Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Acquisition and Processing
3.2. Use of Spectral Indices for Extracting Landscape Features
3.3. LULC Classification and Change Detection
3.4. Locational Factors
3.5. Binomial Logistic Regression
3.5.1. Selection of Variables (Factors Contributing to Urban Expansion)
3.5.2. Model Development
4. Results
4.1. The Extent of Land Use and Land Cover Change
4.2. Accuracy Assessment for Land Use and Land over Classification
4.3. Binomial Logistic Regression and Model Validation
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, G.; Li, X.; Liu, X.; Chen, Y.; Liang, X.; Leng, J.; Xu, X.; Liao, W.; Qiu, Y.; Wu, Q.; et al. Global Projections of Future Urban Land Expansion under Shared Socioeconomic Pathways. Nat. Commun. 2020, 11, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flörke, M.; Schneider, C.; McDonald, R.I. Water Competition between Cities and Agriculture Driven by Climate Change and Urban Growth. Nat. Sustain. 2018, 1, 51–58. [Google Scholar] [CrossRef]
- Seto, K.C.; Sánchez-Rodríguez, R.; Fragkias, M. The New Geography of Contemporary Urbanization and the Environment. Annu. Rev. Environ. Resour. 2010, 35, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Wu, T.; Li, Y.; Xie, S.; Han, B.; Zheng, H.; Ouyang, Z. Urbanization Impacts on Natural Habitat and Ecosystem Services in the Guangdong-Hong Kong-Macao “Megacity”. Sustainability 2020, 12, 6675. [Google Scholar] [CrossRef]
- Churkina, G. The Role of Urbanization in the Global Carbon Cycle. Front. Ecol. Evol. 2016, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bren d’Amour, C.; Reitsma, F.; Baiocchi, G.; Barthel, S.; Güneralp, B.; Erb, K.-H.; Haberl, H.; Creutzig, F.; Seto, K.C. Future Urban Land Expansion and Implications for Global Croplands. Proc. Natl. Acad. Sci. USA 2017, 114, 8939–8944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects, the 2014 Revision: Highlights; ST. ESA; United Nations: New York, NY, USA, 2014; ISBN 978-92-1-151517-6. [Google Scholar]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Güneralp, B.; Marcotullio, P.J.; McDonald, R.I.; Parnell, S.; Schewenius, M.; Sendstad, M.; Seto, K.C.; et al. (Eds.) Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A Meta-Analysis of Global Urban Land Expansion. PLoS ONE 2011, 6, e23777. [Google Scholar] [CrossRef]
- McKinney, M.L. Urbanization, Biodiversity, and Conservation. BioScience 2002, 52, 883. [Google Scholar] [CrossRef]
- Solecki, W.; Seto, K.C.; Marcotullio, P.J. It’s Time for an Urbanization Science. Environ. Sci. Policy Sustain. Develop. 2013, 55, 12–17. [Google Scholar] [CrossRef]
- Hails, R.S.; Ormerod, S.J. EDITORIAL: Ecological Science for Ecosystem Services and the Stewardship of Natural Capital. J. Appl. Ecol. 2013, 50, 807–810. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.M.R.; Esteves, L.S.; de Souza, E.P.; dos Santos, C.A.C. Impact of the Urbanisation Process in the Availability of Ecosystem Services in a Tropical Ecotone Area. Ecosystems 2019, 22, 266–282. [Google Scholar] [CrossRef] [Green Version]
- Ampim, P.A.Y.; Ogbe, M.; Obeng, E.; Akley, E.K.; MacCarthy, D.S. Land Cover Changes in Ghana over the Past 24 Years. Sustainability 2021, 13, 4951. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019; ISBN 978-92-1-148319-2. [Google Scholar]
- Güneralp, B.; Lwasa, S.; Masundire, H.; Parnell, S.; Seto, K.C. Urbanization in Africa: Challenges and Opportunities for Conservation. Environ. Res. Lett. 2017, 13, 015002. [Google Scholar] [CrossRef]
- Ghana Statistics Service. The 2010 Population and Housing Census:District Analytical Report, Wa Municipality; Awusabo-Asare, K., Nsowah-Nuamah, N.N.N., Anaman, A.K., Gaisie, S.K., Eds.; Ghana Statistics Service: Accra, Ghana, 2014.
- Statistics, Research and Information Directorate (SRID). Agriculture in Ghana: Facts and Figures; Ministry of Food and Agriculture: Accra, Ghana, 2011.
- Ham, J.R. Cooking to Be Modern but Eating to Be Healthy: The Role of Dawa-Dawa in Contemporary Ghanaian Foodways. Food Cult. Soc. 2017, 20, 237–256. [Google Scholar] [CrossRef]
- Kent, R. “Helping” or “Appropriating”? Gender Relations in Shea Nut Production in Northern Ghana. Soc. Nat. Resour. 2018, 31, 367–381. [Google Scholar] [CrossRef]
- Kpienbaareh, D.L. Assessing the Relationship between Climate and Patterns of Wildfires in Ghana. Int. J. Humanit. Soc. Sci. 2016, 8, 1–20. [Google Scholar]
- Kpienbaareh, D.; Oduro Appiah, J. A Geospatial Approach to Assessing Land Change in the Built-up Landscape of Wa Municipality of Ghana. Geogr. Tidsskr. Dan. J. Geogr. 2019, 119, 121–135. [Google Scholar] [CrossRef]
- Storey, J.; Scaramuzza, P.; Schmidt, G.; Barsi, J. Landsat 7 Scan Line Corrector-off Gap-Filled Product Development. Proc. Pecora 2005, 16, 23–27. [Google Scholar]
- Paolini, L.; Grings, F.; Sobrino, J.A.; Jiménez Muñoz, J.C.; Karszenbaum, H. Radiometric Correction Effects in Landsat Multi-date/Multi-sensor Change Detection Studies. Int. J. Remote Sens. 2006, 27, 685–704. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Macomber, S.A.; Pax-Lenney, M.; Cohen, W.B. Monitoring Large Areas for Forest Change Using Landsat: Generalization across Space, Time and Landsat Sensors. Remote Sens. Environ. 2001, 78, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Sinha, S.; Sharma, L.K.; Nathawat, M.S. Improved Land-Use/Land-Cover Classification of Semi-Arid Deciduous Forest Landscape Using Thermal Remote Sensing. Egypt. J. Remote Sens. Space Sci. 2015, 18, 217–233. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of Land Surface Temperature–Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Robinson, N.; Allred, B.; Jones, M.; Moreno, A.; Kimball, J.; Naugle, D.; Erickson, T.; Richardson, A. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sens. 2017, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haar, R.; Scheel, J.; Deering, D. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the NASA, Technical Presentations Section A, Washington, DC, USA, 10–14 December 1973. [Google Scholar]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for Assessment of Waterlogging by Integrating Digital Elevation Model and Groundwater Level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of Normalized Difference Built-up Index in Automatically Mapping Urban Areas from TM Imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1–17. [Google Scholar] [CrossRef] [Green Version]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Basommi, P.L.; Guan, Q.; Cheng, D. Exploring Land Use and Land Cover Change in Themining Areas of Wa East District, Ghana UsingSatellite Imagery. Open Geosci. 2015, 7, 20150058. [Google Scholar] [CrossRef]
- Schubert, H.; Caballero Calvo, A.; Rauchecker, M.; Rojas-Zamora, O.; Brokamp, G.; Schütt, B. Assessment of Land Cover Changes in the Hinterland of Barranquilla (Colombia) Using Landsat Imagery and Logistic Regression. Land 2018, 7, 152. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Armenteras, D.; Panagos, P.; Modugno, S.; Schütt, B. The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sens. 2015, 7, 11061–11082. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Zheng, X.; Zhang, C. Quantitative Analysis of the Determinants Influencing Urban Expansion: A Case Study in Beijing, China. Sustainability 2018, 10, 1630. [Google Scholar] [CrossRef] [Green Version]
- Dubovyk, O.; Sliuzas, R.; Flacke, J. Spatio-Temporal Modelling of Informal Settlement Development in Sancaktepe District, Istanbul, Turkey. ISPRS J. Photogramm. Remote Sens. 2011, 66, 235–246. [Google Scholar] [CrossRef]
- Marondedze, A.K.; Schütt, B. Dynamics of Land Use and Land Cover Changes in Harare, Zimbabwe: A Case Study on the Linkage between Drivers and the Axis of Urban Expansion. Land 2019, 8, 155. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhou, W.; Ouyang, Z. Forty Years of Urban Expansion in Beijing: What Is the Relative Importance of Physical, Socioeconomic, and Neighborhood Factors? Appl. Geogr. 2013, 38, 1–10. [Google Scholar] [CrossRef]
- Luo, J.; Wei, Y.H.D. Modeling Spatial Variations of Urban Growth Patterns in Chinese Cities: The Case of Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. [Google Scholar] [CrossRef]
- Cheng, J.; Masser, I. Urban Growth Pattern Modeling: A Case Study of Wuhan City, PR China. Landsc. Urban Plan. 2003, 62, 199–217. [Google Scholar] [CrossRef]
- Batisani, N.; Yarnal, B. Urban Expansion in Centre County, Pennsylvania: Spatial Dynamics and Landscape Transformations. Appl. Geogr. 2009, 29, 235–249. [Google Scholar] [CrossRef]
- Anselm, N.; Brokamp, G.; Schütt, B. Assessment of Land Cover Change in Peri-Urban High Andean Environments South of Bogotá, Colombia. Land 2018, 7, 75. [Google Scholar] [CrossRef] [Green Version]
- Sedano, F.; Silva, J.A.; Machoco, R.; Meque, C.H.; Sitoe, A.; Ribeiro, N.; Anderson, K.; Ombe, Z.A.; Baule, S.H.; Tucker, C.J. The Impact of Charcoal Production on Forest Degradation: A Case Study in Tete, Mozambique. Environ. Res. Lett. 2016, 11, 094020. [Google Scholar] [CrossRef] [PubMed]
- Attua, E.M.; Fisher, J.B. Historical and Future Land-Cover Change in a Municipality of Ghana. Earth Interact. 2011, 15, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad, P.S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Im, J.; Ogole, C. Support Vector Machines in Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-Based Land-Cover Image Classification. ISPRS J. Photogramm. Remote Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Hegazy, I.R.; Kaloop, M.R. Monitoring Urban Growth and Land Use Change Detection with GIS and Remote Sensing Techniques in Daqahlia Governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Kuusaana, E.D.; Kosoe, E.A.; Niminga-Beka, R.Y.; Ahmed, A. Spatial Justice and Inner-City Development in Secondary Cities of Ghana: Implications for New Urban Agenda in the Global South. Urban Forum 2021, 32, 373–391. [Google Scholar] [CrossRef]
- Cobbinah, P.B.; Amoako, C. Urban Sprawl and the Loss of Peri-Urban Land in Kumasi, Ghana. Int. J. Soc. Hum. Sci. 2012, 6, 390–397. [Google Scholar]
- Kombe, W.J. Land Use Dynamics in Peri-Urban Areas and Their Implications on the Urban Growth and Form: The Case of Dar Es Salaam, Tanzania. Habitat Int. 2005, 29, 113–135. [Google Scholar] [CrossRef]
- Ghana Statistical Service. Policy Implications of Population Trends, Population Data Analysis Reports; Twum-Baah, K.A., Kumekpor, T.K.B., Aryee, A.F., Gaisie, S.K., Eds.; Ghana Statistical Service: Accra, Ghana, 2005; Volume 2, pp. 1–495.
- Ghana Statistical Service. The 2010 Population and Housing Census: Summary Report of Final Results; Sakoa Press Limited: Accra, Ghana, 2012. [Google Scholar]
- Herrmann, S.M.; Brandt, M.; Rasmussen, K.; Fensholt, R. Accelerating Land Cover Change in West Africa over Four Decades as Population Pressure Increased. Commun Earth Environ. 2020, 1, 53. [Google Scholar] [CrossRef]
- Ziem Bonye, S.; Yenglier Yiridomoh, G.; Derbile, E.K. Urban Expansion and Agricultural Land Use Change in Ghana: Implications for Peri-Urban Farmer Household Food Security in Wa Municipality. Int. J. Urban Sustain. Dev. 2021, 13, 383–399. [Google Scholar] [CrossRef]
- Osumanu, I.K.; Akongbangre, J.N.; Tuu, G.N.-Y.; Owusu-Sekyere, E. From Patches of Villages to a Municipality: Time, Space, and Expansion of Wa, Ghana. Urban Forum 2019, 30, 57–74. [Google Scholar] [CrossRef]
- Acheampong, R.A.; Anokye, P.A. Understanding Households’ Residential Location Choice in Kumasi’s Peri-Urban Settlements and the Implications for Sustainable Urban Growth. Res. Hum. Soc. Sci. 2013, 3, 60–70. [Google Scholar]
- Appiah, D.O.; Bugri, J.T.; Forkuor, E.K.; Boateng, P.K. Determinants of Peri-Urbanization and Land Use Change Patterns in Peri-Urban Ghana. JSD 2014, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Bologna, M.; Aquino, G. Deforestation and World Population Sustainability: A Quantitative Analysis. Sci Rep 2020, 10, 7631. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Gaffikin, L.; Golden, C.D.; Ostfeld, R.S.; Redford, H.K.; Ricketts, H.T.; Turner, W.R.; Osofsky, S.A. Human Health Impacts of Ecosystem Alteration. Proc. Natl. Acad. Sci. USA 2013, 110, 18753–18760. [Google Scholar] [CrossRef] [Green Version]
- Antabe, R.; Atuoye, K.N.; Kuuire, V.Z.; Sano, Y.; Arku, G.; Luginaah, I. Community Health Impacts of Surface Mining in the Upper West Region of Ghana: The Roles of Mining Odors and Dust. Hum. Ecol. Risk Assess. Int. J. 2017, 23, 798–813. [Google Scholar] [CrossRef]
- Mucova, S.A.R.; Filho, W.L.; Azeiteiro, U.M.; Pereira, M.J. Assessment of Land Use and Land Cover Changes from 1979 to 2017 and Biodiversity & Land Management Approach in Quirimbas National Park, Northern Mozambique, Africa. Glob. Ecol. Conserv. 2018, 16, e00447. [Google Scholar] [CrossRef]
- Chiteculo, V.; Lojka, B.; Surový, P.; Verner, V.; Panagiotidis, D.; Woitsch, J. Value Chain of Charcoal Production and Implications for Forest Degradation: Case Study of Bié Province, Angola. Environments 2018, 5, 113. [Google Scholar] [CrossRef] [Green Version]
- Kusakari, Y.; Asubonteng, K.O.; Jasaw, G.S.; Dayour, F.; Dzivenu, T.; Lolig, V.; Donkoh, S.A.; Obeng, F.K.; Gandaa, B.; Kranjac-Berisavljevic, G.; et al. Farmer-Perceived Effects of Climate Change on Livelihoods in Wa West District, Upper West Region of Ghana. J. Disaster Res. 2014, 9, 516–528. [Google Scholar] [CrossRef]
- Yahaya, A.K.; Amoah, S.T. Bushfires in the Nandom District of the Upper West Region of Ghana: Perpetual Threat to Food Crop Production. J. Environ. Earth Sci. 2013, 3, 10–14. [Google Scholar]
- Yengoh, G.T.; Armah, F.A.; Onumah, E.E.; Odoi, J.O. Trends in Agriculturally-Relevant Rainfall Characteristics for Small-Scale Agriculture in Northern Ghana. J. Agric. Sci. 2010, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Benebere, P.; Asante, F.; Odame Appiah, D. Hindrances to Adaptation to Water Insecurity under Climate Variability in Peri-Urban Ghana. Cogent Soc. Sci. 2017, 3, 1394786. [Google Scholar] [CrossRef]
- Diko, S.K.; Okyere, S.A.; Opoku Mensah, S.; Ahmed, A.; Yamoah, O.; Kita, M. Are Local Development Plans Mainstreaming Climate-Smart Agriculture? A Mixed-Content Analysis of Medium-Term Development Plans in Semi-Arid Ghana. Socio. Ecol. Pract. Res. 2021, 3, 185–206. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, R.; Shortridge, A.; Wu, J. Spatial Point Pattern Analysis of Human Settlements and Geographical Associations in Eastern Coastal China—A Case Study. Int. J. Environ. Res. Public Health 2014, 11, 2818–2833. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; LeGates, R.; Qin, B. Coordinated Urban-Rural Development Planning in China: The Chengdu Model. J. Am. Plan. Assoc. 2013, 79, 125–137. [Google Scholar] [CrossRef]
- Poelmans, L.; Van Rompaey, A. Detecting and Modelling Spatial Patterns of Urban Sprawl in Highly Fragmented Areas: A Case Study in the Flanders–Brussels Region. Landsc. Urban Plan. 2009, 93, 10–19. [Google Scholar] [CrossRef]
- Das Chatterjee, N.; Chatterjee, S.; Khan, A. Spatial Modeling of Urban Sprawl around Greater Bhubaneswar City, India. Model. Earth Syst. Environ. 2016, 2, 14. [Google Scholar] [CrossRef] [Green Version]
- Poku-Boansi, M.; Adarkwa, K.K. Determinants of Residential Location in the Adenta Municipality, Ghana. GeoJournal 2016, 81, 779–791. [Google Scholar] [CrossRef]
- Pravitasari, A.E.; Rustiadi, E.; Mulya, S.P.; Setiawan, Y.; Fuadina, L.N.; Murtadho, A. Identifying the Driving Forces of Urban Expansion and Its Environmental Impact in Jakarta-Bandung Mega Urban Region. IOP Conf. Ser. Earth Environ. Sci. 2018, 149, 012044. [Google Scholar] [CrossRef] [Green Version]
- Korah, P.I.; Nunbogu, A.M.; Akanbang, B.A.A. Spatio-Temporal Dynamics and Livelihoods Transformation in Wa, Ghana. Land Use Policy 2018, 77, 174–185. [Google Scholar] [CrossRef]
- Boamah, N.A. Urban Land Market in Ghana: A Study of the Wa Municipality. Urban Forum 2013, 24, 105–118. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Fang, C. The Varying Driving Forces of Urban Expansion in China: Insights from a Spatial-Temporal Analysis. Landsc. Urban Plan. 2018, 174, 63–77. [Google Scholar] [CrossRef]
- Amoah, S.T. Evolution of Water Systems and Its Challenges in the Wa Municipal of Ghana. J. Environ. Earth Sci. 2013, 3, 15–24. [Google Scholar]
Satellite Name | Sensor | Number of Bands | Path/Rows | Spatial Resolution | Date of Acquisition |
---|---|---|---|---|---|
Landsat 5 | TM | 7 | 195/053 | 30 m | 12 October 1990 |
Landsat 7 | ETM | 9 | 195/053 | 30 m | 3 November 2001 |
Landsat 7 | ETM | 9 | 195/053 | 30 m | 12 November 2010 |
Landsat 8 | OLI | 11 | 195/053 | 30 m | 15 November 2020 |
ID | Index | Formula | Equation |
---|---|---|---|
1 | NDBI | (1) | |
2 | NDVI | (2) | |
3 | SAVI | (1 + L) | (3) |
4 | NBR2 | (4) | |
5 | MNDWI | (5) |
ID | LULC Class | Description |
---|---|---|
1 | Closed savannah | This is characterised with dense vegetation, predominantly woody cover, such as natural forest, and reserved and protected areas with tree population density of more than 150 trees per hectare. |
2 | Open savannah | These are areas with less dense vegetation cover with tree population density of fewer than 150 trees per hectare. The vegetation cover is predominantly sacred groves and thick shrub and grasses. |
3 | Other | Areas without vegetation cover, bare lands, rocky surfaces, sand, gravel andunregulated open mining pits. |
4 | Settlement | Built-up areas, towns, and emerging residential areas with low to medium density. |
5 | Vegetated wetland | Dried-up rivers and stream channels and areas previously inundated with water that are overgrown with grasses and shrubs. |
6 | Water | Natural and artificial water bodies, including streams, rivers, dams and reservoirs. |
LULC Class | 1990 | 2001 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
km2 | % | km2 | % | km2 | % | km2 | % | |
Closed savannah | 128.69 | 22.22 | 119.32 | 20.60 | 107.21 | 18.51 | 91.34 | 15.77 |
Open savannah | 407.22 | 70.30 | 417.06 | 72.00 | 400.61 | 69.16 | 392.25 | 67.72 |
Other | 22.18 | 3.83 | 12.98 | 2.24 | 25.62 | 4.42 | 22.11 | 3.82 |
Settlement | 7.44 | 1.28 | 19.12 | 3.30 | 30.42 | 5.25 | 59.86 | 10.33 |
Vegetated wetland | 13.30 | 2.30 | 10.33 | 1.78 | 14.59 | 2.52 | 12.73 | 2.16 |
Water | 0.39 | 0.07 | 0.41 | 0.07 | 0.77 | 0.13 | 0.93 | 0.20 |
Class | Closed Savannah | Open Savannah | Other | Settlement | Vegetated Wetland | Water | OA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | UA | PA | ||
1990 | 92 | 97.87 | 94 | 82.46 | 80 | 93.02 | 96 | 92.31 | 98 | 94.23 | 96 | 97.96 | 92.67 |
2001 | 88 | 93.62 | 96 | 78.69 | 82 | 78.85 | 84 | 93.33 | 92 | 97.87 | 94 | 97.92 | 89.33 |
2010 | 88 | 93.6 | 96 | 75 | 88 | 93.6 | 92 | 93.9 | 82 | 89.1 | 92 | 97.9 | 89.7 |
2020 | 92 | 92 | 94 | 87.0 | 94 | 95.9 | 90 | 93.8 | 94 | 94 | 96 | 98 | 93.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asempah, M.; Sahwan, W.; Schütt, B. Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana. Land 2021, 10, 1251. https://doi.org/10.3390/land10111251
Asempah M, Sahwan W, Schütt B. Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana. Land. 2021; 10(11):1251. https://doi.org/10.3390/land10111251
Chicago/Turabian StyleAsempah, Mawuli, Wahib Sahwan, and Brigitta Schütt. 2021. "Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana" Land 10, no. 11: 1251. https://doi.org/10.3390/land10111251
APA StyleAsempah, M., Sahwan, W., & Schütt, B. (2021). Assessment of Land Cover Dynamics and Drivers of Urban Expansion Using Geospatial and Logistic Regression Approach in Wa Municipality, Ghana. Land, 10(11), 1251. https://doi.org/10.3390/land10111251