Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SfM Workflow and Digital Elevation Model Generation
2.3. DEMs of Difference and Error Analysis
2.4. Overlapping Current Topography with Older Information
2.5. Geomorphometry
2.6. Explanatory Variables for Statistical Analysis
3. Results
3.1. Channel Geometry
3.2. Dynamics of the Gully
3.3. Restoration Measures: Effectiveness and Relationship with Other Environmental Factors
3.4. Micromorphology and Topographic Change
4. Discussion
4.1. Using SfM Photogrammetry to Detect Topographic Changes
4.2. Gully Dynamics before and after the Restoration Measures
4.3. Effectiveness of the Restoration Measures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Billi, P.; Dramis, F. Geomorphological investigation on gully erosion in the Rift Valley and the northern highlands of Ethiopia. Catena 2003, 50, 353–368. [Google Scholar] [CrossRef]
- Valentin, C.; Poesen, J.; Li, Y. Gully erosion: Impacts, factors and control. Catena 2005, 63, 132–153. [Google Scholar] [CrossRef]
- Zucca, C.; Canu, A.; Della Peruta, R. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena 2006, 68, 87–95. [Google Scholar] [CrossRef]
- Poesen, J. Gully typology and gully control measures in the European loess belt. In Farm Land Erosion in Temperate Plains Environments and Hills; Wicherek, S., Ed.; Elsevier: Amsterdam, The Netherlands, 1993; pp. 221–239. [Google Scholar]
- Bradford, J.M.; Piest, R.F. Erosional development of valley-bottom gullies in the upper midwestern United States. In Thresholds in Geomorphology; Coates, D.R., Vitak, J.D., Eds.; Routledge: Abingdon, UK, 1980; pp. 75–101. [Google Scholar] [CrossRef]
- Poesen, J.; Nachtergaele, J.; Verstraeten, G.; Valentin, C. Gully erosion and environmental change: Importance and research needs. Catena 2003, 50, 91–133. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Schnabel, S.; De Sanjosé, J.J.; Contador, F.L. Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Z. Geomorphol. Suppl. Issues 2012, 56, 27–44. [Google Scholar] [CrossRef]
- Thomas, J.T.; Iverson, N.R.; Burkart, M.R.; Kramer, L.A. Long-term growth of a valley-bottom gully, western Iowa. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2004, 29, 995–1009. [Google Scholar] [CrossRef] [Green Version]
- Chaplot, V.; Le Brozec, E.C.; Silvera, N.; Valentin, C. Spatial and temporal assessment of linear erosion in catchments under sloping lands of northern Laos. Catena 2005, 63, 167–184. [Google Scholar] [CrossRef]
- Faulkner, H. Gully erosion associated with the expansion of unterraced almond cultivation in the coastal Sierra de Lujar, S. Spain. Land Degrad. Dev. 1995, 6, 179–200. [Google Scholar] [CrossRef]
- Gómez-Gutiérrez, Á.; Schnabel, S.; Lavado-Contador, J.F. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad. Dev. 2009, 20, 535–550. [Google Scholar] [CrossRef]
- Schnabel, S. Soil Erosion and Runoff Production in a Small Watershed under Silvo-Pastoral Landuse (Dehesas) in Extremadura, Spain; Geoforma Ediciones: Logroño, Spain, 1997. [Google Scholar]
- Bartley, R.; Bainbridge, Z.T.; Lewis, S.E.; Kroon, F.J.; Wilkinson, S.N.; Brodie, J.E.; Silburn, D.M. Relating sediment impacts on coral reefs to watershed sources, processes and management: A review. Sci. Total Environ. 2014, 468, 1138–1153. [Google Scholar] [CrossRef]
- Wantzen, K.M. Physical pollution: Effects of gully erosion on benthic invertebrates in a tropical clear-water stream. Aquat. Conserv. Mar. Freshw. Ecosyst. 2006, 16, 733–749. [Google Scholar] [CrossRef]
- Daba, S.; Rieger, W.; Strauss, P. Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques. Catena 2003, 50, 273–291. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The effects of land uses on soil erosion in Spain: A review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Fox, G.; Sheshukov, A.; Cruse, R.; Kolar, R.; Guertault, L.; Gesch, K.; Dutnell, R. Reservoir sedimentation and upstream sediment sources: Perspectives and future research needs on streambank and gully erosion. Environ. Manag. 2016, 57, 945–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungerius, P.; Matundura, J.; Van De Ancker, J. Road construction and gully erosion in West Pokot, Kenya. Earth Surf. Process. Landf. 2002, 27, 1237–1247. [Google Scholar] [CrossRef]
- Capra, A.; Mazzara, L.; Scicolone, B. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy. Catena 2005, 59, 133–146. [Google Scholar] [CrossRef]
- Vandekerckhove, L.; Poesen, J.; Wijdenes, D.O.; De Figueiredo, T. Topographical thresholds for ephemeral gully initiation in intensively cultivated areas of the Mediterranean. Catena 1998, 33, 271–292. [Google Scholar] [CrossRef]
- Eichhorn, M.; Paris, P.; Herzog, F.; Incoll, L.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.; Pilbeam, D. Silvoarable systems in Europe–past, present and future prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Rubio-Delgado, J.; Guillén, J.; Corbacho, J.; Gómez-Gutiérrez, Á.; Baeza, A.; Schnabel, S. Comparison of two methodologies used to estimate erosion rates in Mediterranean ecosystems: 137Cs and exposed tree roots. Sci. Total Environ. 2017, 605, 541–550. [Google Scholar] [CrossRef]
- Schnabel, S.; Ceballos Barbancho, A.; Gómez-Gutiérrez, Á. Erosión hídrica en la dehesa extremeña. In Aportaciones a la Geografía Física de Extremadura con Especial Referencia a las Dehesas; Schnabel, S., Contador, J.F.L., Gutiérrez, Á.G., Marín, R.G., Eds.; Fundicotex: Cáceres, Spain, 2010; pp. 153–185. [Google Scholar]
- Schnabel, S.; Dahlgren, R.A.; Moreno-Marcos, G. Soil and water dynamics. In Mediterranean Oak Woodland Working Landscapes; Campos, P., Oviedo, J.S., Díaz, M., Montero, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 91–121. [Google Scholar]
- Gómez-Gutiérrez, Á.; Schnabel, S.; Berenguer-Sempere, F.; Lavado-Contador, F.; Rubio-Delgado, J. Using 3D photo-reconstruction methods to estimate gully headcut erosion. Catena 2014, 120, 91–101. [Google Scholar] [CrossRef]
- Morgan, R. Soil Erosion and Conservation; Blackwell Publishing: Oxford, UK, 2005. [Google Scholar]
- Poesen, J. Conditions for gully formation in the Belgian loam belt and some ways to control them. In Proceedings of the Soil Erosion Protection Measures in Europe. Proc. EC Workshop, Freising, Germany, 24–26 May 1988; pp. 39–52. [Google Scholar]
- Alfonso-Torreño, A.; Gómez-Gutiérrez, Á.; Schnabel, S.; Contador, J.F.L.; de Sanjosé Blasco, J.J.; Fernández, M.S. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci. Total Environ. 2019, 678, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Castillo, V.; Mosch, W.; García, C.C.; Barberá, G.; Cano, J.N.; López-Bermúdez, F. Effectiveness and geomorphological impacts of check dams for soil erosion control in a semiarid Mediterranean catchment: El Cárcavo (Murcia, Spain). Catena 2007, 70, 416–427. [Google Scholar] [CrossRef]
- Quiñonero-Rubio, J.M.; Nadeu, E.; Boix-Fayos, C.; de Vente, J. Evaluation of the effectiveness of forest restoration and check-dams to reduce catchment sediment yield. Land Degrad. Dev. 2016, 27, 1018–1031. [Google Scholar] [CrossRef]
- Belmonte Serrato, F.; Romero Díaz, A.; Martínez Lloris, M. Erosión en cauces afectados por obras de corrección hidrológica (Cuenca del Río Quípar, Murcia). Pap. Geogr. 2005, 41, 71–83. [Google Scholar]
- Conesa García, C. Los diques de retención en cuencas de régimen torrencial: Diseño, tipos y funciones. Nimbus Rev. Climatol. Meteorol. Paisaje 2004, 13–15, 125–142. [Google Scholar]
- Verstraeten, G.; Poesen, J. Regional scale variability in sediment and nutrient delivery from small agricultural watersheds. J. Environ. Qual. 2002, 31, 870–879. [Google Scholar] [CrossRef] [PubMed]
- White, P.; Butcher, D.; Labadz, J. Reservoir sedimentation and catchment sediment yield in the Strines catchment, UK. Phys. Chem. Earth 1997, 22, 321–328. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.; Conoscenti, C.; Di Stefano, C.; Ferro, V.; Gómez-Gutiérrez, A. Morphometric and hydraulic geometry assessment of a gully in SW Spain. Geomorphology 2016, 274, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, R.; Ashworth, P. Spatial patterns of bedload transport and channel change in braided and near-braided rivers. In Dynamics of Gravel-Bed Rivers; Billi, P., Hey, R., Thorne, C., Tacconi, P., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1992; pp. 477–492. [Google Scholar]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Sur. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Sur. Process. Landf. 2013, 38, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Smith, M.W.; Vericat, D. From experimental plots to experimental landscapes: Topography, erosion and deposition in sub-humid badlands from structure-from-motion photogrammetry. Earth Sur. Process. Landf. 2015, 40, 1656–1671. [Google Scholar] [CrossRef] [Green Version]
- Woodget, A.; Carbonneau, P.; Visser, F.; Maddock, I.P. Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry. Earth Sur. Process. Landf. 2015, 40, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Castillo, C.; Pérez, R.; James, M.R.; Quinton, J.; Taguas, E.V.; Gómez, J.A. Comparing the accuracy of several field methods for measuring gully erosion. Soil Sci. Soc. Am. J. 2012, 76, 1319–1332. [Google Scholar] [CrossRef] [Green Version]
- Frankl, A.; Stal, C.; Abraha, A.; Nyssen, J.; Rieke-Zapp, D.; De Wulf, A.; Poesen, J. Detailed recording of gully morphology in 3D through image-based modelling. Catena 2015, 127, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Chen, J.; Sofia, G.; Tian, Y.; Tarolli, P. Open-pit mine geomorphic changes analysis using multi-temporal UAV survey. Environ. Earth Sci. 2018, 77, 220. [Google Scholar] [CrossRef]
- Kaiser, A.; Erhardt, A.; Eltner, A. Addressing uncertainties in interpreting soil surface changes by multitemporal high-resolution topography data across scales. Land Degrad. Dev. 2018, 29, 2264–2277. [Google Scholar] [CrossRef]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Brasington, J.; Langham, J.; Rumsby, B. Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. Geomorphology 2003, 53, 299–316. [Google Scholar] [CrossRef]
- Rumsby, B.; Brasington, J.; Langham, J.; McLelland, S.; Middleton, R.; Rollinson, G. Monitoring and modelling particle and reach-scale morphological change in gravel-bed rivers: Applications and challenges. Geomorphology 2008, 93, 40–54. [Google Scholar] [CrossRef]
- Cavalli, M.; Goldin, B.; Comiti, F.; Brardinoni, F.; Marchi, L. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology 2017, 291, 4–16. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Ramos, M.C.; García-Hernández, D. Effects of land-use changes in vegetation cover and sidewall erosion in a gully head of the Penedès region (northeast Spain). Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2009, 34, 1927–1937. [Google Scholar] [CrossRef]
- Borrelli, L.; Conforti, M.; Mercuri, M. LiDAR and UAV System Data to Analyse Recent Morphological Changes of a Small Drainage Basin. ISPRS Int. J. Geo-Inf. 2019, 8, 536. [Google Scholar] [CrossRef] [Green Version]
- Martins, B.; Castro, A.C.M.; Ferreira, C.; Lourenço, L.; Nunes, A. Gullies mitigation and control measures: A case study of the Seirós gullies (North of Portugal). Phys. Chem. Earth Parts A/B/C 2019, 109, 26–30. [Google Scholar] [CrossRef]
- Tarolli, P.; Cavalli, M.; Masin, R. High-resolution morphologic characterization of conservation agriculture. Catena 2019, 172, 846–856. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; De Jong, S.M. Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens. 2015, 7, 1736–1757. [Google Scholar] [CrossRef] [Green Version]
- Cook, K.L. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 2017, 278, 195–208. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Haas, F.; Hilger, L.; Neugirg, F.; Umstädter, K.; Breitung, C.; Fischer, P.; Hilger, P.; Heckmann, T.; Dusik, J.; Kaiser, A. Quantification and analysis of geomorphic processes on a recultivated iron ore mine on the Italian island of Elba using long-term ground-based lidar and photogrammetric SfM data by a UAV. Nat. Hazards Earth Syst. Sci. 2016, 16, 1269–1288. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.D. 2.3. 2. DEMs of Difference. In Geomorphological Techniques; British Society for Geomorphology: London, UK, 2012. [Google Scholar]
- Bangen, S.; Hensleigh, J.; McHugh, P.; Wheaton, J. Error modeling of DEMs from topographic surveys of rivers using fuzzy inference systems. Water Resour. Res. 2016, 52, 1176–1193. [Google Scholar] [CrossRef] [Green Version]
- Brasington, J.; Rumsby, B.; McVey, R. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2000, 25, 973–990. [Google Scholar] [CrossRef]
- Milan, D.J.; Heritage, G.L.; Hetherington, D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 1657–1674. [Google Scholar] [CrossRef]
- Fuller, I.C.; Large, A.R.; Charlton, M.E.; Heritage, G.L.; Milan, D.J. Reach-scale sediment transfers: An evaluation of two morphological budgeting approaches. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2003, 28, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Wheaton, J.M. Uncertainity in Morphological Sediment Budgeting of Rivers. Ph.D. Thesis, University of Southampton, Southampton, UK, 2008. [Google Scholar]
- Heritage, G.L.; Milan, D.J.; Large, A.R.; Fuller, I.C. Influence of survey strategy and interpolation model on DEM quality. Geomorphology 2009, 112, 334–344. [Google Scholar] [CrossRef]
- Milan, D.J.; Heritage, G.L.; Large, A.R.; Fuller, I.C. Filtering spatial error from DEMs: Implications for morphological change estimation. Geomorphology 2011, 125, 160–171. [Google Scholar] [CrossRef]
- Prosdocimi, M.; Calligaro, S.; Sofia, G.; Dalla Fontana, G.; Tarolli, P. Bank erosion in agricultural drainage networks: New challenges from structure-from-motion photogrammetry for post-event analysis. Earth Surf. Process. Landf. 2015, 40, 1891–1906. [Google Scholar] [CrossRef]
- Gomez-Gutierrez, A.; Schnabel, S.; Lavado-Contador, J.F.; Sanjosé Blasco, J.J.; Atkinson Gordo, A.D.J.; Pulido-Fernández, M.; Sánchez Fernández, M. Studying the influence of livestock pressure on gully erosion in rangelands of SW Spain by means of the UAV SfM workflow. Boletín de la Asociación de Geógrafos Españoles 2018, 78, 66–68. [Google Scholar] [CrossRef]
- Lallias-Tacon, S.; Liébault, F.; Piégay, H. Step by step error assessment in braided river sediment budget using airborne LiDAR data. Geomorphology 2014, 214, 307–323. [Google Scholar] [CrossRef]
- Riverscapes-Consortium. Geomorphic Change Detection Software. Available online: http://gcd.riverscapes.xyz/Download/ (accessed on 14 December 2020).
- Gómez-Gutiérrez, Á.; Biggs, T.; Gudino-Elizondo, N.; Errea, P.; Alonso-González, E.; Nadal Romero, E.; de Sanjosé Blasco, J.J. Using visibility analysis to improve point density and processing time of SfM-MVS techniques for 3D reconstruction of landforms. Earth Surf. Process. Landf. 2020, 45, 2524–2539. [Google Scholar] [CrossRef]
- Borselli, L.; Cassi, P.; Torri, D. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 2008, 75, 268–277. [Google Scholar] [CrossRef]
- Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 2013, 188, 31–41. [Google Scholar] [CrossRef]
- Kaiser, A.; Neugirg, F.; Rock, G.; Müller, C.; Haas, F.; Ries, J.; Schmidt, J. Small-scale surface reconstruction and volume calculation of soil erosion in complex Moroccan gully morphology using structure from motion. Remote Sens. 2014, 6, 7050–7080. [Google Scholar] [CrossRef] [Green Version]
- Midgley, N.G.; Tonkin, T.N. Reconstruction of former glacier surface topography from archive oblique aerial images. Geomorphology 2017, 282, 18–26. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Antoniazza, G.; Robson, S.; Lane, S.N. Mitigating systematic error in topographic models for geomorphic change detection: Accuracy, precision and considerations beyond off-nadir imagery. Earth Surf. Process. Landf. 2020, 45, 2251–2271. [Google Scholar] [CrossRef]
- Shahbazi, M.; Sohn, G.; Théau, J.; Menard, P. Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors 2015, 15, 27493–27524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.; Carrivick, J.; Hooke, J.; Kirkby, M. Reconstructing flash flood magnitudes using ‘Structure-from-Motion’: A rapid assessment tool. J. Hydrol. 2014, 519, 1914–1927. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Niculiță, M.; Mărgărint, M.C.; Tarolli, P. Using UAV and LIDAR data for gully geomorphic changes monitoring. In Developments in Earth Surface Processes; Tarolli, P., Mudd, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 23, pp. 271–315. [Google Scholar]
- Cavalli, M.; Tarolli, P.; Marchi, L.; Dalla Fontana, G. The effectiveness of airborne LiDAR data in the recognition of channel-bed morphology. Catena 2008, 73, 249–260. [Google Scholar] [CrossRef]
- Swetnam, T.L.; Gillan, J.K.; Sankey, T.T.; McClaran, M.P.; Nichols, M.H.; Heilman, P.; McVay, J. Considerations for achieving cross-platform point cloud data fusion across different dryland ecosystem structural states. Front. Plant Sci. 2018, 8, 2144. [Google Scholar] [CrossRef] [Green Version]
- Tonkin, T.N.; Midgley, N.G.; Graham, D.J.; Labadz, J. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales. Geomorphology 2014, 226, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Salvini, R.; Matano, F.; Sacchi, M.; Danzi, M.; Somma, R.; Troise, C. Multitemporal monitoring of a coastal landslide through SfM-derived point cloud comparison. Photogramm. Rec. 2017, 32, 459–479. [Google Scholar] [CrossRef] [Green Version]
- Cubera, E.; Moreno, G. Effect of land-use on soil water dynamic in dehesas of Central–Western Spain. Catena 2007, 71, 298–308. [Google Scholar] [CrossRef]
- Pulido, M.; Schnabel, S.; Lavado Contador, J.F.; Lozano-Parra, J.; González, F. The impact of heavy grazing on soil quality and pasture production in rangelands of SW Spain. Land Degrad. Dev. 2018, 29, 219–230. [Google Scholar] [CrossRef]
- Cucchiaro, S.; Cavalli, M.; Vericat, D.; Crema, S.; Llena, M.; Beinat, A.; Marchi, L.; Cazorzi, F. Monitoring topographic changes through 4D-structure-from-motion photogrammetry: Application to a debris-flow channel. Environ. Earth Sci. 2018, 77, 632. [Google Scholar] [CrossRef]
- Visser, F.; Woodget, A.; Skellern, A.; Forsey, J.; Warburton, J.; Johnson, R. An evaluation of a low-cost pole aerial photography (PAP) and structure from motion (SfM) approach for topographic surveying of small rivers. Int. J. Remote Sens. 2019, 40, 9321–9351. [Google Scholar] [CrossRef]
- Podwojewski, P.; Poulenard, J.; Zambrana, T.; Hofstede, R. Overgrazing effects on vegetation cover and properties of volcanic ash soil in the páramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use Manag. 2002, 18, 45–55. [Google Scholar] [CrossRef]
- Gomez, B.; Banbury, K.; Marden, M.; Trustrum, N.A.; Peacock, D.H.; Hoskin, P.J. Gully erosion and sediment production: Te Weraroa Stream, New Zealand. Water Resour. Res. 2003, 39, 1187. [Google Scholar] [CrossRef] [Green Version]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Deckers, J.; Haile, M.; Lang, A. Human impact on the environment in the Ethiopian and Eritrean highlands—a state of the art. Earth Sci. Rev. 2004, 64, 273–320. [Google Scholar] [CrossRef]
- Mieth, A.; Bork, H.-R. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 2005, 63, 244–260. [Google Scholar] [CrossRef]
- Rubio-Delgado, J.; Schnabel, S.; Gómez Gutiérrez, Á.; Berenguer, F. Estimación de tasas de erosión históricas en dehesas utilizando raíces arbóreas expuestas y láser escáner terrestre. Cuatern. Geomorfol. 2014, 28, 69–84. [Google Scholar]
- Avni, Y. Gully incision as a key factor in desertification in an arid environment, the Negev highlands, Israel. Catena 2005, 63, 185–220. [Google Scholar] [CrossRef]
- Poesen, J. Challenges in gully erosion research. Landf. Anal. 2011, 17, 5–9. [Google Scholar] [CrossRef]
- Zema, D.; Bombino, G.; Boix-Fayos, C.; Tamburino, V.; Zimbone, S.; Fortugno, D. Evaluation and modeling of scouring and sedimentation around check dams in a Mediterranean torrent in Calabria, Italy. J. Soil Water Conserv. 2014, 69, 316–329. [Google Scholar] [CrossRef]
- Bartley, R.; Poesen, J.; Wilkinson, S.; Vanmaercke, M. A review of the magnitude and response times for sediment yield reductions following the rehabilitation of gullied landscapes. Earth Surf. Process. Landf. 2020, 45, 3250–3279. [Google Scholar] [CrossRef]
- Moreno, G.; Pulido, F.J. The functioning, management and persistence of dehesas. In Agroforestry in Europe; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 127–160. [Google Scholar] [CrossRef]
- Leopold, L.B. Channel and Hillslope Processes in a Semiarid Area, New Mexico; US Government Printing Office: Washington, DC, USA, 1966; Volume 352.
- Nogueras, P.; Burjachs, F.; Gallart, F.; Puigdefàbregas, J. Recent gully erosion in the El Cautivo badlands (Tabernas, SE Spain). Catena 2000, 40, 203–215. [Google Scholar] [CrossRef]
- Poesen, J. Contribution of gully erosion to sediment production. In Proceedings of the Erosion and Sediment Yield: Global and Regional Perspectives: Proceedings of an International Symposium, Exeter, UK, 15–19 July 1996; p. 251. [Google Scholar]
- Bussi, G.; Rodríguez-Lloveras, X.; Francés, F.; Benito, G.; Sánchez-Moya, Y.; Sopeña, A. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment. Hydrol. Earth Syst. Sci. 2013, 17, 3339–3354. [Google Scholar] [CrossRef] [Green Version]
- Romero-Díaz, A.; Alonso-Sarriá, F.; Martínez-Lloris, M. Erosion rates obtained from check-dam sedimentation (SE Spain). A multi-method comparison. Catena 2007, 71, 172–178. [Google Scholar] [CrossRef]
- Zhao, G.; Kondolf, G.M.; Mu, X.; Han, M.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Barberá, G.; López-Bermúdez, F.; Castillo, V. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 2007, 91, 103–123. [Google Scholar] [CrossRef]
- Ramos-Diez, I.; Navarro-Hevia, J.; Fernández, R.S.M.; Díaz-Gutiérrez, V.; Mongil-Manso, J. Analysis of methods to determine the sediment retained by check dams and to estimate erosion rates in badlands. Environ. Monit. Assess. 2016, 188, 405. [Google Scholar] [CrossRef] [PubMed]
- Shellberg, J.G.; Brooks, A.P.; Rose, C.W. Sediment production and yield from an alluvial gully in northern Queensland, Australia. Earth Surf. Process. Landf. 2013, 38, 1765–1778. [Google Scholar] [CrossRef] [Green Version]
- Lozano-Parra, J.; Schnabel, S.; Pulido, M.; Gómez-Gutiérrez, Á.; Lavado-Contador, F. Effects of soil moisture and vegetation cover on biomass growth in water-limited environments. Land Degrad. Dev. 2018, 29, 4405–4414. [Google Scholar] [CrossRef]
- Hassanli, A.M.; Beecham, S. Criteria for optimizing check dam location and maintenance requirements. In Check Dams, Morphological Adjustments; García, C.C., Lenzi, M.A., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 1–22. [Google Scholar]
Lower Reach | Tributary | Upper Reach | |
---|---|---|---|
Maximum and minimum elevation (m a.s.l.) | 436–419 | 421–419 | 419–414 |
Length (m) | 174.3 | 163.1 | 658.5 |
Slope (%) | 2.6 | 2.1 | 2.6 |
Drainage area (ha) | 99.5 | 45.4 | 49.9 |
Mean width (m) | 4.4 | 1.9 | 2.0 |
Max width (m) | 7.5 | 3.5 | 6.0 |
Min width (m) | 2.9 | 1.0 | 2.1 |
Mean depth (m) | 0.57 | 0.56 | 0.53 |
Max depth (m) | 1.47 | 1.28 | 1.27 |
Date | 24 March 2016 | 16 February 2017 | 25 October 2017 | 3 May 2018 | 25 January 2019 |
---|---|---|---|---|---|
Area covered (ha) | 30.8 | 22.3 | 27.5 | 15.19 | 17.6 |
Number of photos | 271 | 263 | 148 | 142 | 155 |
Number of GCPs | 19 | 20 | 21 | 21 | 20 |
RMSE (m) | 0.016 | 0.042 | 0.026 | 0.013 | 0.028 |
GSD (m) | 0.018 | 0.017 | 0.035 | 0.023 | 0.022 |
Number of points | 134,136,325 | 130,194,090 | 285,686,716 | 279,987,096 | 82,969,351 |
Point density (points m−3) | 1383.8 | 1500.5 | 881.5 | 2727.6 | 1026.6 |
Processing time (hh:mm:ss) * | 04 h:11 m | 03 h:22 m | 03 h:51 m | 06 h:56 m | 02 h:44 m |
Period | P1 | P2 | P3 | P4 |
---|---|---|---|---|
Duration | 24 March 2016–16 February 2017 | 16 February 2017–25 October 2017 | 25 October 2017–3 May 2018 | 3 May 2018–25 January 2019 |
Erosion (m3) | −8.0 | −14.7 | −1.4 | −5.9 |
Deposition (m3) | 50.7 | 5.7 | 64.2 | 4.8 |
NVD (m3) | 42.7 | −9.0 | 62.8 | −1.1 |
NVD rate (m3 y−1) | 48.5 | −12.8 | 120.8 | −1.5 |
Rainfall amount (mm) | 543.4 | 107.4 | 486.4 | 335.1 |
Rainfall events (n) | 30 | 1 | 25 | 19 |
R-max (mm) | 57.7 | 20.8 | 21.8 | 22.2 |
PB1 | PB2 | AFTER | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | 1945 | 1956 | 1989 | 1998 | 2002 | 2006 | 2016 | 2017 | 2018 | 2019 |
Grasslands with scarce, woody vegetation (%) | 40.7 | 16.6 | 68.5 | 68.5 | 60.3 | 60.3 | 74.0 | 74.0 | 74.0 | 74.0 |
Grasslands with woody vegetation (%) | 47.3 | 39.5 | 19.4 | 19.4 | 16.9 | 16.9 | 19.2 | 19.2 | 19.2 | 19.2 |
Areas with dense tree cover (%) | 12.0 | 2.1 | 9.0 | 9.0 | 9.0 | 9.0 | 6.6 | 6.6 | 6.6 | 6.6 |
Annual crops (%) | -- | 41.8 | 2.9 | 2.9 | 13.6 | 13.6 | -- | -- | -- | -- |
Unproductive (%) | -- | -- | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Tree density (trees ha−1) | 29 | 31 | 21 | 21 | 21 | 21 | 22 | 22 | 22 | 22 |
Gullied area (m2) | 695 | 1560 | 688 | 605 | 754 | 1009 | 2291 | 2306 | 2355 | 2360 |
Headcuts (n) | 4 | 4 | 4 | 6 | 11 | 16 | 48 | 48 | 48 | 48 |
Channel Reaches | BEFORE March 2016–February 2017 | AFTER February 2017–January 2019 | ||||
---|---|---|---|---|---|---|
Erosion | Deposition | NVD | Erosion | Deposition | NVD | |
m3 | m3 | m3 | m3 | m3 | m3 | |
GW-01/GW-04 | −0.98 | 9.31 | 8.33 | −0.95 | 34.68 | 33.73 |
F-07/F-17 | −6.15 | 0.12 | −6.03 | −1.83 | 8.45 | 6.62 |
Sediment Volume (m3) | |||
---|---|---|---|
Variable | All Check Dams | Gabion Weirs | Fascines |
Drainage area (ha) | * 0.724 | * 0.774 | 0.330 |
Check dam length (m) | * 0.654 | * 0.739 | −0.213 |
Check dam height (m) | 0.609 | 0.311 | −0.067 |
Upstream check dams (n) | 0.506 | 0.691 | 0.372 |
Slope of the catchment (°) | −0.080 | 0.529 | −0.387 |
Upstream accumulated sediments (m3) | * 0.934 | * 0.913 | 0.143 |
Channel length (m) | * 0.648 | * 0.720 | 0.263 |
Stream power index | * 0.791 | * 0.814 | 0.325 |
Tree density (trees ha−1) | 0.637 | * 0.807 | 0.192 |
Connectivity index | 0.507 | * 0.810 | * −0.407 |
Path density (km ha−1) | 0.242 | 0.091 | 0.257 |
Source | Location | Period | Gully Erosion Rate |
---|---|---|---|
This work | Parapuños catchment (SW Spain) | 2017–2019 | 0.25 m3 ha−1 y−1 |
This work | Parapuños catchment (SW Spain) | 2016–2017 | 0.48 m3 ha−1 y−1 |
[7] | Parapuños catchment (SW Spain) | 2001–2007 | –0.04 m3 ha−1 y−1 |
[12] | Guadalperalón catchment (SW Spain) | 1990–1997 | –0.15 m3 ha−1 y−1 |
[101] | Alentejo region (SE Portugal) | 1970–1985 | –3.2 m3 ha−1 y−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfonso-Torreño, A.; Gómez-Gutiérrez, Á.; Schnabel, S. Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully. Land 2021, 10, 62. https://doi.org/10.3390/land10010062
Alfonso-Torreño A, Gómez-Gutiérrez Á, Schnabel S. Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully. Land. 2021; 10(1):62. https://doi.org/10.3390/land10010062
Chicago/Turabian StyleAlfonso-Torreño, Alberto, Álvaro Gómez-Gutiérrez, and Susanne Schnabel. 2021. "Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully" Land 10, no. 1: 62. https://doi.org/10.3390/land10010062
APA StyleAlfonso-Torreño, A., Gómez-Gutiérrez, Á., & Schnabel, S. (2021). Dynamics of Erosion and Deposition in a Partially Restored Valley-Bottom Gully. Land, 10(1), 62. https://doi.org/10.3390/land10010062