2000 and 2009 [8].

Annual LULCC information is valuable to aid in the formulation of socio-economic
policies (e.g., European Common Agriculture) and data provision for environmental ap-
plications [3]. The impact of LULCC on the global climate via the carbon cycle has been
highlighted from the early 1980s. It has been shown that terrestrial ecosystems act both as
source and sink of carbon [4,9,10]. The anthropogenic emissions and removal associated to
the sector of Land Use Land Use Change and Forestry (LULUCF) has to be inventoried
annually under Article 4 of the United Nations Framework Convention on Climate Change
(UNFCCC). This inventory is composed of land areas and changes in land area related with
LULUCF activities. In practice, countries use a variety of sources of data for representing
land use including agricultural census data, forest inventories, censuses for urban and
natural land, land registry data and remote sensing data [11,12]. Remote sensing data
has the advantage of generating a spatially explicit representation of land areas and their
conversions. However, despite the advent of numerous remote sensing based monitoring
systems expected to play a crucial role in Earth observation, the LULUCF inventory still
relies mostly on census data and forest inventories.

In Europe, the Copernicus Land Monitoring Service (CLMS) jointly implemented
by the European Environment Agency (EEA) and the European Commission DG Joint
Research Centre (JRC), is providing different Earth observation products in the field of
environmental terrestrial application. The oldest, CORINE Land Cover (CLC), was initiated
in 1985 and proposes inventory of land cover [13]. These datasets cover the entire continent
consistently, but with rather limited spatial detail (scale 1:100,000, Minimum Mapping Units
25 ha). This insufficient spatial detail limits the application of CLC for a precise LULCC [14].
Indeed, this data source has a poor reliability in surveying urban area (especially urban
dispersion) since the minimum mapping unit is higher than most of the discontinuous
patches. In particular, this is true for Belgium which is one of the most urbanized countries
in Europe.

To complement CLC data, the CLMS has designed products called High Resolution
Layer (HLR) which provide information on specific land cover characteristics (Impervi-
ousness, Forests, Grassland, Water and Wetness, and Small Woody Feature) [15–19]. These
datasets are based on satellite imagery through a combination of different sensors (optical
and radar data). The reference year is 2015 and the spatial resolution is 20 m, except for the
Small Woody Feature and Forest products which are based on data of a better resolution of
10 m.

Recently, the EEA and the European Commission have determined to develop a
new generation of CLC products called CLC+. The CLC+ products suite consists of:
CLC + Backbone, CLC + Core and CLC + Instances. CLC + Instances products should
include a tailored product dedicated for LULUCF reporting called “CLC + LULUCF”. This
component would have a temporal frequency of 1–3 years and a minimum cartographic
unit of 0.005 km2. This upcoming CLC + LULUCF is designed to overcome the lack of CLC
and HLR products to provide support for carrying out LULUCF inventories [20].

In addition to the previous products, the launch of ESA’s Sentinel-2 satellites in 2015
and 2017 with their high spatial and temporal resolution offers new opportunities for
understanding how the Earth is changing. Sentinel 2A and B are characterized by a sun-
synchronous orbit, phased at 180 to each other, and a frequent revisit cycle of 5 days [21].
The multi-temporal resolution ensures a better monitoring of LUC with the prospect of
obtaining cloudless mosaics; whereas the wide spectral resolution facilitates the thematic
identification of land cover [22] and the high spatial resolution allows for the identification
of small objects, such as individual houses or landscapes structures [23,24].

This study investigates the potential of Sentinel-2 data for detecting lands conversions
associated to the LULUCF sector in southern Belgium. The research tests the most widely
used change detection techniques as described by [25] on a set of cloud- and snowless
mosaics of Sentinel-2 from the years 2016 and 2018. The post-classification comparison
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logic will be tested in the case of the much debated use of per-pixel or per-object techniques
to obtain a detailed from-to change information. The validation of this research use
harmonized and comparable statistics on land use and land cover across the whole of
the EU’s territory (Land Parcel Identification System (LPIS), Land Use/Cover Area frame
Survey (LUCAS), CORINE Land Cover). This paper is an attempt to fill the gap related to
subtle LULCC detection analysis and provides clues for using Copernicus Land Monitoring
Services to support the LULUCF regulation. It also highlights the strengths and weaknesses
of the most common change detection techniques. Finally, it discusses the use of Sentinel-2
data for measuring changes in carbon stocks resulting from direct human-induced land use.

The paper is organized into four sections. Section 2 gives a brief account of the change
detection techniques and the reference data used in the research. Section 3 presents the
results of the different techniques. Section 4 discusses the accuracy of the change maps and
some challenges related to the use of Sentinel-2 data for LULUCF change detection. Finally,
our conclusions are presented in Section 4.

2. Materials and Methods
2.1. Sentinel-2 Data Processing and Analysis

This study was undertaken in Wallonia, the southern part of Belgium (Figure 1). The
region covers an area of 16,901 km2 with a population over 3.6 million. Two sets of Sentinel-
2 images from 2016 and 2018 have been pre-processed according to the procedure adopted
by [26]. Six cloudless and snowless mosaics composed of eight tiles of Sentinel-2 data have
been produced. They cover three seasons: winter, spring and summer from both years.
The weather conditions during the autumn period of both years did not permit to generate
autumn mosaics due to an extended period of cloud cover.
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Figure 1. Tiles arrangement allowing the realization of the six mosaics of Sentinel-2 in Wallonia,
Belgium. Eight tiles (T31UDS, T31UES, T31UFS, T31UGS, T31UER, T31UFS, T31UGR, and T31UFQ)
were used to produce six mosaics. The data spanned from December 2016 (winter 2016 mosaic),
March to May 2016 (spring 2016 mosaic), July to September 2016 (summer 2016 mosaic), February to
March 2018 (winter 2018 mosaic), May 2018 (spring 2018 mosaic) and, June to August 2018 (summer
2018 mosaic). These periods depended mainly on the availability of usable Sentinel-2 images.

The processing flow of the change detection analysis is shown in Figure 2. It involves
the pre-processing of Sentinel-2 and the production of six mosaics of Sentinel-2 images.
Then, the application of the most commonly used methods in change detection: (a) algebraic
and, (b) post-classification [27]. The algebraic methods refer to bi-temporal approach which
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exploits only the summer mosaic of both years. In opposite, the post-classification methods
involve the use of the six mosaics for a multi-temporal approach. The bi-temporal analysis
was carried out using the ArcGIS Pro software and its raster calculator tool. A detailed
process description of the pixel-based classification can be found in [26]. The object-based
classification was also implemented in ArcGIS Pro software (Esri Inc. ArcGIS Pro (version
2.3.3). Software. Redlands, CA, USA: Esri Inc., 2018.).
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Figure 2. Workflow of the change detection analysis. Two sets of Sentinel-2 data have been pre-processed to produce
cloudless and snowless mosaics from winter, spring and summer season of 2016 and 2018 following the procedure described
in reference [26]. Then, two approaches of change detection analysis have been tested: (1) algebraic (image differencing,
image ratioing, index differencing, principal component analysis) and, (2) post-classification (pixel-based classification and
object-based classification). Finally, change maps have been generated for each method.

2.1.1. Algebraic Change Detection

The algebraic change detection method involves the transformation of two original
images into a new single-band image in which the areas of land cover change are high-
lighted [28]. The method is based on image algebra [27]. The most popularly techniques
include: image differencing, image ratioing, index differencing and principal component
analysis (PCA). Threshold selection for finding the change areas is a common procedure
in algebra based change detection [29]. These techniques generates only binary change
(i.e., change vs. no-change) [27]. They have the advantage of being based on the de-
tection of physical changes between image dates. This avoids the errors introduced in
post-classification where inaccuracies in the land cover classification between dates are
propagated into the land cover change analysis [28].

Below are the different equations that have been applied on Sentinel-2 mosaics bands
to generate the change maps using Raster Calculator tool (ArcGIS Pro):

• Image differencing [25]

Change map =

(
B2018 − B2016

B2018 + B2016

)2
(1)

where B corresponds to the different bands of Sentinel-2 images (B2, B3, B4, B5, B6, B7,
B8, B8A, B11 and B12) of the mosaic of summer 2016 and 2018. In this equation, we use
the normalized squared difference which rescales the values into a range of 0 to 1. The
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normalized squared difference facilitates the thresholding since it regroups the change
pixels distributed initially in the tails of the distribution curve around the mean to a
unique direction.

• Image ratioing [25]:

Change map =

(
B2018

B2016

)
(2)

where B corresponds to the different bands of Sentinel-2 images (B2, B3, B4, B5, B6, B7, B8,
B8A, B11 and B12) of the mosaic of summer 2016 and 2018.

• Spectral index differencing [25]:

In this research, we use four widely used spectral indices to extract land feature:
(1) Normalized Vegetation Index (NDVI [30,31]), (2) Normalized Difference Built-up Index
(NDBI [32]), (3) Brightness Index (BI [33]) and, (4) the second Brightness Index (BI2 [33])).
We use only soil and vegetation indices due to their ability to characterize the most relevant
land categories (forest land, cropland, grassland and settlement). We did not use water
index because we assumed that this land category did not change much over the time.
Image differencing was then applied to all spectral indices.

Change map, NDVI =
((

B8 − B4
B8 + B4

)
2018

−
(

B8 − B4
B8 + B4

)
2016

)2
(3)

Change map, NDBI =
((

B11 − B8
B11 + B8

)
2018

−
(

B11 − B8
B11 + B8

)
2016

)2
(4)

Change map, BI =

((
(B4 × B4) + (B3 × B3)

2

)2
)

2018

−
((

(B4 × B4) + (B3 × B3)
2

)2
)

2016

(5)

Change map, BI2 =

((
(B4×B4)+(B3×B3)+(B8×B8)

3

)2
)

2018

−
((

(B4×B4)+(B3×B3)+(B8×B8)
3

)2
)

2016

(6)

• Principal component analysis (PCA) [25]:

PCA is used to capture the maximum variance in a finite number of orthogonal com-
ponents based on an eigenvector analysis of the data correlation matrix. It has been used in
change detection for many years because of its capacity of enhancing the information on
change. The basic premise of PCA is to reduce the dimensionality of a dataset consisting of
a large number of interrelated variables, while retaining as much as possible the variation
present in the dataset. This is achieved by transforming to a new set of variables, the
principal components (PCs), which are uncorrelated, and which are ordered so that the
first few retain most of the variation present in all of the original variables [28].

In this study, PCA has been used in two steps. First, it has determined which bands
of the 10 bands Sentinel-2 data retain most of the variation (Table 1). The first four bands
(B2, B3, B4, B5) account for 98.78% of the covariance with a percentage of eigen values
higher than 1%. For these reasons, we only used B2, B3, B4 and, B5 to carry out the
pre-classification analysis.

Second, the resulting PCs from 2018 have been compared with PCA images from
2016 through image differencing in order to generate change maps. Principal Components
Analysis was performed using ArcGIS Pro.
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Table 1. Principal component analysis of the mosaic of summer 2016. This mosaic contains 10 bands
(B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12).

Band Eigenvalue Percent of Eigenvalues Accumulative of Eigenvalues

B2 4028,976.59 70.78 70.78
B3 1386,233.87 24.35 95.13
B4 135,458.47 2.38 97.51
B5 71,961.32 1.26 98.78
B6 22,233.99 0.39 99.17
B7 20,524.41 0.36 99.53
B8 13,311.03 0.23 99.76

B8A 6197.79 0.11 99.87
B11 5146.81 0.09 99.96
B12 2213.52 0.04 100.00

2.1.2. Post-Classification Change Detection

The post-classification method is the comparative analysis of two independently pro-
duced classifications from different dates [25]. The post-classification comparison can be
done in a pixel- or object-based manner. In the pixel based approach, the classification is
performed at the raster cell level whereas the object-based approach groups pixels into
homogenous units based on local variance criteria objects are created using local homo-
geneity criteria, merging spatially contiguous pixels [34–36]. It is generally argued that the
object-based classification is more suitable for Very High Resolution (VHR) images where
the pixel-based approach faces the challenge posed by higher spectral variation and mixed
pixels [27,35]. Contrary to the image algebra method, these techniques provide from-to
change information. They have the advantage to bypass the difficulties in change detec-
tion associated with the analysis of images acquired at different times of the year [37–39].
However, as mentioned before, they are highly sensitive to the individual classification
accuracies [28] and the comparison of the classifications inevitability leads to overstating
the extent of changes [40].

In this research, the pixel-based classification was performed according to the work
of [26]. The object-based classification was conducted using ArcGIS Pro software. The
segmentation was carried out using Segment Mean Shift of the Spatial Analyst toolbox and
the classifier was Maximum Likelihood Classification. Training and validation datasets
were the same as the work of [26]. The comparison of each independent classification was
executed using Raster Calculator tool.

2.2. Reference Data
2.2.1. Land Parcel Identification System (LPIS)

In Wallonia, the land parcel identification system (LPIS) is called anonymous agri-
cultural plot (AAP). The LPIS indicates the use of land in agricultural areas managed
within the framework of the Common Agricultural Policy. The AAP is publicly avail-
able through the geoservices of Wallonia (https://geoservices.wallonie.be/arcgis/rest/
services/AGRICULTURE/SIGEC_PARC_AGRI_ANON__2018/MapServer). This dataset
gives the delineations of boundaries of agricultural fields, as well as the other relevant
information assigned by farmers for each claim year. For this study, the AAP has been
converted through a conversion table (Appendix D) to have only the distribution of grass-
land and cropland and thereby corresponds to the definitions of the categories of land as
defined by reference [12].

2.2.2. CORINE Land Cover (CLC)

CORINE Land Cover is a land cover database that has been produced for 1990, 2000,
2006, 2012 and 2018 [41]. This inventory consists of 44 land cover classes and uses a
minimum mapping unit of 0.25 km2. This classes are grouped into 5 land cover classes in
the land cover change and statistics 2000–2018 (available at https://www.eea.europa.eu/

https://geoservices.wallonie.be/arcgis/rest/services/AGRICULTURE/SIGEC_PARC_AGRI_ANON__2018/MapServer
https://geoservices.wallonie.be/arcgis/rest/services/AGRICULTURE/SIGEC_PARC_AGRI_ANON__2018/MapServer
https://www.eea.europa.eu/data-and-maps/dashboards/land-cover-and-change-statistics
https://www.eea.europa.eu/data-and-maps/dashboards/land-cover-and-change-statistics
https://www.eea.europa.eu/data-and-maps/dashboards/land-cover-and-change-statistics
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data-and-maps/dashboards/land-cover-and-change-statistics. It is an interactive viewer
that displays land cover statistics per country (Table 2).

Table 2. Land cover accounts of Wallonia derived from CLC 2006–2018 (https://land.copernicus.eu/
pan-european/corine-land-cover).

Artificial
Surfaces

Agricultural
Areas

Forest and Semi
Natural Areas Wetlands Waterbodies

CLC 2018 (km2) 2563 9007 5226 63 45

Change 2012–2018 (%) 0.51 −0.13 −0.12 8.81 0.22

CLC 2012 (km2) 2551 9019 5232 58 45

Change 2006–2012 (%) 1.41 −0.42 −0.01 4.95 0.18

CLC 2006 (km2) 2515 9057 5233 56 45

2.2.3. Reference Points

The Land Use/Cover Area frame Survey (LUCAS) and the Water and Wetness (WAW)
layer of the Copernicus land monitoring HLR have been used to produce the reference
points of this study. The LUCAS database is a survey conducted by Eurostat which
provides harmonized statistics on LUC across European Union. LUCAS is based on
statistical calculations that interpret observations in the field. It is based on a standardized
survey methodology in terms of a sampling plan, classifications, data collection processes
and statistical estimators that are used to obtain harmonized and unbiased estimates of land
use and land cover [42]. The database was converted into the 5 categories of land (forest
land, cropland, grassland, wetland and settlement) as defined by Reference [12] through
a conversion table (Appendix C). Both definitions of land categories were difficult to
align perfectly because the classes nomenclature were not the same and the LULUCF land
categories are really rigorous (e.g., a forest has to be of at least of 0.5 ha, 20% of trees and a
height of 5 m). In addition, LUCAS nomenclature has been made to be harmonized and
comparable at the EU scale and is not specific to the particularities of Belgium landscape.
To take into account these limitations, all the points were further validated by means of
the interpretation of the Sentinel-2 mosaics and aerial orthophotography available at (
https://geoportail.wallonie.be/catalogue/647e383d-c74b-4ee6-bf48-a5ebc746e8 bf.html)
from years 2016 and 2018. The Water and Wetness (WAW) layer of 2015 was used to address
the lack of points in the “wetland” category of the LUCAS database. Points have been
randomly allocated in the classes’ permanent water and permanent wet area. This stratified
random sampling design enables to satisfy the accuracy assessment [43,44]. The resulting
reference points are depicted in Figure 3 and the statistics are available in Table 3. In total,
eight points have changed between 2016 and 2018. This gives a percentage of change of
0.37%. The area of land converted ranges from 0.02 to 0.33 km2.

Table 3. Statistics of reference points per land categories for the year 2016 and 2018.

Land Categories Points 2016 Points 2018 Change (%)

Forest land 721 720 −0.14%
Cropland 535 535 0.00%
Grassland 487 485 −0.41%
Wetland 150 150 0.00%

Settlement 248 251 1.21%

Total 2141 2141 0.37%

https://www.eea.europa.eu/data-and-maps/dashboards/land-cover-and-change-statistics
https://www.eea.europa.eu/data-and-maps/dashboards/land-cover-and-change-statistics
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
https://geoportail.wallonie.be/catalogue/647e383d-c74b-4ee6-bf48-a5ebc746e8
https://geoportail.wallonie.be/catalogue/647e383d-c74b-4ee6-bf48-a5ebc746e8
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3. Results
3.1. Algebraic Change Detection Results

The algebraic change detection analysis applied algebraic operations (differencing
and ratioing) on the mosaic of summer 2018 and 2016. These mosaics have been chosen
because they were acquired in the best period of the year for executing the image analysis
(homogeneous vegetation status, good atmospheric conditions, good illumination and
viewing angle). The selection of the bands of interest has been made through a principal
component analysis (PCA) (Section 2.1.1).

Figure 4 is an illustration representing an example of land use change in Wallonia.
The location of the observed changes is delimited by black polygons. In this area of interest,
two polygons of forest land (A and B) in 2016 have been converted into settlement and
one polygon of grassland in 2016 (C) has been converted into settlement in 2018. Figure 5
shows the results of the algebraic method and Table 4 presents the Walloon’ statistics of
change associated to each algebra technique.
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Figure 5. Algebraic change maps: (a) image differencing; (b) image ratioing; (c) principal component
analysis (PCA); (d) index differencing. Thresholds of the binary maps have been made through
visual observation. The background image is the Sentinel-2 image from the year 2016. The black
polygons are delimiting the location of the observed change areas and the red pixels correspond to
the change areas determined by the pre-classification techniques.



Land 2021, 10, 55 10 of 23

Table 4. Percentage of changed and unchanged areas in Wallonia associated with pre-classification CD techniques.

Image Differencing Image Ratioing PCA Index Differencing

No Change Change No Change Change No Change Change No Change Change

B2 92.90 7.10 91.63 8.37 88.69 11.31 92.54 7.46 NDVI
B3 92.21 7.79 88.49 11.51 88.22 11.78 90.73 9.27 NDBI
B4 93.60 6.40 98.40 1.60 84.24 15.76 95.27 4.73 BI
B5 91.15 8.85 89.99 10.01 / / 85.12 14.88 BI2

3.2. Post-Classification Results

Figure 6 shows the object-based post-classification results and Figure 7 the pixel-based
post-classification results of the same area of interest (Figure 4). Tables 5 and 6 presents the
statistics of both post-classification techniques. The pixel-based classification has a higher
overall accuracy (91.90% for 2016 and 91.70% for 2018) than the object-based classification
(84.65% for 2016 and 76.56% for 2018). The percentage of unchanged pixels is close to the
multiplication of the accuracies of each independent classifications (accuracies pixel-based
= 0.84; unchanged pixels = 0.83/accuracies object-based = 0.64; unchanged pixels = 0.67).
Table 7 reports the errors matrix in terms of estimated area proportion for the pixel-based
classification.
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Figure 6. Post-classification analysis: object-based classification results. The first panel shows the
aerial orthophotography of 2016 and 2018. Three areas of change are delimited by black polygons.
The second panel shows the object-based classification of both years. The last panel is the change
map of the object-based classification. The red pixels are delimiting the areas of change according to
the classification, and the black polygons the location of observed changed areas.
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Figure 7. Post-classification analysis: pixel-based classification results. The first panel shows the
aerial orthophotography of 2016 and 2018. Three areas of change are delimited by black polygons.
The second panel shows the pixel-based classification of both years. The last panel is the change map
of the pixel-based classification. The red pixels are delimiting the areas of change according to the
classification, and the black polygons the location of observed changed areas.

Table 5. Percentage of changed and unchanged areas in Wallonia associated with object-based
classification, overall accuracy (OA) of each classification and the associated errors in percentage.

Object-Based Change Map

%

No change 67.22
Change 32.78

OA% Errors%

Classification 2016 84.65 15.35
Classification 2018 76.56 23.44

Total / 38.79
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Table 6. Percentage of changed and unchanged areas in Wallonia associated with pixel-based
classification, overall accuracy (OA) of each classification and the associated errors in percentage.

Pixel-Based Change Map

%

No change 83.40
Change 16.60

OA% Errors%

Classification 2016 91.90 8.10
Classification 2018 91.70 8.30

Total / 16.40

Table 7. Error matrix reported in terms of estimated area proportions (km2).

Pixel-Based Classification 2018

Forest Land Cropland Grassland Wetland Settlement ∑

Pixel-based
classifica-

tion
2016

Forest land 3588.93 78.10 0.08 141.09 281.28 4089.47
Cropland 147.20 5110.42 2.11 349.63 114.16 5723.52
Grassland 1.57 4.18 50.04 18.80 0.00 74.60
Wetland 321.13 177.23 2.28 1761.23 294.53 2556.41

Settlement 737.48 58.76 0.00 306.24 3347.15 4449.63
∑ 4796.31 5428.69 54.51 2576.97 4037.12 16,893.62

3.3. Comparison with Validation Datasets

The change maps have been compared with three different datasets: (1) CORINE
Land Cover, (2) Anonymous Agricultural Plot and (3) the reference points. Table 8 consists
of a summary of the different results of the three validation datasets.

Table 8. Percentage of changes for the three validation datasets: CLC, AAP and reference points for Wallonia. The cropland
category of CLC in this table corresponds to agricultural area in the CLC nomenclature. This includes both agricultural
and pastoral lands. The wetland category of CLC in this table corresponds to wetlands and water bodies in the CLC
nomenclature.

CORINE Land Cover (CLC) Anonymous Agricultural Plot (AAP) Reference Points

2012 (km2) 2018 (km2) Change
(%) 2016 (km2) 2018 (km2) Change

(%)
2016

(Points)
2018

(Points)
Change

(%)

Forest land 5232.2 5225.96 0.51 N/A N/A N/A 721 720 −0.14
Cropland

9018.94 9006.99 −0.13
3898.40 3905.43 0.18 535 535

Grassland 4221.08 4328.54 2.55 487 485 −0.41
Wetland 103.25 108.49 5.08 N/A N/A N/A 150 150

Settlement 2550.54 2563.49 0.51 N/A N/A N/A 248 251 1.21

3.4. Accuracy Assessment

Appendices A and B present the confusion matrices of each change map using the
2141 reference points based on LUCAS and WAW database for the year 2016 and 2018.
In addition, the overall accuracy (OA) was generated from the confusion matrix [36].
Figures 8–10 show a graphical representation of the results for the OA, errors of omission
(changed erroneously) and errors of commission (not changed erroneously). We also
evaluated the statistical significance of the difference between the pixel-based classification
and the object-based classification using the chi-square distribution with one degree of
freedom. The test equation may be expressed as [45]:

x2 =
(f12 − f21)

2

f12 + f21
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Figure 8. Overall accuracy (%) of the algebraic and post-classification techniques. Ratio B4 (98%), BI differencing (95%) and
B4 differencing (94%) present the highest overall accuracy.
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Figure 9. Omission errors of the algebraic and post-classification techniques. The Object-based change detection technique
has the highest omission errors (652). Ratio B4 has the lowest omission errors (32).
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Figure 10. Commision errors of the algebraic and post-classification techniques. The Object-based change detection
technique has the lowest commission errors (2).

The resulting matrix is presented in Table 9. The Chi squared test shows a relationship
between both classifications. This is not surprising since both classifications were trained
with the same training sample and the same classifier (Maximum Likelihood).

Table 9. Chi squared test for evaluating the statistical significance between pixel-based classification
and object-based classification [45].

Pixel-Based Classification X2

Allocation Correct Incorrect ∑ 910.7201

Object-based classification Correct 1280 207 1487
Incorrect 512 142 654

∑ 1792 349 2141

4. Discussion

As mentioned by reference [25], the selection of a suitable method of change detection
for a given research is not straightforward. It depends on the remote sensing data, the
study area and the type and magnitude of change. Four observations may be drawn from
the results of this research.

First, the three validation datasets have highlighted the fact that the rate of LUC
change in Belgium is very low. According to reference [6], Belgium is a country with one of
the lowest mean annual land cover change rates in Europe. Each year, only 0.1% (~30 km2)
of the total area is converted to different land cover classes whereas the European mean rate
is 1.6%. The reference points give a land conversion rate of 0.4% in Wallonia (~70 km2)) and
enable the identification of the most converted land areas in Wallonia. They are grassland
(−0.41%) and settlement (+1.21%) (Table 3). This is not surprising since grassland is the
main source for artificial land take in the country. The AAP also identifies grassland as
a category of land which undergoes a notable conversion (2.55%). However, this dataset
does not provide the direction of changes. Meanwhile, the agricultural area of CLC shows
a change of −0.13% (Tables 2 and 7). Unlike the other validation datasets, it points out a
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major wetland conversion which is in fact the result of the minimum mapping unit of CLC
(0.25 km2) which is not sufficient to properly map most of wetland areas in Belgium.

Second, when comparing the algebraic and post-classification methods, the alge-
braic methods provide a percentage of change closer to the reality of LULUCF changes
(Tables 8 and 9). The change maps of the algebraic methods show a change percentage
ranging from 1.6% (ratio B4) to 15.76% (PC3) and an overall accuracy (OA) ranging from
82.6% (BI2 differencing) to 98.1% (ratio B4). According to the classification standard of [46],
most of these overall accuracies are considered as satisfactory because they are higher
than 85%. Although, the algebraic methods overall accuracies are high, these numbers
are mainly driven by the large proportion of unchanged points. The results of the post-
classification methods differ further from the real change percentage (from 16.6% to 32.8%)
and have lower overall accuracies (Tables 5 and 6). As mentioned by reference [47] deter-
mining land changes by overlaying maps that have the same categories from two points
in time makes sense when the map are perfectly accurate. In this study, the maps are not
perfectly accurate (OApixel-based = 91.9% and 91.7%; OAobject-based = 84.7% and 76.6%) and
the amount of error is too large to ignore. Moreover, according to the reference points, the
amount of change is 0.4%, while the errors in maps is significantly higher (Errorpixel-based =
8.1% and 8.3%; Errorobject-based = 15.3% and 23.4%. Hence, errors in each individual map
result in differences between the two maps.

Despite having more misclassification and misregistration errors, Figure 10 shows
that the post-classification methods are the most sensitive change detection technique.
Among them, the object-based technique gives the most satisfying results when looking
at identifying the location of observed changes (6 reference point of “change” have been
correctly attributed to “change” in the change map). However, we did not observe a
reduction of the small spurious change within the extent of each object that should results
in a high spectral variability in the pixel-based classification [35]. Furthermore, the object-
based technique has also the most important commission errors (652 reference points of “no
change” have been erroneously attributed to “change” in the change map). In conclusion,
all of the change detection techniques substantially overestimated the changes.

Third, the use of Sentinel-2 data for LULCC detection can be summarized by the
following points. In terms of spatial scale, the 10 m spatial resolution is sufficient to
delineate individual geographic objects of interest. The visualization of change maps
has shown that the converted land areas in Wallonia range from 20 pixels to 3300 pixels.
Regarding the temporal scale, Sentinel-2A is available since June 2015 and should have a
lifespan of 7 years. A second generation should follow for 7 additional years. Sentinel-2A
and 2B have a high revisit time of 5 days ensuring the production of several cloud-free
mosaics per year that minimizes the seasonal phenological differences. Furthermore, the
twin satellites are deployed in polar sun-synchronous orbit which ensures that the angle of
sunlight upon the Earth’s surface is consistently maintained which limits the shadow effects.
Consequently, Sentinel-2 provides high resolution images for the operational monitoring
of land and the production of land-change detection maps.

Finally, the results of the change detection applied in the Walloon context of land
conversion associated to the LULUCF sector shows its limits in precisely identifying the
changes. On account of the low rate of land conversion in Wallonia (~0.4%; corresponding
to ~70km2 of change), we reach a critical point where all techniques face difficulties to
properly identify land conversion. As mentioned in the above point, Sentinel-2 data are
not responsible for these moderate results. In addition, changing the temporal window
from 2 years to 5 or more years would not improve significantly the results since the CLC
data from 2006 to 2018 (Table 2) has not shown any increase of the magnitude of change.
Similarly, the possibility of increasing the classification accuracy is very limited when
reaching the 92% of overall accuracy. And if so, improving a few percent would still be
too few to properly map the changes. As an example, two classifications of 98% of overall
accuracy would make 96% of land correctly allocated in the change map and 4% of errors
(~700 km2) for only 70 km2 of real changes.
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In future, similar research should concentrate on (1) post-processing, (2) the combina-
tion of methods and (3) AI-based change detection. Nevertheless, it is essential to bear in
mind that the post-processing could interfere with the automatic nature of the approach as
well as its wide-scale implementation e.g., through the use of regional databases. Regarding
the combination of methods, it is likely to propagate errors which would impede the final
results. In recent years, integrated artificial intelligence technology has become a research
focus in developing new change detection methods. Several studies have suggested that
they could outperform the traditional change detection methods.

5. Conclusions

Gaining a better understanding of carbon cycle and climate change requires accurate
information on land conversion. The recent launch of Sentinel-2 satellites provides new
opportunities for studying LUC changes on a regional and global scale. A wide variety
of studies have analyzed significant LUC changes such as massive forest deterioration or
rapid urbanization in developing countries. Only a few have focused on more developed
countries undergoing a low land conversion rate such as EU countries. In research explored
the effectiveness of Sentinel-2 data to detect changes related to the LULUCF sector in
Wallonia, Belgium. The approach tested the most commonly accepted change detection
techniques in order to evaluate the capability of Sentinel-2 data to account for low land
conversion. Our results suggest that the rate of conversion is too low to precisely identify
changes. All the change detection techniques have been found to overestimate the change.
We consider that Sentinel-2 data have a great potential for LUC change detection analysis.
However, change detection capabilities are largely determined by whether the applied
change magnitude exceeds the signal to noise ratio [48].
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Appendix A

Table A1. Confusion matrix of the algebraic methods. The PCA is the most sensitive technique of the
pre-classification method with 3 locations of change correctly labelled within the change map of the
PC1. The second-best technique is index differencing (NDVI, NDBI and BI) which have correctly
labelled 1 location of change. The overall accuracy (OA) of each technique is expressed at the right
side of the table.

Reference Points

change no change Total

B2 differencing change 0 8 8
no change 172 1961 2133 OA = 91.6%

Total 172 1969 2141



Land 2021, 10, 55 17 of 23

Table A1. Cont.

Reference Points

change no change Total

B3 differencing change 0 8 8
no change 154 1979 2133 OA = 92.4%

Total 154 1987 2141

Reference Points

change no change Total

B4 differencing change 0 8 8
no change 128 2005 2133 OA = 93.6%

Total 128 2013 2141

Reference Points

change no change Total

B5 differencing change 0 8 8
no change 225 1908 2133 OA = 89.1%

Total 225 1916 2141

Reference Points

change no change Total

Ratio B2
change 0 8 8

no change 200 1933 2133 OA = 90.3%
Total 200 1941 2141

Reference Points

change no change Total

Ratio B3
change 0 8 8

no change 271 1862 2133 OA = 87.0%
Total 271 1870 2141

Reference Points

change no change Total

Ratio B4
change 0 8 8

no change 32 2101 2133 OA = 98.1%
Total 32 2109 2141

Reference Points

change no change Total

Ratio B5
change 0 8 8

no change 274 1859 2133 OA = 86.8%
Total 274 1867 2141

Reference Points

change no change Total

PC1
change 3 5 8

no change 192 1941 2133 OA = 90.8%
Total 195 1946 2141

Reference Points

change no change

PC2
change 1 7 8

no change 232 1901 2133 OA = 88.8%
Total 233 1908 2141

Reference Points

change no change

PC3
change 1 7 8

no change 309 1824 2133 OA = 85.2%
Total 310 1831 2141
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Table A1. Cont.

Reference Points

NDVI differencing

change no change
change 1 7 8

no change 173 1960 2133 OA = 91.6%
Total 174 1967 2141

Reference Points

NDBI differencing

change no change Total
change 1 7 8

no change 200 1933 2133 OA = 90.3%
Total 201 1940 2141

Reference Points

BI differencing

change no change Total
change 0 8 8

no change 95 2038 2133 OA = 95.2%
Total 95 2046 2141

Reference Points

BI2 differencing
change no change Total

change 1 7 8
no change 365 1768 2133 OA = 82.6%

Total 366 1775 2141

Appendix B

Table A2. Confusion matrix of the post-classification methods. The object-based is the most sensitive
technique with 6 location of change correctly labelled whereas the pixel-based has only 1 location of
change correctly attributed. The overall accuracy (OA) of each technique is expressed at the right
side of the table.

Reference Points

change no change Total

Pixel-based
change 1 7 8

no change 342 1791 2133 OA =83.7%
Total 343 1798 2141

Reference Points

change no change Total

Object-based
change 6 2 8

no change 652 1481 2133 OA =69.5%
Total 658 1483 2141

Appendix C

Table A3. Conversion table from LUCAS nomenclature to LULUCF categories of land.

LUCAS LULUCF Categories
of Land

A00 Artificial land

A10 Roofed built-up areas
A11 5
A12 5
A13 5

A20 Artificial non-built up areas A21 5
A22 5

A30 other Artificial areas 5
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Table A3. Cont.

LUCAS LULUCF Categories
of Land

B00 Cropland

B10 Cereals

B11 2
B12 2
B13 2
B14 2
B15 2
B16 2

B17 2
B18 2
B19 2

B20 Root Crops
B21 2
B22 2
B23 2

B30 Non-premanent industrial Crops

B31 2
B32 2
B33 2
B34 2
B35 2
B36 2
B37 2

B40 Dry pulse, vegetable and Flowers

B41 2
B42 2
B43 2
B44 2
B45 2

B50 Fodder Crops

B51 3
B52 3
B53 3
B54 3
B55 3

B70 Permanent crops

B71 2
B72 2
B73 2
B74 2
B75 2
B76 2
B77 2

B80 Other Permanent crops

B81 2
B82 2
B83 2
B84 2

C00 Woodland

C10 Broad Leaved woodland 1

C20 Coniferous woodland
C21 1
C22 1
C23 1

C30 Mixed woodland
C31 1
C32 1
C33 1

D00 Shrubland
D10 Shrubland with sparse tree cover 1

D20 Shrubland without tree cover 3
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Table A3. Cont.

LUCAS LULUCF Categories
of Land

E00 Grassland

E10 Grassland with sparese tree/shrub cover 3

E20 Grassland without tree/shrub cover 3

E30 Spontaneously re-vegetaed surfaces 3

F00 Bare land and
Lichens/Moss

F10 Rocks and stones 5

F20 Sand 5

F30 Lichen and moss NA

F40 other bare soil 4

G00 Water areas

G10 Inland water bodies
G11 4
G12 4

G20 Inland running water G21 4
G22 4

G30 Transitional water bodies 4

G50 Glaciers, permanent snow NA

H00 Wetland

H10 inland wetlands
H11 3
H12 3

H20 Coastal wetland
H21 NA
H22 NA
H23 NA

Appendix D

Table A4. Conversion table from AAP nomenclature to LULUCF categories of land.

AAP
Nomenclature Agricultural Classes LULUCF Categories

of Land

6 Prairie et fourrage 3
36 Epeautre 2
37 Sarrasin 2
39 Céréales ET légumineuses 2
42 Tournesol 2
43 Soja 2
45 Lin oléagineux 2
46 Autres oléagineux 2
51 Pois protéagineux 2
53 Lupin doux 2
55 Autres protéagineux 2
71 Betterave fourragère 2
72 Trèfles 2
73 Luzerne 2
80 Jachère 3
81 Couvert naturel/spontané 3
85 Autres couverts semés 2
91 Betterave sucrière 2
96 Cultures horticoles non-comestibles 2
99 Autres 3

201 Maïs ensilage 2
202 Maïs grain 2
311 Froment d’hiver 2
312 Froment de printemps 2
321 Orge d’hiver 2
322 Orge de printemps 2
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Table A4. Cont.

AAP
Nomenclature Agricultural Classes LULUCF Categories

of Land

323 Orge de brasserie 2
331 Seigle d’hiver 2
332 Seigle de printemps 2
341 Avoine d’hiver 2
342 Avoine de printemps 2
351 Triticale d’hiver 2
352 Triticale de printemps 2
381 Sorgho 2
382 Quinoa 2
511 Pois protéagineux d’hiver 2
512 Pois protéagineux de printemps 2
521 Fèves et Féveroles d’hiver 2
522 Fèves et Féveroles de printemps 2
541 Mélange protéagineux d’hiver + céréales ou autres espèces 2
542 Mélange protéagineux de printemps + céréales ou autres espèces 2
743 Autres fourrages 3
851 Couvert favorisant la faune 2

872 Chanvre non textile (culture soumise à autorisation préalable
au semis) 2

881 Angélique 2
884 Miscanthus 2

895 Boisement de terre agricole (art 31 du R.(CE)
1257/1999)—dérogation 2

901 Pomme de terre (non hâtives) 2
902 Pomme de terre (plants) 2
903 Pomme de terre féculière 2
904 Pomme de terre (arrachage avant le 1er août) 2
905 Pomme de terre (primeur, arrachage avant le 20 juin) 2
921 Lin textile 2
922 Chanvre textile 2
931 Pois récoltés à l’état frais, pois de conserverie 2
951 Autres légumes 2
952 Cultures maraîchères sous verre 2
953 Plantes aromatiques 2
957 Plantes médicinales 2
962 Sapins de Noël 2
966 Légume légumineuse 2
4111 Colza d’hiver 2
4112 Navette d’hiver (graines) 2
4121 Colza de printemps 2
7431 Ortie 2
7433 Carotte 2
9201 Noisetier 2
9410 Haricots de conserverie 2
9515 Endives (chicons) 2
9516 Cultures fruitières annuelles—Fraises 2
9520 Pépinières de plants fruitiers ou de plantes ornementales 2
9548 Choux—Légumes 2
9741 Cultures fruitière pluriannuelles-basses tiges 2
9811 Chicorée à inuline 2
9812 Chicorée à café 2
9821 Tabac 2
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