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Abstract: In the eastern Democratic Republic of Congo, agriculture represents the most important
economic sector, and land control can be considered a perpetual source of conflict. Knowledge
of the existing production system distribution is fundamental for both informing national land
tenure reforms and guiding more effective agricultural development interventions. The present
paper focuses on existing agricultural production systems in Katoyi collectivity, Masisi territory,
where returning Internally and Externally Displaced People are resettling. We aim to define a
repeatable methodology for building evidence-based and updated knowledge concerning the spatial
distribution of the two existing production systems: subsistence-oriented agriculture (SOA) and
business-oriented agriculture (BOA). To this aim, we used a supervised object-based classification
approach on remotely sensed Sentinel-2 imagery to classify land cover. To classify production systems
further within the “agriculture” and “pasture” land use classes, binary classification based on an
entropy value threshold was performed. An iterative approach was adopted to define the final HNDVI

threshold that minimised commission and omission errors and maximised overall accuracy and
class separability. The methodology achieved acceptable observed accuracy (OA equal to 80–90%
respectively for agricultural and pasture areas) in the assessment. SOA and BOA respectively covered
24.4 and 75.6% of the collectivity area (34,606 ha). The results conclude that land use and entropy
analysis can draw an updated picture of existing land distribution among different production
systems, supporting better-adapted intervention strategies in development cooperation and pro-poor
agrarian land tenure reforms in conflict-ridden landscapes.

Keywords: eastern DRC; Masisi; agricultural production system; entropy analysis; Sentinel-2A; land
use land cover

1. Introduction

The control of land has always been at the core of profound disputes in the Democratic
Republic of Congo (DRC) [1–3]. The tragic series of events culminating in the Congolese
war between 1994 and 2004 and the Tutsi Genocide, together with an ineffective state policy
and a chronic insecurity situation, has led to the disruption of the agricultural sector and an
increasingly intense conflict over access to land [4]. The historical background and varied
orography of the Goma Diocese, located at the border between North and South Kivu
provinces, has directly led to a complex agricultural landscape, with significant impacts
on the natural environment and regional economic development [5,6]. The situation is
further complicated by the massive number of Internally and Externally Displaced People
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(IDP and EDP, respectively); e.g., the OCHA estimated 863,400 IDPs between January
2009 and November 2014. According to existing international treaties, all these people
have the right to return to their homes [7]. According to previous studies, socio-economic
conditions profoundly influence terrestrial ecosystems, especially agroecosystems and their
ability to support human settlements [8]. The agenda of international organizations dealing
with peace-seeking and peacekeeping in the Eastern Congo now focuses on, among other
issues, drawing a clear outline of land distribution among the different stakeholders in
the agricultural sector [9,10]. Two different agricultural production systems exist in the
region. These agricultural production systems are understood here as the two main types
of livelihood strategies among the Congolese population of the Goma Diocese, namely
Subsistence Oriented Agriculture (SOA) and Business Oriented Agriculture (BOA). The
first is the type of agricultural activity defined as family farming by the FAO [11]. It is
usually implemented on small plots of land, with access to very local markets. In DRC
and specifically in the Goma Diocese, this production system forms a mosaicised land
use/land cover (LULC) pattern that other authors identified as the “rural complex” [12,13].
The rural complex is a distinctive agricultural land cover mosaic surrounding the network
of inhabited areas found along rivers and roads in DRC. It contains paths, grassy and
bare communal areas, settlements and various land uses, primarily those associated with
traditional smallholder livelihood shifting cultivation: cleared land, active fields, fallow
fields, secondary forest and a permeable interface area with primary forest [12].

Conversely, huge plantations or grazing areas mostly characterise BOA, whose prod-
ucts are usually sold in foreign or regional markets. The two agricultural systems also differ
in terms of land tenure, as SOA generally implies the exploitation of lands attributed to
farmers through the traditional land tenure system and/or with no titling at all [11], while
BOA usually relies on formally titled land. The two productive systems generate different
costs and benefits for the local economy and existing socio-ecological systems [14–16].
In such a chronic emergency context, socio-economic development heavily depends on
the resiliency of the agricultural sector [17]. Consequently, in-depth knowledge of re-
gional agricultural geography is fundamental for understanding the spatial distribution
and evolution of food supply chains, supporting the reintegration of IDPs/EDPs [18],
and most of all assessing the impact of current and future policies and peacekeeping
interventions [3,19,20].

To our knowledge, no official data exist regarding the spatial distribution of BOA and
SOA systems in the Goma Diocese, especially at the scale of analysis of interest. In the DRC,
and especially in the provinces of North and South Kivu, agriculture and livestock breeding
constitute the backbone of socio-economic development [17]. Information regarding the
distribution of land among the existing production systems is also fundamental for support-
ing advocacy actions towards the need for pro-poor land tenure reform in the DRC, which
is debated since 2012 [21–25]. Given the characteristic inaccessibility of the territory, both
in physical terms due to orography and insecurity, and in terms of data availability due to
the lack of governmental official knowledge repositories, satellite remote sensing (RS) is a
suitable option as an analysis tool. The present study aims to build evidence-based and
updated knowledge regarding the spatial distribution of agricultural production systems
in agricultural and pasture areas through land use analysis and entropy analysis of remote
sensed Sentinel-2 imagery in the collectivity of Katoyi, North Kivu, DRC.

Although several previous studies tested the use of RS in the DRC [26–28], to the best
of our knowledge, only two remote sensing-based LULC analyses focusing on the DRC
exist [29,30], which present respectively a tiny scale of analysis and out-of-date information
compared to our needs. Land use is strongly related to land cover, as the kind of activity
implemented in a territory strongly depends on the features of the available environment
and vice versa [31]. In the present study, we adopted the LULC acronym to focus on the
functional definition of land use, which points to the description of the land in reference to
its socio-economic purpose [32]. Therefore, LULC-change analyses can be of paramount
importance for mapping the evolution of specific geographical contexts′ socio-economic
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activities. This possibility is more significant where livelihood agricultural systems and
forest preservation objectives represent coexisting aims.

LULC change studies are widely accepted to be essential for enabling preventive
actions against natural resource degradation and destruction [33], especially in inaccessible
zones such as the Congolese basin. As previously mentioned, LULC maps can highlight
borders between different socio-economic uses within a given territory. Nevertheless,
without other auxiliary information layers, it hardly describes the territory according to
a series of operations carried out by humans in order to obtain specific products and/or
benefits. This means that land use, in its sequential definition, cannot be inferred directly
from land cover [34].

To unmix LULC mapping information within a specific LULC class, an entropy-based
approach and texture analysis of satellite imagery seems to be promising and widely used
in the literature [35–40]. Texture is an intrinsic property of virtual surfaces, and can be
defined as the expression of patterns in the spatial variation of pixel values in imagery,
which contain essential information concerning the structural arrangement of surfaces and
their relationship to the surrounding environment [41]. There are different metrics used
as expressions of textural features, and entropy is one of them. This parameter measures
an image’s disorder: if an image is not uniform in terms of texture, a high entropy value
will characterise it [42]. Entropy and other textural features have been widely used in
remote sensing with reasonably satisfactory results [43]; in particular, these features can be
directly used for scene classification or to improve LULC classification accuracy by adding
information to spectrum-related data [44]. RS has significant potential for applications
in this respect, but considering that this study area is located in the equatorial belt, some
limitations should also be pointed out. On average, rainfall is very abundant in equatorial
and forested regions characterised by intense evapotranspiration [45]. Moreover, high
mountains characterise the study area and the surrounding region. For this reason, the
area is known for the strong presence of clouds [46], which makes it challenging to collect
multiple contiguous optical observations, both spatially and temporally [47–50].

2. Materials and Methods
2.1. Study Area

The present research focuses on the Katoyi Collectivity, located in Goma Diocese
(GD), North Kivu, Democratic Republic of Congo (DRC). The GD (surface: 26,223 km2) is
located in the eastern DRC (DRC, Figure 1a,b). GD is an ecclesiastical administrative unit
known as “small north” (“le petit Nord”). It is located in the North Kivu province and a
small strip of the Kalehe Territory (Figure 1c) lying in the South Kivu province. Within the
Diocese, there are 11 collectivities belonging to five territories (Goma, Rutshuru, Masisi,
Walikale, and Kalehe). The study area is characterised by one of Africa’s highest population
densities (2,211,000 inhabitants on 26,223 km2 of territory, 88.4 inhabitants/km2). A very
high poverty level characterises the local population (72.9% of the population live below
the UN poverty threshold in North Kivu, against 71.2% in the whole DRC) [51,52].
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Figure 1. Geographical framework of the study area. The Democratic Republic of the Congo (a); The 
Goma Diocese, located in the extreme east of the DRC, in North and South Kivu provinces (b); The 
collectivity of Katoyi, located at the south border of the Goma Diocese (c). 

The GD’s orography is very complex. A continuous series of tiny plains, plateaus, 
hills and mountains make up the landscape. The local agricultural system can be framed 
in terms of the agroecological zones defined by FAO [53]: moving westward from the 
higher altitudes that lie along the borders with the neighbouring Uganda, Rwanda and 
Burundi and heading towards the forest, the farming system called “Highland Perennial” 
gives way to a “Forest-Based” system [53]. In this setting, the two previously mentioned 
production systems coexist. Small farmers mainly practice SOA, aiming at subsistence 
through family agriculture on small plots, mainly located near villages, on uplands offi-
cially under customary tenure or ad hoc agreements with private landowners. BOA is 
practised on or near large landholdings. It grows mainly cash crop plantations in mono-
cultural cropping systems or breeds cattle in extensive systems [54]. Masisi territory and 
Katoyi collectivity, in particular, have been the theatre of massive population displace-
ments from 1994 to 2004. During this period, the Katoyi collectivity hosted the headquar-
ters of the leading armed group in the area at that time, the Democratic Forces for the 
Liberation of Rwanda [55]. Due to their presence, most of the population fled and left the 
collectivity scarcely inhabited during the following ten years. Since 2015, returning IDPs 
and EDPs have slowly resettled in the collectivity of Katoyi (according to unpublished 
CARITAS Development Goma reports of 2015). 

  

Figure 1. Geographical framework of the study area. The Democratic Republic of the Congo (a); The
Goma Diocese, located in the extreme east of the DRC, in North and South Kivu provinces (b); The
collectivity of Katoyi, located at the south border of the Goma Diocese (c).

The GD’s orography is very complex. A continuous series of tiny plains, plateaus,
hills and mountains make up the landscape. The local agricultural system can be framed
in terms of the agroecological zones defined by FAO [53]: moving westward from the
higher altitudes that lie along the borders with the neighbouring Uganda, Rwanda and
Burundi and heading towards the forest, the farming system called “Highland Perennial”
gives way to a “Forest-Based” system [53]. In this setting, the two previously mentioned
production systems coexist. Small farmers mainly practice SOA, aiming at subsistence
through family agriculture on small plots, mainly located near villages, on uplands officially
under customary tenure or ad hoc agreements with private landowners. BOA is practised
on or near large landholdings. It grows mainly cash crop plantations in monocultural
cropping systems or breeds cattle in extensive systems [54]. Masisi territory and Katoyi
collectivity, in particular, have been the theatre of massive population displacements from
1994 to 2004. During this period, the Katoyi collectivity hosted the headquarters of the
leading armed group in the area at that time, the Democratic Forces for the Liberation of
Rwanda [55]. Due to their presence, most of the population fled and left the collectivity
scarcely inhabited during the following ten years. Since 2015, returning IDPs and EDPs
have slowly resettled in the collectivity of Katoyi (according to unpublished CARITAS
Development Goma reports of 2015).
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2.2. Workflow

The present research firstly addresses the LULC of the GD in order to map the agri-
cultural and pasture areas, and secondly assesses the existing agricultural production
systems (i.e., SOA and BOA) in a strategic collectivity, i.e., Katoyi, in order to support rural
development policies and programs. We review the proposed three-phase workflow in
Figure 2.
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During the preparation phase (see Figure 2), we collected and organised all relevant
data in order to tackle spatial analysis by reducing elaboration time. During the object-
based classification phase, we produced a LULC map of all of the GD starting from
S2 multispectral images and Ground Reference Points (GRPs). In order to validate the
classification, we used the Control Polygons (CPs) dataset.

During the third phase (see Figure 2), we addressed the classification of existing
production systems in the Agriculture and Pasture classes. An NDVI entropy map was
calculated for Katoyi collectivity, and classification of agriculture production systems was
therefore produced through adopting an entropy threshold method at the patch level.
To this aim, the CPs dataset was used to compute the confusion matrix and identify the
threshold for the binary classification (SOA/BOA).

2.3. Preparation: Available Data
2.3.1. Sentinel-2 Data

Copernicus Sentinel-2 (S2) imagery was used to produce an up-to-date LULC of the
area within this context. S2 is a wide-swath, high-resolution, multispectral imaging mission
supporting Copernicus Land Monitoring studies, including vegetation, soil and inland
waters. Spectral properties of the 13 bands acquired by the Multi-Spectral Instrument (MSI)
are shown in Table 1. The nominal temporal resolution of S2 acquisition is five days; the
geometric resolution (GSD, Ground Sampling Distance) is 10, 20 or 60 m depending on
the band; the swath is 290 km2. For this work, seven S2 Level-2A tiles were obtained from
the Copernicus Open Access Hub geo-portal (scihub.copernicus.eu). Level-2A images
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are supplied as ready-to-use, 100 km × 100 km tiles, ortho-projected in the WGS84 UTM
reference frame [56] and calibrated at the Bottom of Atmosphere (BoA) reflectance level.

Table 1. Nominal features of S2.

Name Number of
Bands

Sentinel-2A Sentinel-2B Sentinel-2A + 2B
Central

Wavelength (µm)
Bandwidth

(µm)
Central Wavelength

(µm)
Bandwidth

(µm)
Spatial

Resolution

Blue 2 0.4966 0.098 0.4921 0.098

10
Green 3 0.56 0.045 0.559 0.046
Red 4 0.6645 0.038 0.665 0.039
NIR 8 0.8351 0.145 0.833 0.133

VegRedEdge 5 0.7039 0.019 0.7038 0.02

20

VegRedEdge 6 0.7402 0.018 0.7391 0.018
VegRedEdge 7 0.7825 0.028 0.7791 0.028
Narrow NIR 8a 0.8648 0.033 0.864 0.032

Swir1 11 1.6137 0.143 1.6104 0.141
Swir2 12 2.2024 0.242 2.1857 0.238

Coastal aerosol 1 0.4439 0.027 0.4423 0.045
60Water Vapour 9 0.945 0.026 0.9432 0.027

Swir-Cirrus 10 1.3735 0.075 1.3769 0.076

Since the study area is located in the equatorial zone, cloud cover is not a negligible
problem. Especially in forest and mountainous zones, intense evapotranspiration gener-
ates an almost constant cloud cover. Consequently, several scenes were obtained from
the ESA SchiHub Geoportal [57], imposing a cloud cover threshold of 11% and ranging
between March 2018 and November 2018. In order to limit residual cloud cover, each tile
footprint was subsequently divided by selecting acquisitions in different periods resulting
in 13 sub-tiles. Selected sub-tiles were then mosaicked using SAGA GIS v.7.0.0 [58]. Each
subtile is internally homogeneous from the spectral point of view, but different from ad-
jacent ones that were possibly acquired on different dates. Nevertheless, the vegetation
phenology at the equatorial zone is mainly the same throughout the year [59]. Names and
locations of sub-tiles are shown in Table 2 and Figure 3.

Table 2. List of S2 sub-tiles used for this work.

Subtile Name Date (YYYY-MM-DD) Cloud Cover %

T35_MNT 2018_08_04 0
T35_MNU_N 2018_06_15 11
T35_MNU_S 2018_08_04 10
T35_MPT_E 2018_08_11 0.5
T35_MPT_W 2018_03_27 1.5

T35_MPU_NE 2018_11_19 1
T35_MPU_NW 2018_10_28 2.7
T35_MPU_SE 2018_11_19 1
T35_MPU_SW 2018_10_28 2.7

T35_MQT 2018_06_12 3
T35_MQU_N 2018_07_17 6
T35_MQU_S 2018_07_17 6

T35_MQV 2018_07_22 5
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2.3.2. Open Datasets

Very High Resolution Satellite Imagery (VHRSI) was used for photo interpretation
and validation/refinement of classification results, especially in those areas with clouds or
shadows in any tile [60]. VHRSI provides real colour ortho-photos with a spatial resolution
between 0.5 and 2 m, which are widely used in RS [61,62]. Specifically, web-accessible
BING Aerial ortho-photos (updated 2018) were used [63]. Open Street Map (OSM) data
were also used to map roads, water bodies and residential areas. We obtained OSM data
in vector format from the online platform [64]. For the present research, we appropriately
rasterised data at the 10 m grid size.

2.3.3. Reference Datasets

A ground survey campaign was performed throughout the entire diocese area to test
the accuracy of LULC classification. One hundred GRPs were acquired using a Garmin
GPSMAP 64 GNSS (Global Navigation Satellite System) receiver with a nominal positional
accuracy of 5 m (Figure 4). For each GRP three data were acquired: planimetric position
(according to the WGS84 UTM 35S GPS-acquiring Reference System–RS), a high-definition
camera picture portraying the local LULC with annotated exposure, and the classification
of local land use near that position into four main classes (i.e., Forest, Agriculture, Pasture
and Non-vegetated areas). We then generated a reference polygon layer containing Control
Polygons (CPs) to assess the classification of the agricultural production system in the
Katoyi Collectivity. In particular, 200 CPs were selected randomly in Katoyi, based on the
CP layer. One hundred CPs were selected from the “Agriculture” class as defined by the
LULC classification; the remaining 100 CPs were selected from the “Pasture” class. Using
VHRSI, a photo-interpretation of the CPs was performed via searching for SOA and BOA
within the LULC classes. Figure 5 shows the CPs’ distribution in the study area.
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2.4. Object-Based Classification in the Goma Diocese

An object-based classification (OBC) approach [65,66] was used for this work. This
approach was based on the supervised classification carried out in four main steps: (a) S2
data segmentation; (b) training feature selection based on segmented objects; (c) object
classification adopting a minimum distance algorithm; (d) cloud masking correction.

2.4.1. Segmentation

OBC divides a multi-spectral image into groups of spectrally homogeneous pixels
while respecting some geometric constraints. Pixels from the processed image are conse-
quently aggregated according to constraints (parameters) that the operator has to properly
set up by considering the expected minimum object size and its maximum internal spectral
heterogeneity. The segmentation step of the OBC approach was performed using the
mean-shift algorithm available in Orfeo Toolbox v.6.6.0 open software [67,68]. The OBC
algorithm aimed at minimising the spectral heterogeneity of polygons by comparing the
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spectral properties of neighbour pixels. The resulting segmentation vector layer (SEG) was
generated according to an a priori defined minimum mapping unit of 5000 m2.

Segmentation was carried out with particular reference to the S2 bands having the
finest GSD = 10 m, i.e., B2, B3, B4 and B8. Starting from the native BOA reflectance
values, images were divided into segments with an internally homogeneous spectral
response. Segments were then vectorised to generate the corresponding vector layer.
During segmentation, required parameters were set to the values reported in Table 3.

Table 3. Parameters used during image segmentation.

Segmentation Parameter Value

Spatial radius 5 pixels
Range radius 150 DN

Mode convergence threshold 0.1
Maximum number of iterations 100

Minimum region size 50 pixel

SEG was then used to explore internal features other than spectral signatures, such as
recurrent radiometric patterns (texture) and shape. These were adopted in the second level
of analysis to better interpret SEG meaning, and, for this work specifically, to investigate
land fragmentation schemes possibly related to different agricultural management types.

2.4.2. ROIs Selection

A false-colour image (FCI) was generated starting from mosaicked S2 bands, including
B8, B4 and B3 in the channels of Red, Green and Blue respectively. Thirteen FCI classes were
defined by searching for a specific land cover class, according to Appendix A, Table A1.
Subsequently, 5491 regions of interest (ROIs) were randomly selected and photo-interpreted
according to FCI classes. Figure 6 shows the ROIs’ locations. The total area of the ROIs
corresponded to 1.6% of the entire surface of the GD. Table 4 reports the land cover classes
adopted and the relative codes.
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Table 4. Land cover codes.

Land Cover Classes Code

Dense Forest 1
Sparse Forest 111
Open Forest 2

Bare Soil/Urban 3
Grassland and lower vegetation 4

Water 5
Clouds 6

Cloud Shadows 7
Lower vegetation with strong vigour 8

Agronomical field 9
Wetlands and burned areas 10

Fragmented croplands 11
Croplands 12

Figure 7 shows the average spectral signature of each ROI class according to the codes
in Table 4. Since available S2 cloud masks could be ineffective in complete cloud detection,
especially cirrus clouds [69], and considering the coarse geometric resolution of this mask
(GSD = 60 m), to better map these classes, clouds and shadows were considered in the
classification by adopting bands with a GSD of 10 m. In fact, Coluzzi [69] found that S2
cloud masks over rainforest areas had an omission error of more than 70%.
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2.4.3. “Minimum Distance” Classification

A supervised OBC relies on a minimum distance algorithm approach. Different works
have highlighted the performance and capability of such a classifier when applied to
agricultural case studies [70–72].

Exploiting the B2, B3, B4 and B8 S2 bands, the relative mean value was computed at
the patch level and added to the attribute table, starting from the SEG layer. Each patch’s
spectral signature was classified based on ROI training features, adopting the minimum
distance algorithm tool available on SAGA GIS v. 7.0.0. The land cover map was finally
created, adopting the previously mentioned class codification.

2.4.4. Cloud Masking Correction

As the land cover classification was still affected by cloud cover contamination, the
patches classified as clouds and cloud shadows were selected and substituted with the real
land cover class retrieved from VHRSI photo-interpretation.

2.4.5. Land Use Class Aggregation

Thirteen land cover classes characterised the map obtained by the classification. These
classes were initially chosen to better cope with the spectral variability among all the land
cover types featured in the study area, but to restrict the focus on vegetation-related LULC
classes, fewer classes were sufficient. Therefore, classes were merged as indicated in Table 5
to finally obtain a five land-use classification consisting of forests (coded as 1), agricultural
(coded as 2), pasture (coded as 3), non-vegetated (coded as 4), and water (coded as 5). The
class “water” was excluded in the successive validation step, as it was not relevant to the
aim of this work.

Table 5. Land cover and LULC codes adopted.

Land Cover Codes LULC Codes LULC Class Description

1; 2; 111 1 Forests
9; 11; 12 2 Agricultural

4; 8 3 Pasture
3; 10 4 Non-vegetated

5 5 Water

The accuracy of the LULC map was tested against the GRPs by comparing classes
defined by ground-based methods with those classified by the minimum distance algorithm.
A confusion matrix was then produced to evaluate both classification performances.

2.5. Classification of the Production Systems in Katoyi

In this work, NDVI entropy (HNDVI) was assumed as an appropriate image texture
parameter able to separate the agricultural production systems of interest. In fact, building
on the description of the two existing production systems, we assumed that in BOA
production systems the vegetated areas (patches) would show a more homogeneous NDVI
distribution, corresponding to lower HNDVI values. Conversely, in SOA production systems
vegetated areas would be more heterogeneous and fragmented, making HNDVI of these
patches higher. With these premises, the most critical aspect in the workflow was the
identification of an appropriate HNDVI threshold able to separate the two production
systems (i.e., SOA and BOA). Obviously, an objective and generally viable threshold does
not exist. Consequently, an adaptive method was implemented, which was based on an
iterative process, looking for the HNDVI value that minimises classification commission and
omission errors while maximising the corresponding overall accuracy and class separability.
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To this aim, an NDVI map [73] was calculated to describe vegetation biomass starting
from multispectral mosaics, shown in Equation (1):

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

where ρNIR and ρRED are S2 B8 and B4 reflectance values, respectively.
HNDVI index was then calculated according to Equation (2) to assess local vegetation

heterogeneity [41]:

HNDVI = −
N

∑
i=1

N

∑
j=1

NDVIi,j log
(

NDVIi,j
)

(2)

where NDVIi,j is the NDVI value at the ith row and jth column in the local square window
with a size of N pixels. For this study, the authors adopted a window size of 10 × 10 pixels.
Finally, an HNDVI map was generated. The average HNDVI value was calculated at the patch
level of the SEG layer. Only patches belonging to agriculture and pasture classes were
considered in order to better characterise these LULC types. To do this we adopted the
following interpretative key: Low HNDVI values meant homogeneous vegetated surfaces;
high HNDVI meant highly heterogeneous vegetation, probably mixed with bare soil, or
coexistence of vegetation covers with variable height and density [74].

Two binary classifications based on an entropy value threshold were performed for
agriculture and pasture classes, respectively. The confusion matrix parameters were calcu-
lated according to Richards et al. [75] and using the CPs as references. In particular, class
separability was estimated using the Jeffries–Matusita index (JM) according to Equation (3):

JM = 2
(

1− e−B
)

, (3)

in which

B =
1
8
(
mi −mj

)T
(Ci + Cj

2

)−1(
mi −mj

)
+

1
2

ln


∣∣∣Ci+Cj

2

∣∣∣∣∣CiCj
∣∣1/2

 (4)

where Ci and Cj are the within-class covariance of the ith and jth classes respectively, and
mi and mj are the means of the ith and jth classes respectively. A JM distance equal to
2.0 implies 100% separability between two classes [76]. Therefore, 10 classifications were
generated for agriculture LULC based on the following HNDVI threshold values: 0.3; 0.4;
0.5; 0.6; 0.7; 0.8; 0.9; 1.0; 1.1; 1.2; while eight classifications were generated for pasture
LULC based on thresholds of 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0. The binary classification
minimising commission and omission errors and maximising overall accuracy and JM was
assumed to be the most reliable for classifying agriculture and pasture production systems.

3. Results and Discussion
3.1. LULC of the Goma Diocese

The entirety of the GD was divided into four classes of LULC: forest, agricultural,
pasture and non-vegetated areas (Figure 8). Roads and water bodies were obtained from
OSM data and overlapped on the LULC map, since they were not relevant for the work
focused on vegetation-related classes.

As shown in Table 6, the most widespread class was forest, with an extent of 15,629.13 km2

corresponding to 59% of the GD. The agricultural class covered 5106.25 km2 and the pasture
class 3593.71 km2, corresponding to shares of 19% and 13%, respectively. By observing
the maps, it is possible to note that the areas containing forests were mainly located in the
central-western part of the GD, while agricultural and pasture land were more represented
in the central-eastern zone.
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Table 6. Extent of LULC classes in GD.

LULC Classes Area (km2) Area (%)

Forest 15,629.13 59.02
Agricultural 5106.25 19.28

Pasture 3593.71 13.57
Non-vegetated 1997.12 7.54

Water 153.39 0.59

Total 26,479.62 100

Table 7 shows the confusion matrix related to the LULC classification produced in the
GD. The classification performance resulted in an overall accuracy (OA) of 0.55; producer
accuracy (PA) and user accuracy (UA) values (Table 7) are helpful to better clarify the
strengths and weaknesses of this result.

Table 7. Confusion matrix of LULC. UA = User Class Accuracy, PA = Producer Class Accuracy,
CE = Commission Error, OE = Omission Error.

Class from LULC (n◦ Pixels)

GRP

Forest Agriculture Non-vegetated areas Pasture
Forest 24 4 0 1

Agriculture 17 17 2 5
Non-vegetated

areas 0 0 9 2

Pasture 9 4 0 6

Metrics (%)
UA PA CE OE

LULC classes

Forest 48 82.8 17.2 52
Agriculture 68 41.5 58.5 32

Non-vegetated
areas 81.8 81.8 18.2 18.2

Pasture 42.9 31.6 68.4 57.1
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In particular, the classification was accurate in recognising “forest and urban” and
“bare soil” classes, since their spectral signatures were clearly separable from the others.
On the other hand, there was an overlap between agricultural and pasture classes, since
these have a similar spectral signature, which makes their separation difficult.

A multi-temporal approach can investigate vegetation’s phenological behaviour, im-
proving the separation between these classes [77]. Unfortunately, the adopted approach
(based on single mosaicked acquisition) was dictated by the intense cloudiness that gener-
ally characterises equatorial areas, making it impossible to collect a series of contiguous
images in space-time.

3.2. Production System Identification in Katoyi Collectivity

The binary classifications for agriculture and pasture production systems were defined
according to the confusion matrix and JM parameters (Figure 9), searching for the HNDVI
threshold value that minimised Omission Error (OE) and Commission Error (CE) for both
classes and at the same time maximised the OA and the JM values. The HNDVI value of 0.7
was identified as the best for both the LULC classes (Figure 9).
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blue lines.

By adopting this threshold, the OA and JM of agriculture LULC were equal to 90%
and 1.24, while OE and CE were lower than 15% for both BOA and SOA. Concerning
pasture LULC, OA and JM were equal to 80% and 1.22 while OE and CE were lower than
30% for both BOA and lower than 20% for SOA. All other tested thresholds in the range
0.3 < HNDVI < 1.2 showed lower OA and higher OE/CE.

It is worth remembering that an interpretation of HNDVI behaviour is needed to
determine the meaning of classes. This interpretation was achieved by looking for HNDVI
class distributions (Figure 10). High entropy in the agriculture class denoted strong spectral
variability within each patch, probably related to bare soil/vegetation alternation typical
of SOA; inversely, in the BOA a low variability index of vegetation was expected due to
homogeneous management of the surface. Conversely, for the pasture class the meaning
of entropy changed; in fact, in a pasture system the rate use of vegetation follows grazing
pressure [78,79]. High grazing pressure generates a homogeneous consumption of pasture,
thus a low HNDVI value within each patch. SOA is characterised by small grazing surfaces
and intensive local use of pastoral resources. Ordinarily, a BOA pasture system has
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large surfaces (low grazing pressure) [80], which results in heterogeneous consumption of
pasture and increasing HNDVI values.
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With this interpretative key, a final production systems map (Figure 11) was generated
as follows: in the agriculture class, all patches with average HNDVI ≥ 0.7 were classified as
SOA, while patches with HNDVI < 0.7 were classified as BOA. In the pasture class, the same
principle was applied in inverse.
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The total hectares ascribed to BOA and SOA in Katoyi collectivity are reported in
Table 8. These results proved the prevalence of BOA production systems compared to
SOA in Katoyi, and seem to confirm the portrait of a region where land scarcity for
smallholders is becoming more and more relevant, especially where the dispute between
large landowners and subsistence farmers is a perpetuating factor of conflict [2]. This result
seems to agree with the unpublished results of a survey, conducted in 2017 by Caritas
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Development Goma, estimating that large landowners control approximately 80% of the
land in the GD1. On the other hand, the validity of the methodology and the obtained
accuracy in classifying the existing production systems could not be compared with those of
other studies, due to the lack of research applying the same methodology in this region [81].
To the best of our knowledge, the only similar studies focus on different regions and
address classification through different methodology, built on different available data,
while obtaining comparable accuracy and methodological validity [82,83].

Table 8. Agriculture and pasture production system areas in Katoyi according to the LU map produced.

LULC Classes
Production System

haBOA SOA

Agriculture 80% 20% 22,044
Pasture 68% 32% 12,562

The proposed methodology and the specific approach for determination of an ap-
propriate entropy threshold value were applied to increase the procedure’s general ap-
plicability. In fact, both the adoption of publicly available data and the introduction of
processing steps specifically aimed at reducing/avoiding subjective decisions were the
basis for our work. This made it possible to calibrate HNDVI threshold value depending on
the local distribution and value of NDVI at the patch scale, both of which strictly depend
on local land management. Consequently, the HNDVI threshold values reported in this
work cannot be assumed a priori but need to be determined empirically. However, the
approach for their determination is general and adaptable and, therefore, usable anywhere
around the world provided that ground reference data (here CPs) are collected to make the
computation of classification errors possible.

4. Conclusions

In this work, S2 multispectral images were used to assess LULC in the GD. Specifi-
cally, a first land cover map was produced using an object-based supervised classification
approach to detect and characterise land use in the GD. Comparable classification accuracy
was found in a previous study [84], reinforcing S2’s data reliability when applied in the
African context. Furthermore, in line with past research experience [66,85], the joint use of
S2 and segmentation procedures proved to be effective in mapping and characterising agri-
cultural and forest contexts. Nevertheless, some problems persisted. For instance, in SOA,
where small heterogeneous areas were present and the algorithm could not systematically
recognise fields, the delineation proved to be highly sensitive to segmentation parameters.

Starting from the identified LULC agriculture and pasture classes, a classification of
agriculture production systems was created based on HNDVI value at the patch level. Since
we presumed only two existing production systems (i.e., BOA and SOA), we proposed
a binary threshold classification method. Such an approach is undoubtedly affected by
threshold selection, and many works have examined this problem [86,87]. In this work,
we proposed a retrospective method to define the best threshold and generate a binary
classification. This threshold was defined by an optimisation procedure based on confusion
matrix parameters and class separability. Specifically, we found that 0.7 HNDVI was the
threshold that minimised CE and OE and maximised OA and class separability (the JM
index) simultaneously for both agriculture and pasture. Some critical points still persist
here: (a) more reference data (in this work, partially produced by photo interpretation)
are needed to calculate confusion matrix parameters; (b) imbalanced data in the binary
classification could affect results [88,89]; (c) further interpretation is needed to correct
class meaning in order to avoid the introduction of bias. Nevertheless, we found that
correcting class meaning through the HNDVI distribution between classes was a useful tool
for classifying agriculture production systems; OA was found to equal 90% and 80% for
agriculture and pasture, respectively.
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Overall, the obtained results led us to conclude that RS was a useful tool for spatial
analysis of land distribution among different agricultural production systems, even in
equatorial regions characterised by complex orography and wide agricultural landscapes.
This is extremely interesting in a region such as North Kivu and particularly the GD,
where digital cadastres do not exist and the orography and chronic security issues result
in difficult access to land-related information. In the framework of the Congolese path
towards pro-poor agrarian land tenure reform that should regulate the increasing trend
towards land ownership concentration, and in the context of an increasing rural population
that strives for access to land, this information is fundamental for supporting both evidence-
based interventions at national policy level, and international development cooperation
operating within the country.

Research Perspectives

In this study, we obtained interesting results on a pilot-area scale (Katoyi collectivity);
therefore, it would be very interesting to scale up this approach to the whole GD area.
Across the world, there are several examples of countries where pro-poor land tenure
reforms are struggling to see light due to specific, often-inscrutable political, security
and geographical contexts. Knowledge regarding the distribution of different production
systems may be the key information to trigger or support pro-poor reforms. Several cases
exist in Africa where the proposed methodology may be trialled and therefore further
improved and validated. Specifically, it is worth highlighting that a more robust validation
of the proposed method could be obtained by repeating the implementation in several
other case studies and by using ground-reference data systematically. The repetition in
such contexts would fall under a Science Diplomacy approach [90], which uses applied
research to foster diplomacy and social innovation uptake concerning delicate issues such
as rural reforms in the framework of the 2030 Agenda.

Among the main critical issues to be improved, the region-specific constraint regarding
cloud coverage could be overcome by coupling multispectral passive remote sensing with
active remote sensing SAR (Synthetic Aperture RADAR) data (e.g., Sentinel-1). In fact, SAR
sensors can penetrate cloud cover, and the polarisation properties of the backscatter signal
and its temporal behaviour could more extensively describe land use classes. SAR data
would also facilitate the adoption of a multi-temporal approach to the analysis of LULC
and production systems, possibly improving the classification accuracy.

Nowadays, new software and algorithms such as Google Earth Engine (GEE) can
improve remotely sensed data processing and allow data computation for large areas.

Future developments may concern the joint use in GEE of SAR and optical data, and
the exploitation of alternative classification approaches (e.g., Random forest or TensorFlow).

Finally, a pixel-based approach to the analysis of VHRSI could also be tested and
compared to the proposed methodology to assess the margin of improvement in classifica-
tion accuracy.
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Notes: Within the framework of the ARDST Project, we supervised the implementation of a survey targeting the holders of land 
concessions in the Goma Diocese, aiming to collect data regarding existing conflicts concerning access to land. The survey allowed 
for the collection of 2558 observations. Surveyed concessions covered 173,526.3 ha (equal to 1735.26 km2, on 8,609.96 km2 of agricul-
tural and pasture area in GD). Concessions greater than fifty hectares comprised a share of 84% of the surveyed area. 
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