Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form
Abstract
:1. Introduction
2. Method and Research Materials
2.1. Study Area
2.2. Data and Methods
2.2.1. Normalized Difference Vegetation Index (NDVI) Calculation
2.2.2. Landscape Pattern Analysis
2.2.3. Urban Form Metrics
2.2.4. Statistical Analysis
3. Results
3.1. Statistical Analysis Result
3.2. Urban Green Space Distribution in Addis Ababa
3.3. Urban Green Space Distribution and Population Density
3.4. Spatial Distribution of Urban Green Spaces in Urban Functional Land Use Areas
3.5. Landscape Metrics Analysis
4. Discussion
4.1. Urban Green Space Distribution in Addis Ababa
4.2. Urban Green Space Composition in Functional Land Use Areas
4.3. Urban Green Spaces and Population Density
4.4. Urban Green Spaces, Urban Form, and Landscape Pattern Indices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Benedict, M.A.; McMahon, E.T. Green infrastructure: Smart conservation for the 21st century. Renew. Resour. J. 2002, 20, 12–17. [Google Scholar]
- Zhibin, R.; Haifeng, Z.; Xingyuan, H.; Dan, Z.; Xingyang, Y. Estimation of the relationship between urban vegetation configuration and land surface temperature with remote sensing. J. Indian Soc. Remote Sens. 2015, 43, 89–100. [Google Scholar] [CrossRef]
- Gill, S.E.; Handlety, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- Margaritis, E.; Kang, J. Relationship between green space-related morphology and noise pollution. Ecol. Indic. 2017, 72, 921–933. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Zölch, T.; Henze, L.; Keilholz, P.; Pauleit, S. Regulating urban surface runoff through nature-based solutions–An assessment at the micro-scale. Environ. Res. 2017, 157, 135–144. [Google Scholar]
- WHO. Urban Green Spaces: A Brief for Action; Regional Office for Europe: Copenhagen, Denmark, 2017. [Google Scholar]
- Coppel, G.; Wüstemann, H. The impact of urban green space on health in Berlin, Germany: Empirical findings and implications for urban planning. Landsc. Urban Plan. 2017, 167, 410–418. [Google Scholar] [CrossRef]
- Bijker, R.; Sijtsma, F. A portfolio of natural places: Using a participatory GIS tool to compare the appreciation and use of green spaces inside and outside urban areas by urban residents. Landsc. Urban Plan. 2017, 158, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Ely, M.; Pitman, S. Green Infrastructure: Life Support for Human Habitats. 2014; Gardens of South Australia. Green Infrastructure, Botanic Gardens of South Australia. Available online: http://www.environment.sa.gov.au/botanicgardens/Learn/Green_Infr (accessed on 12 March 2020).
- Wang, R.; Zhao, J.; Meitner, M.J.; Xu, X. Characteristics of urban green spaces in relation to aesthetic preference and stress recovery. Urban For. Urban Green. 2019, 41, 6–13. [Google Scholar] [CrossRef]
- Du, H.; Cai, W.; Xu, Y.; Wang, Y.; Cai, Y. Quantifying the cool island effects of urban green spaces using remote sensing Data. Urban For. Urban Green. 2017, 27, 24–31. [Google Scholar] [CrossRef]
- Jaganmohan, M.; Knapp, S.; Schwarz, N. The bigger, the better? The influence of urban green space design on cooling effects for residential areas. J. Environ. Qual. 2016, 45, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.; Punia, M. Assessment of green space cooling effects in dense urban landscape: A case study of Delhi, India. Model. Earth Syst. Environ. 2019, 5, 867–884. [Google Scholar] [CrossRef]
- Kang, W.; Minor, E.S.; Park, C.R.; Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015, 18, 857–870. [Google Scholar] [CrossRef]
- Suarez-Rubio, M.; Ille, C.; Bruckner, A. Insectivorous bats respond to vegetation complexity in urban green spaces. Ecol. Evol. 2018, 8, 3240–3253. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Xiong, Z.; Gou, L. Quantifying the multilevel effects of landscape composition and configuration on land surface temperature. Remote Sens. Environ. 2016, 178, 84–92. [Google Scholar] [CrossRef]
- Berg, V.D.M.; Wendel-vos, W.; Poppel, M.; Mechelen, W.V.; Maas, J. Health benefits of green spaces in the living environment: A systematic review of epidemiological studies. Urban For. Urban Green. 2015, 14, 806–816. [Google Scholar] [CrossRef]
- Amani-Beni, M.; Zhang, B.; Xie, G.D.; Shi, Y. Impacts of urban green landscape patterns on land surface temperature: Evidence from the adjacent area of Olympic Forest Park of Beijing, China. Sustainability 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Haaland, C.; Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Panduro, T.E.; Veie, K.L. Classification and valuation of urban green spaces—A hedonic house price valuation. Landsc. Urban Plan. 2013, 120, 119–128. [Google Scholar] [CrossRef]
- Grafius, D.R.; Corstanje, R.; Harris, J.A. Linking ecosystem services, urban form and green space configuration using multivariate landscape metric analysis. Landsc. Ecol. 2018, 33, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.D.; Dong, L.; Yang, N.; Xiong, Y. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustain. Cities Soc. 2018, 40, 428–439. [Google Scholar] [CrossRef]
- Aram, F.; Garcfa, H.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Z.; Hou, G.; Zhang, Z.; Jiang, M.; Zou, Y.; Shen, X.; Wang, J.; Liu, X. Quantifying the cooling-effects of urban and peri-urban wetlands using remote sensing data: Case study of cities of Northeast China. Landsc. Urban Plan. 2019, 182, 92–100. [Google Scholar] [CrossRef]
- Andersson, E.; Hasse, D.; Scheuer, S.; Wellmann, T. Neighbourhood character affects the spatial extent and magnitude of the functional footprint of urban green infrastructure. Landsc. Ecol. 2020, 35, 1605–1618. [Google Scholar] [CrossRef]
- Sakieh, Y.; Jaafari, S.; Ahmadi, M.; Danekar, A. Green and calm: Modeling the relationships between noise pollution propagation and spatial patterns of urban structures and green covers. Urban For. Urban Green. 2017, 24, 195–211. [Google Scholar] [CrossRef]
- Mensah, C.A. Urban green spaces in Africa: Nature and challenges. Int. J. Ecosyst. 2014, 4, 1–11. [Google Scholar]
- Mpofu, T.Z. Environmental challenges of urbanization: A case study for open green space management. Res. J. Agric. Environ. Manag. 2013, 2, 105–110. [Google Scholar]
- Ishaya, S.; Ifatimehin, O.O.; Okafor, C. Remote sensing and GIS applications in urban expansion and loss of vegetation cover in Kaduna town, northern Nigeria. Am. Eurasian J. Sustain. Agric. 2008, 2, 117–124. [Google Scholar]
- Lindley, S.; Pauleit, S.; Yeshitela, K.; Cilliers, S.; Shackleton, C. Rethinking urban green infrastructure and ecosystem services from the perspective of sub-Saharan African cities. Landsc. Urban Plan. 2018, 180, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Lindley, S. Green Infrastructure for Climate Adaptation in African Cities: Urban Vulnerability and Climate Change in Africa; Springer: Basel, Switzerland, 2015. [Google Scholar]
- Woldegerima, T.; Yeshitela, K.; Lindley, S. Characterizing the urban environment through urban morphology types (UMTs) mapping and land surface cover analysis: The case of Addis Ababa, Ethiopia. Urban Ecosyst. 2016, 20, 1–19. [Google Scholar] [CrossRef]
- Holt, A.R.; Mears, M.; Maltby, L.; Warren, P. Understanding spatial patterns in the production of multiple urban ecosystem services. Ecosyst. Serv. 2015, 16, 33–46. [Google Scholar] [CrossRef] [Green Version]
- MoUDH. Ethiopian National Urban Green Infrastructure Standard; Ministry of Urban Development and Housing: Addis Ababa, Ethiopia, 2015.
- CSA. Population and Housing Census Annual Report of Ethiopia; Central Statistic Authority of Ethiopia: Addis Ababa, Ethiopia, 2019. [Google Scholar]
- Azagew, S.; Worku, H. Accessibility of urban green infrastructure in Addis-Ababa city, Ethiopia: Current status and future challenge. Environ. Syst. Res. 2020, 9, 1–20. [Google Scholar] [CrossRef]
- Abebe, M.T.; Megento, T.L. The City of Addis Ababa from ‘Forest City’ to ‘Urban Heat Island’ Assessment of Urban Green Space Dynamics. J. Urban Environ. Eng. 2016, 10, 254–262. [Google Scholar] [CrossRef]
- Larsen, L.; Yeshitela, K.; Mulaltu, T.; Seifu, S.; Desta, H. The Impact of Rapid Urbanization and Public Housing Development on Urban Form and Density in Addis Ababa, Ethiopia. Land 2019, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- AACPO. Addis Ababa City Structure Plan Summary Report (2017–2027); Addis Ababa City Planning Office: Addis Ababa, Ethiopia, 2018; Unpublished work. [Google Scholar]
- Jia, Y.; Tang, L.; Xu, M.; Yang, X. Landscape pattern indices for evaluating urban spatial morphology—A case study of Chinese cities. Ecol. Indic. 2019, 99, 27–37. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, Y.J.E.I. Fractal dimension as an indicator for quantifying the effects of changing spatial scales on landscape metrics. Ecol. Indic. 2015, 53, 18–27. [Google Scholar] [CrossRef]
- Inkoom, J.N.; Frank, S.; Gretve, K.; Walz, U.; Fürst, C. Suitability of different landscape metrics for the assessments of patchy landscapes in West Africa. Ecol. Indic. 2018, 85, 117–127. [Google Scholar] [CrossRef]
- Lustig, A.; Stouffetr, D.B.; Roigé, M.; Worner, S.P. Towards more predictable and consistent landscape metrics across spatial scales. Ecol. Indic. 2015, 57, 11–21. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of Urban Form on Landscape Structure of Urban Green Spaces in China Using Landsat Images Based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef] [Green Version]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial Analysis of Surface Urban Heat Islands in Four Rapidly Growing African Cities. Remote. Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tu, Y.; Li, X.J.S. Quantifying the spatiotemporal patterns of urbanization along urban-rural gradient with a roadscape transect approach: A case study in Shanghai, China. Sustainability 2016, 8, 862. [Google Scholar] [CrossRef] [Green Version]
- Davies, R.G.; Barbosa, O.; Fuller, R.A.; Tratalos, J.; Burke, N.; Lewis, D.; Warren, P.H.; Gaston, K.J. City-wide relationships between green spaces, urban land use and topography. Urban Ecosyst. 2008, 11, 269–287. [Google Scholar] [CrossRef]
- Tratalos, J.A.; Fuller, R.A.; Warren, P.H.; Davies, R.G.; Gaston, K.J. Urban form, biodiversity potential and ecosystem services. Landsc. Urban Plan. 2007, 83, 308–317. [Google Scholar] [CrossRef]
- Veneri, P. Urban Polycentricity and the Costs of Commuting: Evidence from Italian Metropolitan Areas. Growth Chang. 2010, 41, 403–429. [Google Scholar] [CrossRef]
- You, H. Characterizing the inequalities in urban public green space provision in Shenzhen, China. Habitat Int. 2016, 56, 176–180. [Google Scholar] [CrossRef]
- Angel, S. “Making Room for a Planet of Cities”; Informa UK Limited: Colchester, UK, 2020; pp. 665–677. [Google Scholar]
- MWUD. Climate Change Resilient Urban Green Development Strategy; MWUD: Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Qian, Y.; Wu, Z. Study on urban expansion using the spatial and temporal dynamic changes in the impervious surface in Nanjing. Sustainability 2019, 11, 933. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Passy, P.; Oh, R.R. Impacts of population density and wealth on the quantity and structure of urban green space in tropical Southeast Asia. Landsc. Urban Plan. 2017, 157, 553–560. [Google Scholar] [CrossRef]
- Soltanifard, H.; Aliabadi, K. Impact of urban spatial configuration on land surface temperature and urban heat islands: A case study of Mashhad, Iran. Theor. Appl. Clim. 2019, 137, 2889–2903. [Google Scholar] [CrossRef]
- Sun, C.; Tao, L.; Zhao, Q.; Li, X.; Ye, H.; Zhang, G.; Liu, X.; Zhao, Y. Spatial pattern of urban green spaces in a long-term compact urbanization process—A case study in China. Ecol. Indic. 2019, 96, 111–119. [Google Scholar] [CrossRef]
- World Bank. Greening Africa’s Cities: Enhancing the Relationship Between Urbanization, Environmental Assets and Ecosystem Services; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Chimaimba, F.B.; Kafumbata, D.; Chanyenga, T.; Chiotha, S. Urban tree species composition and diversity in Zomba city, Malawi: Does land use type matter? Urban For. Urban Green. 2020, 54, 126781. [Google Scholar] [CrossRef]
- Ossola, A.; Locke, D.H.; Lin, B.; Minor, E.S. Yards increase forest connectivity in urban landscapes. Landsc. Ecol. 2019, 34, 2935–2948. [Google Scholar] [CrossRef]
- Xiu, N.; Ignatieva, M.; Bosch, C.K.V.D.; Zhang, S. Applying a socio-ecological green network framework to Xi’an City, China. Landsc. Ecol. Eng. 2020, 16, 135–150. [Google Scholar] [CrossRef] [Green Version]
- McConnachie, M.M.; Shackleton, C.M. Public green space inequality in small towns in South Africa. Habitat Int. 2010, 34, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Schäffler, A.; Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 2013, 86, 246–257. [Google Scholar] [CrossRef]
- Venter, Z.S.; Shackleton, C.M.; Van Staden, F.; Selomane, O.; Masterson, V.A. Green Apartheid: Urban green infrastructure remains unequally distributed across income and race geographies in South Africa. Landsc. Urban Plan. 2020, 203, 103889. [Google Scholar] [CrossRef]
- Kabisch, N.; Hasse, D. Green spaces of European cities revisited for 1990–2006. Landsc. Urban Plan. 2013, 110, 113–122. [Google Scholar] [CrossRef]
- Silva, C.D.S.; Viegas, I.; Panagopoulos, T.; Bell, S. Environmental Justice in Accessibility to Green Infrastructure in Two European Cities. Land 2018, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Shekhar, S.; Aryal, J. Role of geospatial technology in understanding urban green space of Kalaburagi city for sustainable planning. Urban For. Urban Green. 2019, 46, 126450. [Google Scholar] [CrossRef]
- Gong, F.; Zheng, Z.-C.; Ng, E. Modeling Elderly Accessibility to Urban Green Space in High Density Cities: A Case Study of Hong Kong. Procedia Environ. Sci. 2016, 36, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Czekajlo, A.; Coops, N.C.; Wulder, M.A.; Hermosilla, T.; Lu, Y.; White, J.; Bosch, M.V.D. The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102210. [Google Scholar] [CrossRef]
- Wendel, W.; Phillips, L.D.; Mihelcic, J. Urbanization and Green Spaces Accessibaility in the Rapidly Growing Developeing World; Society for Applied Anthropolgy: City of Santa Cruz, Bolivia, 2010. [Google Scholar]
No | Functional Land Use Type | Description |
---|---|---|
1 | Mixed residence 1.1 High-density mixed residence. 1.2 Medium-density mixed residence. 1.3 Low-density mixed residence. | This is the dominant landscape structure in the study area and is further divided into three categories: high-density mixed residence, medium-density mixed residence, and low-density mixed residence, according to the structure plan. |
2 | Commercial | Includes landscape that is used for business activities and is heavily paved and dominated by high rise buildings. It covers the inner city core area and along major highways. |
3 | Manufacturing and storage | Includes industrial areas, which are largely located in the southern part of the city and used for production and storage. |
4 | Municipal services | Municipal service areas comprise areas used for municipal services such as abattoirs, fire and emergency services, green cemeteries, cultural and civic centers, cemeteries, and festival sites and plaza functions. |
5 | Social services | Social service areas are built-up areas commonly used for healthcare, stadiums, social care centers, district sports fields, research centers, education, and civic services. |
6 | Transport | Transport areas comprise functional spaces designated for bus freight terminals, bus depots, surface parking, parking buildings, intercity terminals, and airports, but excluding linear features such as roads. |
7 | Administration | Comprises land use functions mainly used for public services, namely federal institutions, city institutions, sub-city and district administration, as well as inter-governmental organizations. |
No | Satellite | Sensor ID | Resolution | Date Acquired | Path and Raw | Source |
---|---|---|---|---|---|---|
1 | Landsat 8 | OLI_TIRS | 30 m * 30 m | 20 December 2016 | 169/055 | Global Land Cover Facility (GLCF) |
2 | Addis Ababa boundary (shape file format) | City Planning Commission | ||||
3 | Structure plan of Addis Ababa (shape file format) | City Planning Commission | ||||
4 | Building foot print of Addis Ababa city (DWG file) | Integrated Land Information Center |
Metric Type | Metric | Abbreviation | Description | Range | Unit |
---|---|---|---|---|---|
Compositional | Class area | CA | The sum of all patches for the corresponding patch type. | CA ≥ 0 | Hectares |
Number of patches | NP | NP equals the number of patches for the corresponding patch type (class). | NP ≥ 1 | None | |
Largest patch index | LPI | Equals the area (m2) of the largest patch in the landscape divided by the total landscape area (m2). | 0 < LPI ≤ 100 | Percent | |
Configurational | Mean shape index | SHAPE_MN | Average shape index for the corresponding patches within an analysis unit. | AREA_MN ≥ 0 | None |
Mean Euclidean nearest neighbor distance | ENN_MN | Refers to mean distance to the nearest neighborhood patch of urban UGS based on the edge-to-edge distance | ENN_MN > 0 | m | |
Patch density | PD | Measures the density of patches for each class in the entire landscape. | Number of patches per 100 ha | PD > 0 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | CA | 1.00 | ||||||||
2 | NP | 0.99 ** | 1.00 | |||||||
3 | PD | −0.03 | 0.10 | 1.00 | ||||||
4 | LPI | −0.58 | −0.62 | −0.40 | 1.00 | |||||
5 | SHAPE_MN | 0.04 | −0.09 | −0.93 ** | 0.26 | 1.00 | ||||
6 | ENN_MN | −0.61 | −0.57 | 0.27 | 0.63 | −0.46 | 1.00 | |||
7 | PARA | −0.07 | −0.02 | 0.27 | 0.36 | −0.37 | 0.33 | 1.00 | ||
8 | BC | 0.03 | 0.10 | 0.57 | −0.57 | −0.30 | −0.37 | −0.32 | 1.00 | |
9 | BD | 0.42 | 0.47 | 0.46 | −0.41 | −0.54 | −0.07 | −0.18 | 0.45 | 1.00 |
Per Capita UGS | No of Districts | % of Districts | Remarks |
---|---|---|---|
<1 m2/inhabitant | 10 | 9 | UGS 15 m2/inhabitant is the local standard and 9 m2/inhabitant is the WHO standard |
1–5 m2/inhabitant | 23 | 20 | |
5–10 m2/inhabitant | 14 | 12 | |
10–15 m2/inhabitant | 14 | 12 | |
15–30 m2/inhabitant | 16 | 14 | |
30–705 m2/inhabitant | 39 | 34 | |
Total | 116 | 100 |
No | Functional Land Use Type | Land Area (ha) | Land (%) | UGS Area (ha) | UGS (%) |
---|---|---|---|---|---|
1 | Mixed residence | ||||
1.1. High-density mixed residence | 2628.96 | 8.8 | 153.3 | 16.7 | |
1.2. Medium-density mixed residence | 3921.98 | 13.1 | 80 | 8.7 | |
1.3. Low-density mixed residence | 15,481.3 | 51.7 | 392 | 42.6 | |
2 | Commerce and business | 760.1 | 2.52 | 9.4 | 1 |
3 | Municipal services | 589.7 | 2 | 12.1 | 1.3 |
4 | Social services | 1483.60 | 5 | 61.1 | 6.6 |
5 | Transport | 1152.60 | 3.82 | 75.8 | 8.2 |
6 | Manufacturing and storage | 3099.50 | 10.3 | 105.6 | 11.6 |
7 | Administration | 834.7 | 2.8 | 30.4 | 3.3 |
Total | 29,952.44 | 100 | 919.7 | 100 |
Urban Green Spaces Patches | Total | |||||||
---|---|---|---|---|---|---|---|---|
Residential | Commercial | Administration | Manufacturing | Social services | Municipal services | Transport | ||
Number | 2812 | 68 | 115 | 375 | 272 | 64 | 175 | 3881 |
Percentage | 72.4 | 1.75 | 2.96 | 9.66 | 7 | 1.64 | 4.5 | 100 |
<3000 m2 | 2445 | 61 | 100 | 304 | 234 | 55 | 149 | 3348 |
(3000–10000 m2) | 311 | 7 | 9 | 46 | 29 | 8 | 14 | 424 |
>10,000 m2 | 56 | 0 | 6 | 25 | 9 | 1 | 12 | 109 |
Average area (m2) | 1804.4 | 1377.3 | 2639.9 | 2816.2 | 2246.5 | 1891.6 | 4329.9 |
Functional Land Use Types | CA | NP | PD | LPI | SHAPE_MN | ENN_MN | PARA | BC | BD |
---|---|---|---|---|---|---|---|---|---|
1. Mixed residential class | |||||||||
1.1. High-density mixed residence | 142.8 | 447 | 313 | 2.8 | 1.13 | 149.9 | 0.342 | 0.336 | 203 |
1.2. Medium-density mixed residence | 94.6 | 436 | 460.9 | 2.6 | 1.09 | 155.5 | 0.86 | 0.36 | 211 |
1.3. Low-density mixed residence | 445 | 1731 | 389 | 1.8 | 1.1 | 142.1 | 0.873 | 0.146 | 217 |
2. Commercial Class | 10.7 | 58 | 541.6 | 14.3 | 1.08 | 362.8 | 0.975 | 0.309 | 154 |
3. Administration Class | 32.8 | 94 | 286.9 | 17 | 1.13 | 327.9 | 0.769 | 0.122 | 86 |
4. Manufacturing Class | 111.8 | 310 | 277.3 | 6 | 1.13 | 162.6 | 0.814 | 0.08 | 68 |
5. Municipal services | 13.2 | 58 | 438.4 | 14.3 | 1.07 | 506 | 0.832 | 0.039 | 198 |
6. Social services | 64.7 | 219 | 338.4 | 11.1 | 1.12 | 256.9 | 0.826 | 0.125 | 110 |
7. Transport | 72.7 | 103 | 141.6 | 25.1 | 1.15 | 260.7 | 0.882 | 0.02 | 141 |
Total | 988.3 | 3456 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woldesemayat, E.M.; Genovese, P.V. Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form. Land 2021, 10, 85. https://doi.org/10.3390/land10010085
Woldesemayat EM, Genovese PV. Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form. Land. 2021; 10(1):85. https://doi.org/10.3390/land10010085
Chicago/Turabian StyleWoldesemayat, Eyasu Markos, and Paolo Vincenzo Genovese. 2021. "Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form" Land 10, no. 1: 85. https://doi.org/10.3390/land10010085
APA StyleWoldesemayat, E. M., & Genovese, P. V. (2021). Urban Green Space Composition and Configuration in Functional Land Use Areas in Addis Ababa, Ethiopia, and Their Relationship with Urban Form. Land, 10(1), 85. https://doi.org/10.3390/land10010085