The Mechanical Impact of Water Affected the Soil Physical Quality of a Loam Soil under Minimum Tillage and No-Tillage: An Assessment Using Beerkan Multi-Height Runs and BEST-Procedure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. BEST Procedure and Soil Physical Quality Estimation
3. Results
3.1. Soil Condition at the Time of Infiltration Experiments
3.2. Evaluation of the BEST-Algorithms for Multi-Height Experiments
3.3. Soil Water Retention Curve Estimation
3.4. Linear Correlations among Soil Properties
3.5. Soil Physical Quality Eestimation
3.5.1. Macroporosity
3.5.2. Air Capacity
3.5.3. Relative Field Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assouline, S.; Mualem, Y. Infiltration during soil sealing: The effect of areal heterogeneity of soil hydraulic properties. Water Resour. Res. 2002, 38, 1286. [Google Scholar] [CrossRef]
- Assouline, S. Rainfall-induced soil surface sealing: A critical review of observations, conceptual models, and solutions. Vadose Zone J. 2004, 3, 570–591. [Google Scholar] [CrossRef]
- Mingxi, Y.; Yu, F.; Guanglu, L.; Yangyang, R.; Zefang, L.; Gangan, M. Microcharacteristics of soil pores after raindrop action. Soil Sci. Soc. Am. J. 2020, 84, 1693–1704. [Google Scholar] [CrossRef]
- Armenise, E.; Simmons, R.W.; Ahn, S.; Garbout, A.; Doerr, S.H.; Mooney, S.J.; Sturrock, C.J.; Ritz, K. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics. J. Hydrol. 2018, 556, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Assouline, S.; Mualem, Y. Modeling the dynamics of seal formation and its effect on infiltration as related to soil and rainfall characteristics. Water Resour. Res. 1997, 33, 1527–1536. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, L.; Gutierrez, L.; Jacob, A.; Marques, H.; Martınez-Fernandez, J.; et al. The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 1997, 29, 45–60. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, J.Y.; Tang, B.Z.; Cao, B.T.; Li, H. Response of runoff and soil erosion to erosive rainstorm events and vegetation restoration on abandoned slope farmland in the Loess Plateau region, China. J. Hydrol. 2020, 584, 124694. [Google Scholar] [CrossRef]
- Assouline, S.; Mualem, Y. Runoff from heterogeneous small bare catchments during soil surface sealing. Water Resour. Res. 2006, 42, W12405. [Google Scholar] [CrossRef] [Green Version]
- Ahn, S.-R.; Kim, S.-J. The effect of rice straw mulching and no-tillage practice in upland crop areas on nonpoint-source pollution loads based on HSPF. Water 2016, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.S.B.N.; Mustafa, F.B.; Gideon, D. A systematic review of soil erosion control practices on the agricultural land in Asia. Int. Soil Water Conserv. Res. 2020, 8, 103–115. [Google Scholar] [CrossRef]
- Andraski, B.J.; Mueller, D.H.; Daniel, T.C. Effects of tillage and rainfall simulation date on water and soil losses. Soil Sci. Soc. Am. J. 1985, 49, 1512–1517. [Google Scholar] [CrossRef]
- Carretta, L.; Tarolli, P.; Cardinali, A.; Nasta, P.; Romano, N.; Masin, R. Evaluation of runoff and soil erosion under conventional tillage and no-till management: A case study in northeast Italy. Catena 2021, 197, 104972. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Senciales, J.M.; Ramos, M.C.; Martínez-Casasnovas, J.A.; Lasanta, T.; Brevik, E.C.; Ries, J.B.; Ruiz-Sinoga, J.D. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 2017, 296, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Alagna, V.; Bagarello, V.; Di Prima, S.; Giordano, G.; Iovino, M. A simple field method to measure the hydrodynamic properties of soil surface crust. J. Agric. Eng. 2013, 44, 74–79. [Google Scholar] [CrossRef]
- Alagna, V.; Bagarello, V.; Cecere, N.; Concialdi, P.; Iovino, M. A test of water pouring height and run intermittence effects on single-ring infiltration rates. Hydrol. Process. 2018, 32, 3793–3804. [Google Scholar] [CrossRef]
- Di Prima, S.; Concialdi, P.; Lassabatere, L.; Angulo-Jaramillo, R.; Pirastru, M.; Cerdà, A.; Keesstra, S. Laboratory testing of Beerkan infiltration experiments for assessing the role of soil sealing on water infiltration. Catena 2018, 167, 373–384. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Seeger, M.; Iserloh, T.; González, J.M.S.; Ruiz-Sinoga, J.D.; Ries, J.B. Rainfall-simulated quantification of initial soil erosion processes in sloping and poorly maintained terraced vineyards—Key issues for sustainable management systems. Sci. Total Environ. 2019, 660, 1047–1057. [Google Scholar] [CrossRef]
- Bagarello, V.; Castellini, M.; Di Prima, S.; Iovino, M. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma 2014, 213, 492–501. [Google Scholar] [CrossRef]
- Lassabatere, L.; Angulo-Jaramillo, R.; Soria Ugalde, J.M.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan estimation of soil transfer parameters through infiltration experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Di Prima, S.; Iovino, M.; Bagarello, V. Improved beerkan run methodology to assess water impact effects on infiltration and hydraulic properties of a loam soil under conventional- and no-tillage. Soil Sci. Soc. Am. J. 2020. accepted author manuscript. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Tan, C.S.; Fox, C.A.; Yang, X.M. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma 2009, 152, 252–263. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Barca, E.; Iovino, M. Application of multivariate analysis techniques for selecting soil physical quality indicators: A case study in long-term field experiments in Apulia (southern Italy). Soil Sci. Soc. Am. J. 2019, 83, 707–720. [Google Scholar] [CrossRef] [Green Version]
- Ferrara, R.M.; Mazza, G.; Muschitiello, C.; Castellini, M.; Stellacci, A.M.; Navarro, A.; Lagomarsino, A.; Vitti, C.; Rossi, R.; Rana, G. Short-term effects of conversion to no-tillage on respiration and chemical-physical properties of the soil: A case study in a wheat cropping system in semi-dry environment. Ital. J. Agrometeorol. 2017, 1, 47–58. [Google Scholar]
- Manici, L.M.; Castellini, M.; Caputo, F. Soil-inhabiting fungi can integrate soil physical indicators in multivariate analysis of Mediterranean agroecosystem dominated by old olive groves. Ecol. Indic. 2019, 106, 105490. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Modugno, F. Sampled soil volume effect on soil physical quality determination: A case study on conventional tillage and no-tillage of the soil under winter wheat. Soil Syst. 2020, 4, 72. [Google Scholar] [CrossRef]
- Martínez-Mena, M.; Perez, M.; Almagro, M.; Garcia-Franco, N.; Díaz-Pereira, E. Long-term effects of sustainable management practices on soil properties and crop yields in rainfed Mediterranean almond agroecosystems. Eur. J. Agron. 2021, 123, 126207. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Tomaiuolo, M.; Barca, E. Spatial variability of soil physical and hydraulic properties in a durum wheat field: An assessment by the BEST-Procedure. Water 2019, 11, 1434. [Google Scholar] [CrossRef] [Green Version]
- Castellini, M.; Vonella, A.V.; Ventrella, D.; Rinaldi, M.; Baiamonte, G. Determining soil hydraulic properties using infiltrometer techniques: An assessment of temporal variability in a long-term experiment under minimum- and no-tillage soil management. Sustainability 2020, 12, 5019. [Google Scholar] [CrossRef]
- Rana, G.; Ferrara, R.M.; Mazza, G. A model for estimating transpiration of rainfed urban trees in Mediterranean environment. Theor. Appl. Climatol. 2019, 138, 683–699. [Google Scholar] [CrossRef]
- Holdridge, L.R.; Grenke, W.C.; Hatheway, W.H.; Liang, T.; Tosi, J.A. Forest Environments in Tropical Life Zones: A Pilot Study; Pergamon Press: Oxford, UK, 1971. [Google Scholar]
- van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Burdine, N.T. Relative permeability calculation from pore size distribution data. Petr. Trans. Am. Inst. Min. Metall. Eng. 1953, 198, 71–77. [Google Scholar] [CrossRef]
- Brooks, R.H.; Corey, T. Hydraulic Properties of Porous Media; Hydrology Paper 3; Colorado State University: Fort Collins, CO, USA, 1964. [Google Scholar]
- Haverkamp, R.; Debionne, S.; Viallet, P.; Angulo-Jaramillo, R.; de Condappa, D. Soil properties and moisture movement in the unsaturated zone. In The Handbook of Groundwater Engineering; Delleur, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 1–59. [Google Scholar]
- Minasny, B.; McBratney, A.B. Estimating the water retention shape parameter from sand and clay content. Soil Sci. Soc. Am. J. 2007, 71, 1105–1110. [Google Scholar] [CrossRef]
- Castellini, M.; Fornaro, F.; Garofalo, P.; Giglio, L.; Rinaldi, M.; Ventrella, D.; Vitti, C.; Vonella, A.V. Effects of no-tillage and conventional tillage on physical and hydraulic properties of fine textured soils under winter wheat. Water 2019, 11, 484. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, D.; Lassabatere, L.; Angulo-Jaramillo, R.; Deneele, D.; Legret, M. Hydrodynamic characterization of basic oxygen furnace slag through an adapted BEST method. Vadose Zone J. 2010, 9, 107. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M. Comparing alternative algorithms to analyze the Beerkan infiltration experiment. Soil Sci. Soc. Am. J. 2014, 78, 724–736. [Google Scholar] [CrossRef]
- Castellini, M.; Di Prima, S.; Iovino, M. An assessment of the BEST procedure to estimate the soil water retention curve: A comparison with the evaporation method. Geoderma 2018, 320, 82–94. [Google Scholar] [CrossRef]
- Angulo-Jaramillo, R.; Bagarello, V.; Di Prima, S.; Gosset, A.; Iovino, M.; Lassabatere, L. Beerkan Estimation of soil transfer parameters (BEST) across soils and scales. J. Hydrol. 2019, 576, 239–261. [Google Scholar] [CrossRef]
- Bagarello, V.; Di Prima, S.; Iovino, M.; Provenzano, G.; Sgroi, A. Testing different approaches to characterize Burundian soils by the BEST procedure. Geoderma 2011, 162, 141–150. [Google Scholar] [CrossRef]
- Or, D.; Ghezzehei, T.A. Modeling post-tillage soil structuraldynamics: A review. Soil Till. Res. 2002, 64, 41–59. [Google Scholar] [CrossRef]
- Arshad, M.A.; Franzluebbers, A.J.; Azooz, R.H. Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil Till. Res. 1999, 53, 41–47. [Google Scholar] [CrossRef]
- Auteri, N.; Bagarello, V.; Concialdi, P.; Iovino, M. Testing an adapted beerkan infiltration run for a hydrologically relevant soil hydraulic characterization. J. Hydrol. 2020, 584, 124697. [Google Scholar] [CrossRef]
- Alagna, V.; Bagarello, V.; Di Prima, S.; Iovino, M. Determining hydraulic properties of a loam soil by alternative infiltrometer techniques. Hydrol. Process. 2016, 30, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Aiello, R.; Bagarello, V.; Barbagallo, S.; Consoli, S.; Di Prima, S.; Giordano, G.; Iovino, M. An assessment of the Beerkan method for determining the hydraulic properties of a sandy loam soil. Geoderma 2014, 235–236, 300–307. [Google Scholar] [CrossRef]
- Castellini, M.; Stellacci, A.M.; Mastrangelo, M.; Caputo, F.; Manici, L.M. Estimating the soil hydraulic functions of some olive orchards: Soil management implications for water saving in soils of Salento Peninsula (southern Italy). Agronomy 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
L | M | H | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter (Units) | Soil | n | Mean | CV (%) | n | Mean | CV (%) | n | Mean | CV (%) |
θs (cm3 cm−3) | NT | 8 | 0.511 | 5.1 | 11 | 0.519 | 5.4 | 12 | 0.523 | 5.6 |
n (-) | 8 | 2.151 | 0.1 | 11 | 2.150 | 0.1 | 12 | 2.150 | 0.2 | |
m (-) | 8 | 0.070 | 1.8 | 11 | 0.070 | 2.0 | 12 | 0.070 | 2.1 | |
|hg| (cm) | 8 | 6.4 | 40.7 | 11 | 10.4 | 33.3 | 12 | 11.8 | 19.0 | |
θs (cm3 cm−3) | MT | 12 | 0.533 | 6.7 | 12 | 0.533 | 6.7 | 12 | 0.533 | 6.7 |
n (-) | 12 | 2.149 | 0.2 | 12 | 2.149 | 0.2 | 12 | 2.149 | 0.2 | |
m (-) | 12 | 0.069 | 2.6 | 12 | 0.069 | 2.6 | 12 | 0.069 | 2.6 | |
|hg| (cm) | 12 | 4.8 | 33.7 | 12 | 8.4 | 20.1 | 12 | 8.2 | 27.5 | |
n, sample size; CV, coefficient of variation; L, low runs; M, intermediate runs; H, high runs; NT, no-tillage; MT, minimum tillage. |
Minimum Tillage | No-Tillage | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
L | BD | RFC | AC | Pmac | BD | RFC | AC | Pmac | |||
BD | 1 | BD | 1 | ||||||||
RFC | 0.5116 | 1 | RFC | 0.6038 | 1 | ||||||
AC | −0.8538 | −0.8831 | 1 | AC | −0.7861 | −0.9667 | 1 | ||||
Pmac | −0.7525 | −0.9450 | 0.9842 | 1 | Pmac | −0.7223 | −0.9806 | 0.9924 | 1 | ||
M | BD | RFC | AC | Pmac | BD | RFC | AC | Pmac | |||
BD | 1 | BD | 1 | ||||||||
RFC | 0.1942 | 1 | RFC | 0.2779 | 1 | ||||||
AC | −0.8210 | −0.7188 | 1 | AC | −0.5507 | −0.9548 | 1 | ||||
Pmac | −0.6416 | −0.8729 | 0.9637 | 1 | Pmac | −0.3541 | −0.9871 | 0.9681 | 1 | ||
H | BD | RFC | AC | Pmac | BD | RFC | AC | Pmac | |||
BD | 1 | BD | 1 | ||||||||
RFC | −0.1332 | 1 | RFC | 0.1662 | 1 | ||||||
AC | −0.5488 | −0.7543 | 1 | AC | −0.7048 | −0.8157 | 1 | ||||
Pmac | −0.2689 | −0.9131 | 0.9478 | 1 | Pmac | −0.5116 | −0.9118 | 0.9604 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellini, M.; Stellacci, A.M.; Sisto, D.; Iovino, M. The Mechanical Impact of Water Affected the Soil Physical Quality of a Loam Soil under Minimum Tillage and No-Tillage: An Assessment Using Beerkan Multi-Height Runs and BEST-Procedure. Land 2021, 10, 195. https://doi.org/10.3390/land10020195
Castellini M, Stellacci AM, Sisto D, Iovino M. The Mechanical Impact of Water Affected the Soil Physical Quality of a Loam Soil under Minimum Tillage and No-Tillage: An Assessment Using Beerkan Multi-Height Runs and BEST-Procedure. Land. 2021; 10(2):195. https://doi.org/10.3390/land10020195
Chicago/Turabian StyleCastellini, Mirko, Anna Maria Stellacci, Danilo Sisto, and Massimo Iovino. 2021. "The Mechanical Impact of Water Affected the Soil Physical Quality of a Loam Soil under Minimum Tillage and No-Tillage: An Assessment Using Beerkan Multi-Height Runs and BEST-Procedure" Land 10, no. 2: 195. https://doi.org/10.3390/land10020195
APA StyleCastellini, M., Stellacci, A. M., Sisto, D., & Iovino, M. (2021). The Mechanical Impact of Water Affected the Soil Physical Quality of a Loam Soil under Minimum Tillage and No-Tillage: An Assessment Using Beerkan Multi-Height Runs and BEST-Procedure. Land, 10(2), 195. https://doi.org/10.3390/land10020195