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Abstract: In recent years, agroforestry has gained increasing attention as an option to simultane-
ously alleviate poverty, provide ecological benefits, and mitigate climate change. The present study
simulates small-scale farmers’ agroforestry adoption decisions to investigate the consequences for
livelihoods and the environment over time. To explore the interdependencies between agroforestry
adoption, livelihoods, and the environment, an agent-based model adjusted to a case study area
in rural Indonesia was implemented. Thereby, the model compares different scenarios, includ-
ing a climate change scenario. The agroforestry system under investigation consists of an illipe
(Shorea stenoptera) rubber (Hevea brasiliensis) mix, which are both locally valued tree species. The
simulations reveal that farmers who adopt agroforestry diversify their livelihood portfolio while
increasing income. Additionally, the model predicts environmental benefits: enhanced biodiversity
and higher carbon sequestration in the landscape. The benefits of agroforestry for livelihoods and
nature gain particular importance in the climate change scenario. The results therefore provide policy-
makers and practitioners with insights into the dynamic economic and environmental advantages of
promoting agroforestry.

Keywords: agroforestry adoption; agent-based modelling; socioecological systems; ecosystem ser-
vices; sustainable rural development; climate change; Indonesia

1. Introduction

Agriculture is an ubiquitous interaction between humans and the environment and
affects more natural resources than any other human activity [1,2]. As the world’s pop-
ulation grows, the agricultural sector experiences increasing pressure to produce higher
quantities of food [3–6]. As a response to the rising demand for food, agriculture is intensi-
fied, which can result in soil quality deterioration, and expanded to forest landscapes [7–9].
The consequent deforestation causes loss of biodiversity and regulating ecosystem func-
tions, and thereby aggravates the vulnerability of ecological systems [10,11]. Furthermore,
climate change exacerbates this ecological vulnerability and threatens agricultural pro-
ductivity due to rising temperatures, drought-related stress, and changes in precipitation
patterns [12,13]. Hence, producing food for a growing population while combating climate
change at the same time poses a major challenge for agriculture and requires sustainable
agricultural practices such as organic farming, sustainable intensification, agroecology, and
nature-inclusive agriculture [14–17].

Another sustainable agricultural practice is agroforestry [18]. The Food and Agricul-
ture Organization (FAO) defines agroforestry as the “use of trees and shrubs as part of
an agricultural system” [19]. Agroforestry presents a promising approach to protect agri-
cultural production and enhance farmers’ resilience to climate risks, especially in tropical
regions, because it offers numerous economic and environmental benefits [6,12,20–22]. As
a mixed tree-crop practice, agroforestry provides ecosystem services such as generation of
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food and non-food products, regulation of nutrient and hydrological cycles, prevention
of soil erosion, and carbon sequestration [23–27]. The emerging benefits of agroforestry
affect the small-scale level up to regional and even global scales [28]. As a result, synergies
between ecosystem service provision and income opportunities make agroforestry sys-
tems a powerful solution to simultaneously counteract deforestation, protect livelihoods,
alleviate poverty, and mitigate climate change [28–31]. Yet, despite the diverse benefits
highlighted by research, in many regions agroforestry adoption by small-scale farmers
remains low [32].

A number of studies have investigated the determinants leading to agroforestry
adoption in developing countries. According to the literature, socio-economic household
characteristics such as gender, education, household size, wealth, and farm size influence
adoption [33–35]. Famers’ risk aversion and time preference also impact implementa-
tion [36–38]. Further determinants include topography [39], biophysical factors like soil
fertility [40], and country-specific effects [41], which indicates the importance of institu-
tions who provide extension services and access to information and materials [42–44].
Subsequent to agroforestry adoption by farmers, further studies have contributed to the
literature by investigating tree, soil, and crop interactions either through agroforestry
experiments on-farm and on-station [45,46] or via simulations [26,47] showing either com-
petitive, complementary, or balanced interaction between trees and crops. Complementing
purely econometric or biophysical studies, a few applications combine behavioral and
ecological aspects of agroforestry adoption. Addressing both individual decision making
and environmental aspects, Magcale-Macandog et al. (2007) implemented the companion
modelling approach to investigate the effects of market information, neighbors, and the
establishment of a tree seedling nursery on agroforestry adoption in the Philippines [48].
Villamor et al. (2013) applied the land-use dynamic simulator for spatial-temporal sim-
ulations of coupled human-landscape systems to examine the effectiveness of payments
for ecosystem services to keep rubber agroforests from conversion into monoculture plan-
tations in Indonesia [49]. In contrast, Smajgl et al. (2015) use agent-based simulations to
assess outcomes of payment for ecosystem services to encourage conversion of rubber
monoculture to rubber agroforestry in China [50]. Suwarno et al. (2018) developed an
agent-based model to explore how different forest moratorium policies impact land-use
decisions and resulting area under agroforestry in Indonesia [51]. Overall, many studies
point out the high potential for sustainable development related to trees on farms, but
the majority of these studies employ econometric approaches or focus on biophysical
processes. Research taking the dynamic interplay between individual adoption decisions
and their environment or larger temporal and spatial scales into account remains limited.
Yet medium- and long-term research integrating ecological and behavioral components to
investigate the synergies and trade-offs of agroforestry adoption over time is essential for
sustainable land management [18,41,52,53].

To contribute to a better understanding of environmental and economic interrelations
of agroforestry systems, this study provides a simulation model of agroforestry adoption
that links behavioral and environmental system dynamics under climate change. Specif-
ically, the model investigates: (1) small-scale farmers’ agroforestry adoption decisions;
(2) their consequences for livelihoods; and (3) their effects on biodiversity and carbon
sequestration over time and space. The model aims to support policy-makers and practi-
tioners to assess the potential of agroforestry as an option to strengthen local livelihoods
and simultaneously mitigate climate change. As a decision support tool, the model is
designed to raise awareness and motivate policy makers to provide supporting measures
to increase agroforestry adoption. The research is adjusted to a case study in rural West
Kalimantan, Borneo, Indonesia. The study area is located within a corridor between two
national parks, which are considered biodiversity-hotspots [54]. In this remote region,
traditional jungle rubber systems and rice in shifting cultivation prevails. However, the
government promotes the transition to rubber monoculture, creating pressure on the tradi-
tional way of life of the indigenous communities. At the same time, the threat of land use
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change due to encroachment of rubber and oil palm monocultures has been highlighted
for years (see for example [55–58]). According to calculations by Barnes et al. (2014), the
transition to rubber and oil palm monocultures has serious consequences for biodiversity
and ecosystem functioning [56]. In addition to agricultural intensification and expansion,
the loss of forest and native species, as well as climate change, aggravate the local farmers’
vulnerability [59–61]. Thus, timely interventions are needed to support preferred local
livelihoods and increasing income at the same time. Therefore, the present analysis fo-
cuses on agroforestry systems combining illipe nut (Shorea stenoptera Burk) and rubber
(Hevea brasiliensis (Willd. ex A.Juss.) Müll.Arg.) trees [62]. Whereas rubber plants are
widely established in the area, cultivation of illipe nut trees in these agroforestry systems
poses a noteworthy addition to the local agricultural systems in West Kalimantan [63,64].
The tengkawang tree (Shorea stenoptera) of the Dipterocarpaceae family, which the Interna-
tional Union for Conservation of Nature has listed as near threatened and which occurs
naturally in that area, offers the potential to generate cash income (selling raw nuts or
oil extracted from them) and provides various ecosystems services such as biomass ac-
cumulation and carbon sequestration [62,65]. Additionally, the high forest canopy cover
connects forest habitats and thereby enables movement of local flagship species such as the
orangutan [66–68]. Thus, illipe rubber agroforests gain particular appeal in the study area
to conserve biological diversity, but also to mitigate and adapt to the mentioned challenges
prevailing in the area. To explicitly model the decision-making process of small-scale
farming households and connect human and ecological dynamics over larger spatial and
temporal scales, we developed an agent-based model (ABM). The implemented ABM com-
pares different scenarios. The first scenario describes the agricultural practices prevalent in
the study area, which focus on rice cultivation in swidden agricultural systems and jungle
rubber cultivation, without any intervention (business as usual (BAU) scenario). The BAU
scenario is compared to a scenario where illipe nut trees and rubber are developed into
agroforestry as an innovative alternative that offers potential for additional income and
livelihood diversification. Furthermore, a climate change scenario with a rise in temper-
ature of 1.5 ◦C was simulated consistent with the climate targets according to the Paris
Climate Agreement, which is expected under the Representative Concentration Pathway
2.6 [69,70]. The simulations demonstrate that farmers who decide to adopt agroforestry
increase their income while diversifying their livelihood portfolio. Additionally, the model
predicts higher biodiversity levels and improved carbon sequestration in the landscape as
a consequence of agroforestry adoption. The benefits of agroforestry for livelihoods and
nature will gain particular importance if temperatures rise.

The remainder of this paper is structured as follows: Section 2 describes the study area
and data, followed by the outline of the ABM; Section 3 presents the findings; Section 4
discusses the simulations results; and Section 5 summarizes and concludes the paper.

2. Materials and Methods

2.1. Study Site

The research is based on a case study in Kapuas Hulu regency, West Kalimantan,
Indonesia (Figure 1). Batang Lupar district in Kapuas Hulu was selected as a study site
because it represents a landscape that is still traditionally managed, and its Leboyan River
watershed directly impacts the Danau Sentarum National Park wetlands. Located in
close proximity to the equator, the regional climate exhibits equatorial characteristics with
high amounts of rainfall throughout the year (average of 4154 mm per year) and a mean
temperature of 27.2 ◦C [71]. Due to the diverse forest types and their roles for the hydrology
of the Kapuas River basin, the Danau Sentarum National Park (south) and Betung Kerihun
National Park (north of the study area) were established [63,72].



Land 2021, 10, 385 4 of 31

Land 2021, 10, x FOR PEER REVIEW 4 of 33 
 

The inhabitants consist in large part of Dayak ethnic groups in the hilly interior, 
whose livelihoods are traditionally swidden agriculture systems, and Malay along the riv-
ers and in the wetlands, who live mainly on fisheries [73]. Like elsewhere in Southeast 
Asia, rice plays a central element for local livelihoods as a subsistence crop, and the Dayak 
traditionally practice slash and burn cyclic agriculture to grow rice [74]. Rubber was first 
introduced in Borneo at the beginning of the 20th century and was adopted rapidly by 
farmers [75]. For generating cash income and as a safety net, rubber remains very popular 
in the study area [63,76]. Despite a positive trend in recent years, low education levels and 
poor infrastructure persist in the area, and with a Human Development Index of 67.65 in 
2019 the study area belongs to the less developed provinces in Indonesia [63,72,73,77]. 
Given the traditionally close link to agriculture, the challenged livelihood situation, and 
the location in the buffer zone between two national parks, agroforestry systems pose a 
promising approach to create economic development and protect natural resources in 
Kapuas Hulu [63,78]. 

 
Figure 1. Study area. Source: own illustration based on Geographic Information System (GIS) data. 

2.2. Data 
Within Batang Lupar district, ten settlements consisting of at least ten households 

were randomly chosen for the study. Within each settlement, all households were selected 
for the survey, comprising a total sample of 139 households interviewed, out of which one 
had to be excluded from the analysis due to missing data. The socioeconomic survey took 
place in the period from May until September 2014. The interview contained segments on 
demographics, assets, financials, food security, agricultural activities, use of natural re-
sources, and social networks, amongst other [72]. Furthermore, remote sensing data for 
the year 2014 and data describing the landscape collected using an unmanned aerial ve-
hicle (UAV) for the years 2016 and 2017 were collected [72]. Ecological indicators to esti-
mate biodiversity and carbon sequestration include tree species biomass, and species rich-
ness and Fisher’s alpha, which is a logarithmic series model to describe the number of 
species and the number of individuals within those species independent of sample size, 
for trees and bird species richness [72,79]. The data collection was based on equally-strat-
ified sampling of the vegetation units in the study area. To investigate tree biodiversity, 
plots (20 m × 20 m) were laid out, recording trees with Ø ≥ 5cm for each vegetation type. 
The bird survey, which took place in November and December 2016, included point count 
recordings and mist net monitoring [72]. Further details regarding data collection and cal-
culation of the biodiversity and carbon indicators can be found in Laumonier et al. (2020). 

2.3. Agent-based model 
An agent-based model was adjusted to the case study area. The following section, 

which describes the model, follows the Overview, Design concepts, Details (ODD) proto-
col [80–82]. The model was implemented using NetLogo 6.1.1 [83]. 
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The inhabitants consist in large part of Dayak ethnic groups in the hilly interior, whose
livelihoods are traditionally swidden agriculture systems, and Malay along the rivers
and in the wetlands, who live mainly on fisheries [73]. Like elsewhere in Southeast Asia,
rice plays a central element for local livelihoods as a subsistence crop, and the Dayak
traditionally practice slash and burn cyclic agriculture to grow rice [74]. Rubber was first
introduced in Borneo at the beginning of the 20th century and was adopted rapidly by
farmers [75]. For generating cash income and as a safety net, rubber remains very popular
in the study area [63,76]. Despite a positive trend in recent years, low education levels and
poor infrastructure persist in the area, and with a Human Development Index of 67.65
in 2019 the study area belongs to the less developed provinces in Indonesia [63,72,73,77].
Given the traditionally close link to agriculture, the challenged livelihood situation, and
the location in the buffer zone between two national parks, agroforestry systems pose
a promising approach to create economic development and protect natural resources in
Kapuas Hulu [63,78].

2.2. Data

Within Batang Lupar district, ten settlements consisting of at least ten households
were randomly chosen for the study. Within each settlement, all households were selected
for the survey, comprising a total sample of 139 households interviewed, out of which one
had to be excluded from the analysis due to missing data. The socioeconomic survey took
place in the period from May until September 2014. The interview contained segments
on demographics, assets, financials, food security, agricultural activities, use of natural
resources, and social networks, amongst other [72]. Furthermore, remote sensing data
for the year 2014 and data describing the landscape collected using an unmanned aerial
vehicle (UAV) for the years 2016 and 2017 were collected [72]. Ecological indicators to
estimate biodiversity and carbon sequestration include tree species biomass, and species
richness and Fisher’s alpha, which is a logarithmic series model to describe the number of
species and the number of individuals within those species independent of sample size, for
trees and bird species richness [72,79]. The data collection was based on equally-stratified
sampling of the vegetation units in the study area. To investigate tree biodiversity, plots
(20 m × 20 m) were laid out, recording trees with Ø ≥ 5 cm for each vegetation type. The
bird survey, which took place in November and December 2016, included point count
recordings and mist net monitoring [72]. Further details regarding data collection and
calculation of the biodiversity and carbon indicators can be found in Laumonier et al. (2020).

2.3. Agent-Based Model

An agent-based model was adjusted to the case study area. The following section,
which describes the model, follows the Overview, Design concepts, Details (ODD) proto-
col [80–82]. The model was implemented using NetLogo 6.1.1 [83].
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Purpose
The Simulating Agroforestry Adoption in Rural Indonesia (SAFARI) model is used

to explore the adoption of illipe rubber agroforestry systems by farming households in a
case study region in rural Indonesia. Thereby, the ABM simulates the interdependencies
of agroforestry systems and local livelihoods, income, land use, biodiversity, and carbon
sequestration. The model contrasts development paths without agroforestry (BAU), corre-
sponding to prevalent practices in the study area, to a scenario that introduces an illipe nut
tree (Shorea spp.) mix with rubber in an agroforestry system (IRA scenario) as an alternative.
It aims to support policymakers to assess the potential of IRA over larger temporal and
spatial scales.

State variables and scales
The SAFARI model comprises two agent types: farming households and landscape

patches. The farming households are the primary decision-making units in the model. They
are characterized by state variables indicating their location, household size and resulting
energy requirement, labor force, and further variables related to their agricultural activities
as displayed in Table 1. Livelihood indicators show whether the households engaged
in rice or jungle rubber farming, agroforestry cultivation, and illipe processing. The
variable food-insecure indicates whether a household has failed to meet its minimal energy
requirement. Income indicates household wealth. Decision making follows a bounded
rationality approach including a satisficing heuristic based on if-then-else statements.

Table 1. Model description: farmer agent variables.

Variable Description

HHID Identifier of household
Initial-laborforce Initial labor force, based on household size

Available-laborforce Available labor force after livelihood decision, considers labor input for livelihoods
chosen

Farmsize Total farm size
NumberPlots Number of plots

My-plots Set of plots claimed by household
Plots_cultivated Plots cultivated by household

Fallow_plots Fallow plots claimed by household
Plots_rice Number of plots with rice

Plots_rubber Number of plots with jungle rubber
Plots_AF Number of plots with agroforestry

RiceFarmer 1 if household cultivates rice, 0 otherwise
RubberFarmer 1 if household cultivates jungle rubber, 0 otherwise
IllipeFarmer 1 if household cultivates agroforestry, 0 otherwise

Illipeprocessor 1 if household processes illipe nuts, 0 otherwise
Illipeharvest Illipe nuts harvested (in kg)

iEnergyRequirement Auxiliary variable to calculate initial energy requirement of household
EnergyRequirement Energy requirement of household

EnergyConsumption Expected energy consumption resulting from agriculture cultivated in previous
and current period

RiceConsumption Expected energy consumption from rice
RubberIncome Expected income from jungle rubber
IllipeAFIncome Expected income from illipe nuts in agroforestry systems

RubberAFIncome Expected income from rubber in agroforestry systems
AFincome Expected total income from agroforestry

IllipeIncomeProcessed Expected income from illipe nuts processed
aEnergyConsumption Actual total energy consumption (total)

aRiceConsumption Actual energy consumption from rice
aRubberIncome Actual income from jungle rubber
aIllipeAFIncome Actual income from illipe in agroforestry systems

aRubberAFIncome Actual income from rubber in agroforestry systems
aAFIncome Actual total income from agroforestry

aIllipeIncomeProcessed Actual income from processed illipe
Income Total income in Mio Indonesian rupiah (IDR)

Food-insecure 1 if household did not meet energy requirements, 0 otherwise
Deficit Caloric deficit
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Landscape patches, the other agent type, represent the spatial environment of the
model. They describe the land use and resulting vegetation cover as Table 2 presents.
Based on patch class, vegetation, fallow age, and the resulting fertility are derived. Fertility
is used as an input to calculate yields. Associated to the specific uses, patch variables
indicate carbon sequestration and biodiversity indicators, namely tree species richness,
tree Fisher’s alpha, tree density and basal area, as well as bird richness. The agents
are parameterized according to survey and GIS data as well as ecological indicators.
One patch agent represents an area of 100 × 100 m resulting in a total area of about
28 × 44 km covered.

Table 2. Model description: landscape agent variables.

Variable Description

Owner Household claiming ownership
Plotid Plot identifier according to survey

Class
Land use class (natural forest, secondary forest, old fallow,

young fallow, rice and weeds, rice, jungle rubber, illipe nut trees
(Shorea spp.) mix with rubber in an agroforestry system (IRA)

Vegetation Plot vegetation
Fallowlength Indicates age of fallow

Fertility Auxiliary variable to calculate yield
Yield Rice yield, depends on fertility

Rubber Indicates if rubber trees are planted on patch and age of trees
Illipe Indicates if illipe nut trees are planted on patch and age of trees

Patch_alpha Tree Fisher’s alpha
Patch_basal Basal area

Patch_tree_richness Tree richness
Patch_density Tree density
Bird_richness Species richness of birds

Biomass Above-ground biomass in C Mg/patch
Vegetastipatch Land cover according to GIS data

River Indicates location of rivers
River-prox Indicates patch proximity to a river

Nationalpark Indicates location of national parks

Process overview and scheduling
The model proceeds in annual time steps, and simulations were run for 60 years, with

40 repetitions for each scenario. Within each time step, six modules are processed in the
order corresponding to Figure 2. Within each module, the agents conduct the respective
processes in a random order.
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Design concepts
Basic principles: Given the limited cognitive abilities of humans, farming households

are assumed to follow a satisficing approach based on the concept of bounded rational-
ity [84,85]. The landscape patches follow transition rules and are impacted by the farmers’
land use decisions.

Emergence: Livelihood decisions determine land use, which in turn influences the
development of land cover and future livelihood decisions. Thus, landscape dynamics
emerge from the interaction between patches and farming households.

Adaptation: Farming households adapt by taking past agricultural decisions and their
subsequent situation in the present into account when deciding about livelihoods to fulfill
caloric requirements.

Fitness: Fitness-seeking is modelled as the objective to fulfil caloric needs as part of
a satisficing procedure. As a secondary objective, households invest the excess labor to
generate cash income.

Sensing: Farming households know their own characteristics such as household
labor, agricultural activities, and so on. Furthermore, they are aware of the land use and
which patch has been claimed by a household. Households also know about the labor
requirements of each agricultural activity and market prices of the outputs.

Interaction: Interaction between households takes place indirectly through competition
for land.

Stochasticity: Agents perform the procedures in random order. The location of claimed
plots contains stochastic elements. The initialization procedure comprises random elements
with respect to the location of farms, initial cultivation of rice and rubber, vegetation, fallow
length, and hence fertility, whose initialization values are drawn from random distributions.

Observation: The main simulation outcomes computed every time step include liveli-
hood choices, income generation, land cover, carbon sequestration, and biodiversity indi-
cators. Regarding the latter, bird species richness and Fisher’s alpha for trees signify the
respective biodiversity levels. Additional biodiversity indicators reflecting further aspects
of biodiversity include tree density, basal area, and tree species richness.

Initialization
The farming households are initialized according to a household survey. Specifically,

their original farm size, number of (cultivated and fallow) plots, labor force, and location
are directly derived from the survey data and are thus household-specific. Locations of
plots are assigned randomly, but within a certain radius that corresponds to maximum
distances between households and plots derived from the survey. Cultivation of rice and
jungle rubber is probabilistic with likelihoods corresponding to the share of households
engaging as indicated in the survey (23% and 76%, respectively). Other land uses originate
from GIS data. The setup of the biodiversity and carbon indicators is based on local
data collection [86] as presented in Table 3. Fallow age is random and corresponds with
vegetation. Fertility equals the fallow age.

Input
Data input is used for the initialization of the model; household survey data indicates

household composition and energy requirements as described in Table 1. GIS data provide
information to setup the landscape agents [86]. The input for the biodiversity indicators
and carbon sequestration origins from data collection on site [72]. Further inputs used
include costs and benefits of the livelihood activities. The labor inputs originate from
Suyanto et al. (2009). Labor inputs for trees are adjusted to account for the duration until
trees reach maturity; accordingly, rubber is assumed to require 52 labor days per person
per hectare in the first year, 26 in the years 2–5, and 99 afterwards as input [87]. Illipe nut
trees are assumed to require the same amount of labor input as rubber trees. However,
after illipe nut trees mature at the age of eight, 99 labor days per person per hectare are
only required every four years, when the illipe nut trees can be harvested. In the other
years, 26 labor days per person per hectare are assumed to be required for maintenance.
20 labor days per person are assumed as input for illipe nuts processing. Whereas for rice a
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yield function following Jepsen et al. (2006) is used, annual outputs for rubber and illipe
rubber system follow Winarni et al. (2017) and Wulan et al. (2006) [62,88,89]. Furthermore,
rice is assumed to provide 1650 kcal per kg. The cost of 1 kg of rice is 10,000 IDR, and the
price for rubber is 6500 IDR per kg according to the survey and Winarni et al. (2017) [62].
Illipe nuts cost 7000 IDR per kg [62,90]. Regarding processing, about 5 kg of raw illipe nuts
yield up to 1 kg fat, which can be sold for about 100,000 IDR [91].

Table 3. Model description: landscape agents’ setup.

Vegetation Class Setup

Natural forest

Vegetation: uniformly distributed between 20 and 40
Basal area: 3.75

Tree Fisher’s alpha: 50.487
Tree density: 81
Tree richness: 91

Biomass: 36.7
Bird richness: 81a

Secondary forest

Vegetation: uniformly distributed between 20 and 40
Basal area: 3.53

Tree Fisher’s alpha: 35.3
Tree density: 96
Tree richness: 85
Biomass: 7.4335
Bird richness: 68

Old fallow

Vegetation: uniformly distributed between 10 and 20
Basal area: 0.75

Tree Fisher’s alpha: 18.38
Tree density: 67.5
Tree richness: 39
Biomass: 0.8119
Bird richness: 69

Young fallow

Vegetation: uniformly distributed between 2 and 10
Basal area: 0.25

Tree Fisher’s alpha: 10.91
Tree density: 48.5
Tree richness: 25

Biomass: 0.2
Bird richness: 57

Rice + weeds

Vegetation: 1
Basal area: 0

Tree Fisher’s alpha: 0
Tree density: 0
Tree richness: 0

Biomass: 0
Bird richness: 1

Rice

Vegetation: 0
Basal area: 0

Tree Fisher’s alpha: 0
Tree density: 0
Tree richness: 0

Biomass: 0
Bird richness: 1
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Table 3. Cont.

Vegetation Class Setup

Jungle rubber

Basal area: 2
Tree Fisher’s alpha: 25.48

Tree density: 54.7
Tree richness: 69

Biomass: 9.8
Bird richness: 49

Illipe rubber agroforestry

Basal area: 2.7
Tree Fisher’s alpha: 39.74

Tree density: 132
Tree richness 60

Biomass: 13
Bird richness: 60

Submodels
Calculate energy requirements
As the first step of each simulation run, the households calculate their energy require-

ments based on the household size in adult equivalents [92]. For every adult equivalent,
a minimum consumption corresponding to the average caloric consumption (1935 kcal
per person per day) from Kalimantan in 2015 [93] as the aspired consumption threshold is
assumed. During the same step, variables such as energy consumption are reset to zero.

Calculate expected harvest
Then, households estimate their expected harvest. Households may have engaged in

agricultural cultivation in previous seasons and take the expected yields into consideration
for their livelihood decisions in the current year. This includes rice from swidden fields
in the second year as well as rubber and illipe nut yields. Thereby, mature illipe nut trees
can be harvested only every four years, whereas rubber in the agroforestry systems can be
harvested every year once the trees mature. Rice yields are calculated following a yield
function of Jepsen et al. (2006) calibrated to the study region

y =
a

1 + b ∗ exp(−c ∗ x)
(1)

with a = 783.7, b = 8.07, c = 0.52, and x = fertility [88]. During the second year of swidden
agriculture, the rice yield is assumed to be 50% of first-year-yields. Because the farmers
anticipate these yields, they plan accordingly and allocate labor to the respective harvesting
activities, which is thus subtracted from the available labor force.

Livelihood decisions
Based on expected harvest, households make decisions about additional livelihood

activities in the current period. Given the cost of searching and comparing alternative
actions combined with limited cognitive and computational abilities of humans, a bounded
rationality approach including a satisficing heuristic was applied to simulate farmer deci-
sion making [84,94]. A decision tree represents decision making as a series of if-then-else
statements, as illustrated in Figure 3. The baseline scenario considers rice and jungle
rubber, which are the main livelihood activities in the study area. The respective decisions
depend on caloric needs and resource availability. Farming households prioritize to fulfill
their caloric needs, which represents the aspiration threshold, through rice planting before
engaging in market production of rubber [95,96]. If the households have claimed available
plots, they choose to plant rice on the plot with the longest fallow age, which represents
a preference for clearing secondary fallow over primary forest [97]. Only if no such plot
exists, then the household decides to clear an unclaimed plot through slash and burn,
located within a radius of six kilometers, to plant rice there. The household continues
planting rice until the caloric needs are expected to be satisfied. The maximum area for
clearing unclaimed areas is set to four hectares per period. Once the harvest meets the
caloric requirements, the households check whether they have more labor available. If that
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is the case, they engage in rubber tapping and maintenance. If still more labor is available,
they decide to plant additional jungle rubber as a cash crop. The maximum amount of
rubber is restricted to 1.2 ha, in line with survey results.
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Figure 3. Model description: livelihood decision tree (business as usual (BAU) scenario).

Extending the baseline scenario, farmers have the option to additionally plant illipe
trees mixed with rubber agroforestry on their plots on riverbanks as an option to generate
cash income (Figure 4). First, they harvest illipe nuts if it is possible in that season. Then,
consistent with the baseline scenario, households aim to fulfill caloric requirements through
swidden agriculture on already claimed or newly cleared plots. When the expected yields
suffice to ensure food security, rubber has been tapped, and more labor is available, the
households check whether they have fallow plots in proximity to a river available. If they
do not, they plant jungle rubber on another plot. If they do, they cultivate IRA on that plot.
If still more labor is available to the household during an illipe nut harvesting season, they
process the illipe nuts into fat.

Harvest
After household decisions are made, the households harvest their plots. As the illipe

nut tree produces yield approximately every four years depending on weather conditions,
illipe nut harvest is assumed to occur every four years for all trees simultaneously [98].
In contrast, rubber (jungle rubber or as part of IRA) can be harvested every year. The
households accumulate the calories and cash income generated from their livelihood
activities. If a household is not able to produce the required calories, it is marked as
food insecure.

Update of variables and charting
Update of the farmers includes the number of farmers who chose the respective

livelihoods, mean caloric consumptions, and income. Furthermore, number of plots
claimed, fallow plots and plots cultivated, total farm size, and the share of plots with
agroforestry are updated. Besides, the number of landscape agents with the various
vegetation classes, mean biodiversity indicators of the patches, and carbon sequestered
according to the land use are calculated.

Vegetation transition
As the last step of the modelling cycle, the vegetation classes undergo transition

dependent on their fallow age and use according to the swidden agriculture cycle (Figure 5).
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Figure 5. Model description: landscape patches’ cycle of swidden agriculture.

Before farmers can cultivate plots, they need to clear them through slash and burn
activities. Rice planted on cleared (swidden) fields also provides yield in the second year
after planting, when weeds grow on the fields as well. In the consecutive periods, the
fields lay fallow to regenerate their fertility until the farmers decide to clear and cultivate
them again. During that fallow period, plots transition from young fallow to old fallow to
secondary forest unless they are cleared (Table 4). Also patches with forest vegetation can
be cleared for rice cultivation through slash-and-burning.
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Table 4. Model description: vegetation class transition of landscape agents.

Vegetation Class Transition into

Rice Rice + weeds
Rice + weeds Young fallow (up to 10 years)
Young fallow Old fallow (11–20 years)

Old fallow Secondary forest (>20 years)

To represent the fertility and vegetation on the swidden fields, fallow age, vegetation,
and fertility increase by one during every time step except when the plot is cleared. In that
case, fallow age and vegetation are reset to zero. Only fertility, whose maximum value is
restricted to 12, is not reset until the harvest is completed because it is needed to calculate
the yield since fertility improves output. For vegetation, a maximum of 30 is assumed.
With increasing fallow length and change in vegetation, the biodiversity indicators are also
modified, corresponding to the respective land use as indicated in Table 3. Lastly, rubber
trees exceeding the age of 25 are assumed to die and be replaced. Illipe trees can reach the
age of 99 years, which is longer than the simulated time span and thus is not considered in
this context.

Climate change scenario
Extending the model, a climate change scenario (CCS) was introduced. This scenario

simulates a pathway consistent with the climate goals of the Paris Climate Agreement to
restrict temperature rise to 1.5 ◦C above preindustrial levels [70]. This stringent mitigation
scenario corresponds to the temperature change expected under Projected Concentration
Pathway 2.6 [69]. In the model, the resulting change in temperatures is assumed to lead to
decreases in rice yields of 12.6% [99].

Calibration
Regarding livelihood choices, the model parameters were adjusted according to the

survey data. The spatial landscape is based on GIS data and ecological indicators collected
in the study area. The calibration of the yield function is based on UAV data. As the UAV
data comprises information for the several years, the first year was used for calibration,
whereas the validation used the following period.

Verification and validation
Verification to assess the accuracy of the programmed model was carried out through

a careful scan of the model code. Verification further included the testing of certain cases
such as extreme points [100]. Validation to demonstrate the model’s consistency with the
intended application was based on the indirect calibration approach [101]. First, patterns
regarding the livelihood portfolio, e.g., rice and rubber cultivation, which the model aimed
to reproduce, were defined. Then, the model modules including the decision-making
processes and vegetation transition were developed according to stakeholder and expert
opinions. Third, the empirical evidence on the livelihood patterns provided through the
survey and UAV data was used to restrict the parameter space and initial conditions (see
calibration). Besides, the decision rules were evaluated. Comparing the model outputs
with collected land cover data demonstrates only minor deviations between simulated
and observed data (land cover with rice and rubber patches around 1% and 5% deviation,
respectively). The adjusted model was then used to derive further insights [101].

Data analysis
The analysis of simulation results includes the comparison of scenarios with and

without IRA. Additionally, a climate change scenario is contrasted to a scenario without
temperature rises. The scenarios were compared by applying t-tests using Stata 14.2 [102].
To check for robustness, Wilcoxon-Mann-Whitney-tests were also performed.

3. Results

The following chapter presents the descriptive findings of the survey and simulation
results related to farmers’ adoption and income, land use change, and ecological indicators.
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3.1. Descriptive Results

The subsequent section presents selected descriptive findings of the study area. In
line with official statistics [103], the survey results show that high poverty, low education
levels, subsistence farming (mainly rice), and rubber cultivation for cash income prevail in
the study area.

About 36% of the household heads, who are predominantly male, are unable to read
and write, and about 75% of household heads did not receive education after primary
school. Most of the households have an acceptable food consumption score, about 24%
fall into the category of borderline food security, and 1% suffer from poor food security.
Regarding the household dietary diversity score, households on average reported a score
of 13.40. The yearly household income of 9,503,805 IDR corresponds to approximately 690
US Dollars per year. The Progress out of Poverty Index of 82.73 denotes the likelihood of
a household living on less than 2.50 US-Dollars per day. Income diversification is rather
low, as the average Simpson index of income diversification of 0.25 shows with about 70%
of the households relying on one income source exclusively. In that area, all households
heavily depend on agriculture for their livelihood, as the high proportion of income from
farming shows (Table 5).

Table 5. Descriptive results: general household characteristics.

Variable Description

Household size 4.55 (2.26)
Labor capacity 3.66 (1.80)

Share of farm income (in %) 74.59 (28.98)
Years of schooling of household head 4.38 (4.10)

Age of household head 46.85 (14.09)

Note: Standard deviation in parentheses. n = 138.

On average, farmers claim 14.45 hectare of land distributed over approximately seven
plots, out of which about one third are cultivated (Table 6). Nearly all of the plots are
owned without an official title (98%). The majority of households (76%) engage in rubber
cultivation. Livestock is not common in the area, as over 70% of the households report no
livestock, and the average ownership amounts to 0.07 tropical livestock units.

Table 6. Descriptive results: agricultural characteristics.

Variable Description

Average claimed land size (in hectare) 14.45 (16.18)
Average number of plots claimed 7.19 (4.82)

Average plot size (in hectare) 1.93 (2.27)
Average distance to the house (in meters) 2871.80 (3058.82)

Average number of plots cultivated 2.41 (1.94)
Share of households cultivating rubber (in %) 75.64

Note: Standard deviation in parentheses.

3.2. Simulation Results

The following section presents the simulation results of the SAFARI model, which
compares the business as usual and illipe rubber agroforestry scenario as well as the climate
change scenario.

3.2.1. Agroforestry Adoption and Income Effects

One main simulation outcome is the farmers’ livelihood choice. The simulations
demonstrate that hill rice farming plays an essential role for the population, as illustrated
in Figure 6. Conforming with the decision-making heuristic, all farmers cultivate rice on
fallow plots in the BAU scenario. However, if the opportunity to adopt IRA exists, only
88% of the farmers engage in rice cultivation as part of a swidden agricultural system,
which poses a significant difference between the IRA and the BAU scenarios (p = 0.000). In
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addition to rice, rubber as a cash crop is an integral part of the rural farming livelihoods.
Again, in line with the decision heuristic, all farmers engage in jungle rubber farming in
the BAU scenario, but significantly fewer farmers (69%) plant jungle rubber in the IRA
scenario (p = 0.000). With respect to agroforestry, the IRA scenario exhibits high adoption
rates with 99.6% of the farmers implementing IRA to generate additional cash. Thereby, the
majority of farmers reduce their labor input for rice and jungle rubber cultivation in favor
of the illipe tree mixed with rubber type of agroforestry implementation. They still engage
in swidden agriculture and agroforestry simultaneously to create diversified livelihood
portfolios. Particularly, in the years before the first agroforestry harvest and in the periods
when illipe nuts cannot be harvested, farmers increase their labor input for rice cultivation.
According to the simulations, 27% of farmers who cultivate IRA process illipe nuts into fat
in the years of harvest.
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Based on the farmers’ livelihood decisions, the simulations reveal changes in rice
consumption and cash income (Figures 7 and 8). As IRA adopters reduce their labor input
for rice cultivation, the calories available through rice cultivation decrease significantly
from 2121 kcal available per person per day on average in the BAU scenario to 1009 kcal in
the IRA scenario (p = 0.000). In contrast, cash income greatly increases in the IRA scenario
compared with the BAU scenario (p = 0.000), enabling farmers to buy rice for example.
Thereby, illipe nuts from agroforestry contribute to income to the largest extent with 84%
and with a positive trend over time, as Figure 8 shows the development for the years 1–20,
21–40, and 41–60. The notable difference in incomes gives an indication about the potential
of agroforestry to increase wealth and alleviate poverty. Generally, food insecurity is not a
severe problem.
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3.2.2. Land Use Changes

In accordance with the farmers’ livelihood choices, the land use and land cover shift.
Subsequently, the area under illipe rubber agroforestry rises strongly in the IRA scenario up
to 27.8% of the whole area (p = 0.000). In contrast, the area under jungle rubber cultivation is
replaced and decreases from 5.5% in the BAU to less than 1% in the IRA scenario (p = 0.000).
Also, the area under rice decreases significantly from 7.9% in the BAU scenario by more
than half in the IRA scenario (p = 0.000). The changed land use in the IRA scenario allows
the farmers to increase the fallow age of their swidden agriculture plots, which is reflected
by the proportionally lower number of young fallow plots (p = 0.000) in the IRA scenario,
but relatively higher number of old fallow plots (p = 0.000). The longer fallow periods in
the agroforestry scenario affect plot fertility positively (p = 0.000), which in turn enhances
rice yields. Secondary forest covers about 58.3% of the land in the BAU scenario and
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significantly decreases to 48.9% if agroforestry is introduced (p = 0.000). The area under
natural forest cover amounts up to about 12.2% and does not differ significantly between
the BAU and IRA scenarios (p = 0.9948). Figure 9 illustrates that the strongest change takes
place shortly after introducing agroforestry, but also long-term effects can be expected.
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3.2.3. Effects on Biodiversity Conservation and Carbon Sequestration

In addition to livelihood choices and land cover, the model simulates ecosystem
changes. The simulations indicate that agroforestry provides a range of environmental
benefits. Agroforestry adoption and the related changes of land use significantly improve
biodiversity. Specifically, Fisher’s alpha increases by 18% (p = 0.000) in the IRA scenario, and
bird richness rises by 4% (p = 0.000), as illustrated in Figure 10. Biodiversity is particularly
high in native and secondary forests, but also agroforests maintain a comparatively high
level of biological diversity. In contrast, biodiversity is rather low in rice plots. The results
of tree species richness, tree density, and basal area confirm the results and are presented
in the Appendix A.
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In addition to biodiversity, the SAFARI model also simulates changes in aboveground
biomass and hence carbon sequestered in the landscape. The results reveal that carbon
fixed in the IRA scenario significantly exceeds the amount sequestered in the BAU scenario
by 25% (p = 0.000) with a positive trend over the years as displayed in Figure 11. Land uses
with high biomass and thus carbon sequestration potential include natural and secondary
forests as well as agroforests, but jungle rubber plots also store a certain amount of carbon.
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3.2.4. Climate Change Scenario

Complementing the baseline scenario with constant temperatures, the model further
simulates a climate change scenario with a temperature rise of 1.5 ◦C. As a result of the in-
creased temperatures and consequently reduced rice yields in the CCS, farmers adapt their
livelihood choices. Whereas the total number of rice and jungle rubber farmers remains
constant in the BAU scenario, farmers react by adjusting the extent to which they engage in
these livelihoods. In the BAU scenario, farmers expand their rice production (p = 0.000) at
the cost of jungle rubber cultivation, which consequently declines (p = 0.000), thus shifting
their focus away from cash crops to subsistence agriculture as a response to climate change.
Yet, the expansion of rice cultivation does not compensate for the yield reduction, and
overall climate change results in less calories provided through rice cultivation in the
BAU scenario (p = 0.000). When the option of agroforestry exists, the simulations indicate
that farmers react to climate change by also increasing their rice production (p = 0.000),
but do not fully compensate yield reduction lowering overall calorie availability from
rice cultivation as well (p = 0.0013). Simultaneously, farmers expand the share of land
under agroforestry (p = 0.0121) and slightly more farmers establish agroforestry systems
(p = 0.7825). Consequently, income from cash crops is significantly higher in the IRA sce-
nario compared with the BAU scenario under climate change (p = 0.000), implying that
agroforest expansion poses a coping strategy towards climate change.

Rising temperatures and the resulting changes in livelihoods and land use also have
environmental consequences. Biodiversity declines due to climate change and resulting
livelihood decisions as shown by significant reductions in Fisher’s alpha for trees (BAU:
p = 0.000; IRA: p = 0.0050) and bird richness (BAU: p = 0.0000; IRA p = 0.000). Although
climate change affects biodiversity negatively, the simulations predict significantly higher
biodiversity levels in the IRA scenario than in the BAU scenario (p = 0.000 for Fisher’s alpha,
p = 0.000 for bird richness). Hence, adjusted livelihood choices due to climate change cause
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lower biodiversity, but agroforests play an important role in conserving biological diversity,
especially under climate change. The other biodiversity indicators basal area, tree density,
and tree species richness confirm the results that climate change reduces biodiversity due
to land use changes in both scenarios, but less so in the agroforestry scenario. Carbon
sequestration remains constant in the IRA scenario compared to the BAU scenario, despite
rising temperatures (p = 0.9330). Appendix A contains illustrations of these results.

4. Discussion

The following section discusses the simulation results regarding adoption rates and
income development, land use change, biodiversity conservation, and carbon sequestration.

4.1. Agroforestry Adopters Diversify and Increase Their Income

The simulation results demonstrate high IRA adoption rates amongst farmers. While
combining it with jungle rubber and rice cultivation, farmers integrate illipe nut and rubber
agroforestry into their livelihood portfolios. Although agroforestry has a higher net present
value and cost benefit ratio than swidden agriculture [104], preserving shifting cultivation
as an additional livelihood option offers certain advantages; traditional subsistence farming
ensures access to the respective commodities and poses a strategy for protecting livelihoods
from price fluctuations [87,105]. Besides, combining annual food crops such as rice with
agroforestry can bridge the relatively long investment period associated with trees [96,106].
The simulations show that farmers rely on rice cultivation for consumption in the time
before the first agroforestry harvest and, to some extent, in the periods when illipe nuts
cannot be harvested. Furthermore, subsistence farmers who engage in agroforestry di-
versify their risk and thus enhance their resilience, as the climate change scenario also
demonstrates [96].

The simulation results of the IRA scenario further indicate strong increases in cash income
as a result of agroforestry adoption. Several studies highlight that financial outcomes are
major benefits of agroforestry, motivating farmers to plant trees on their farms [41,43,107,108].
Agroforestry may even lift poor households out of the poverty cycle [43]. Other studies point
out that agroforestry further impacts food security, either indirectly through increased income
or directly through self-consumption [3,4,109]. As illipe nuts and rubber are cash crops, they
provide additional income sources for rural farmers that can be utilized to improve food
security, for example to overcome rice shortages [18,110]. However, illipe nut trees do not
flower every year, which limits their income generation potential [98]. Yet, during harvest
season, yields are abundant, and in non-harvest years, farmers can profit from the rubber
planted in the agroforestry systems [62,98]. According to the simulation results, the positive
income effect of agroforestry prevails over several decades and even increases in the long-term.
Overall, synergies between rice farming and agroforestry in a diversified portfolio contribute
to long-term livelihood improvement and poverty alleviation.

4.2. Illipe Rubber Agroforestry Replaces Jungle Rubber and Rice Cultivation and Thereby
Impacts Deforestation

The simulation results regarding land use give an indication of how farmers’ agro-
forestry adoption transforms the landscape. According to the results, the area covered by
agroforests significantly increases. In contrast, jungle rubber and rice farming become less
popular as land uses in the IRA scenario. While agricultural activities and rice cultivation
are significant drivers of tropical deforestation [9,61,111], agroforestry can offer high poten-
tial to reduce forest loss [3,23]. If agroforests are established on fallow land, as in our site,
they rehabilitate formerly forested open land [112]. Furthermore, agroforestry adoption
indirectly impacts deforestation because agroforestry adopters clear less land than purely
swidden farmers [104]. Thus, although agroforests cover a relatively large share of the
landscape, the simulations show that the native forest area remains constant under the
IRA and BAU scenarios. Thereby, the results highlight the potential of agroforestry to
significantly enhance livelihoods without causing forest loss.
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4.3. Agroforestry Supports Biodiversity Conservation and Carbon Sequestration

With respect to biodiversity conservation, the model shows that agroforestry adop-
tion improves tree and bird biodiversity levels. Our results confirm several studies
which show that agroforestry protects biodiversity, as demonstrated by increased species
richness [67,113], species diversity [2,27,108,114], or species density [20,115]. Thereby,
biodiversity-supporting agroforests provide a high-quality habitat with stable conditions
outside formally protected areas [96,116]. Some authors argue that biodiversity levels
in tropical agroforests are comparable to native forest, although species composition dif-
fers [114,117]. However, our model suggests that the potential of agroforests to conserve
biodiversity is limited as they cannot fully replace native forests and habitats [20]. The
extent to which agroforestry systems conserve biodiversity possibly depends on their
structural and floristic characteristics and connectivity to natural forests. Consequently,
incorporating native forest trees with high canopy cover, such as the illipe nut tree, are
favorable to maintain high bird species richness for example [67,114]. Although agroforests
might not achieve the same level of species richness as forests and comprise distinguished
species compositions, these systems nevertheless result in greater biodiversity compared
with otherwise open land [67,116]. Accordingly, agroforestry implemented on former
fallow land as in our site affects biodiversity positively. Agroforests also indirectly ben-
efit biodiversity by reducing the need for conversion of forests into cropland [11,20,118].
Furthermore, by connecting areas of natural habitats, agroforestry plays a key role for biodi-
versity conservation in human-dominated landscapes [20,67,119]. In this way, agroforests
ensure persistence and movement of wild species across landscapes, and hence gain special
appeal in buffer zones or biological corridors such as the study area [20,67,116,117]. For
example, agroforests in Batang Lupar district can contribute to biodiversity conservation
through their canopy cover, which supports local orangutan species to move between the
adjacent national parks [66–68].

Additional to biodiversity, agroforestry adoption enhances long-term carbon seques-
tration in the landscape according to the model findings. The simulation results comply
with many studies which point out the high potential of agroforests to increase biomass and
thereby accumulate carbon leading to long-term climate mitigation [24,27]. Whereas Abbas
et al. (2017) find agroforestry to reach carbon levels comparable to natural forests, Matocha
et al. (2012) conclude that agroforests fix less carbon than primary forests. However, com-
pared with crop and grazing land use, whose carbon stocks are low, agroforestry systems
retain much higher quantities of carbon in above and belowground biomass [24,112]. Con-
sequently, similar to biodiversity conservation, net benefits of agroforestry may depend
on the location [112]. Agroforests implemented within forests may cause degradation, but
realize net benefits if cultivated on open land as an alternative to cropland, pasture, or fal-
low [112,120]. In addition to direct carbon sequestration, agroforestry poses an alternative
to agriculture, which is the second largest source of anthropogenic greenhouse gas emis-
sions [9,61,111]. Therefore, as agroforestry reduces the need for deforestation, shown by the
changed land use and cover according to the simulations, it also indirectly contributes to
carbon sequestration [24,120]. In sum, agroforestry poses a powerful pathway to conserve
biodiversity and mitigate climate change through carbon accumulation [3,23,24].

4.4. Agroforestry as a Means to Adapt to and Mitigate Climate Change

The simulations of the climate change scenario indicate that rising temperatures en-
danger agricultural production and farmers’ wealth with negative impacts on ecosystem
services. Several studies confirm that climate change is a significant and growing threat to
livelihoods and particularly food security [13,121,122]. The simulation results further show
that significantly higher incomes can be expected in the IRA scenario compared with the
BAU scenario under climate change. These results conform with other studies’ findings
that agroforests enhance the ability to adapt to market and climate shocks as diversification
through trees helps to spread risk [18,96]. This result gains special importance for subsis-
tence farmers in developing countries. These farmers are particularly vulnerable as they
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frequently lack assets and flexibility to cope with the impacts that climate change has on
agricultural productivity [121–123]. Hence the findings stress the importance of agroforests
like the illipe rubber mix as a safety net in the light of the ongoing climate change as
they contribute to increased income, risk diversification, and resilience for small-scale
farmers [18,96,106]

The simulations further demonstrate that climate change negatively affects biodiver-
sity, but higher levels can be expected in the IRA scenario, which again underlines the role
of agroforests in conserving biological diversity [67,113,115]. Besides, the positive effects
agroforestry has on carbon sequestration make this agricultural practice an attractive tool
for climate change mitigation [29,119,124]. Overall, by combining adaptation and mitiga-
tion measures, agroforestry poses a win-win-strategy for farmers and nature to address
major local and global environmental challenges including climate change mitigation and
poverty alleviation [6,23,29,120].

Although the model refers not only to the farm level, but also to the landscape level,
the application is adjusted to a specific case study. However, in many regions of the world,
context-specific agroforestry systems are being practiced or tested as a strategy for achieving
the UN-Sustainable Development Goals across the world’s production landscapes [125].
Case studies show, for example, the positive impacts of agroforestry serving as safety
nets for poor households [126], improving food security and income [127], providing
habitat for endangered species in corridors between protected areas [128], guaranteeing
ecosystem services such as erosion control [129], and conserving biodiversity [130]. Our
case study adds to the literature by confirming these positive effects on humans and the
environment in the long-run and under rising temperatures. In different contexts and
eco-regions, trees on farms have different functions, and tree composition therefore has to
be adapted to the specific problems to be addressed through integrating trees. Although
the illipe rubber agroforestry system is specifically adjusted to the context of the case study
and its promotion requires context-specific considerations, the general socio-economic
implications for policy-makers apply to other comparable regions and countries as well.

4.5. ABM as a Tool for Combining Human Decision Making and Environmental Dynamics

The present application demonstrates that agent-based models are eligible tools to
explore the complex and interlinked dynamics between environmental and human system
components over larger spatial and temporal scales. Hereby, a main advantage of ABMs
over other modelling techniques lies in the opportunity to explicitly model individual
decision making [131]. In the SAFARI model, farmers make livelihood decisions, which
impacts land cover and use. In turn, land use influences farmers’ decisions whether to
engage in additional agricultural activities. By coupling human behavior with natural
processes, ABMs can account for feedback and interdependencies between farmers and
their environment in social-ecological systems [132]. Furthermore, the ABM connects char-
acteristics and behaviors of individual agents to the system’s dynamics and structure [133].
For example, farmers’ decisions and interactions with the environment on the micro-level
shape environmental process such as biodiversity changes as well as the emerging land use
patterns on larger scales. Since ABMs do not impose assumptions on stationarity, linearity,
and homogeneity, they can cover a range of potential system states, including unlikely,
path-dependent, or emergent outcomes [134,135].

The present simulation, as well as the growing use of ABMs in policy in general, illus-
trate that ABMs can be advantageous instruments to assist intervention design. By creating
a virtual setting to conduct experiments, ABMs can investigate and compare policy options,
such as introducing and promoting IRA systems as an alternative to jungle rubber, and
explore possible future development paths that can be anticipated under different states
of the world, such as climate change scenarios, in a relatively cost-efficient way [133,136].
Accordingly, the SAFARI ABM allows the user to compare how agroforestry affects farmers’
livelihoods and the environment with and without climate change before actually com-
mencing to promote the innovation. Additionally, the SAFARI simulates developments
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over the long-term (sixty years) and considers effects across the landscape. However, ABMs
are not suitable to predict the future. Instead, they aim to identify possible and probable
development paths and unwanted or unintended consequences [133,135]. The present anal-
ysis shows that introducing IRA likely leads to a favorable development path that enhances
livelihoods and environmental outcomes. In this way, the present study demonstrates
how ABMs complement existing research and contribute to understanding the potential
of agroforestry to alleviate poverty, strengthen resilience, and mitigate climate change in
order to support development practitioners in designing innovation interventions.

4.6. Limitations and Future Research

The analysis presented here has several limitations. Our study incorporates a decision
heuristic accounting for food security, income generation, and resource availability, but
further factors may play a role in farmers’ adoption decisions. Investment considerations
and information availability can influence adoption [137,138]. Further determinants include
socio-economic characteristics as well as behavioral and psychological factors such as risk
attitude and time preference [139,140]. Because the present analysis only considers land
and labor constraints, other potential barriers such as unavailability of further inputs such
as seedlings are not taken into account. Required training to improve technical skills and
inputs for agroforestry implementation are assumed to be provided and hence do not
restrict adoption in our model. Furthermore, the support of stakeholder engagement to
encourage change and correspondingly a preference of IRA systems over jungle rubber
are assumed, but in reality, possible aversion to change and innovation might impose a
barrier to adoption. As a consequence, the simulations might overestimate implementation
until incentives are introduced to address the inhibiting factors, such as lack of credit
and markets for inputs, and behavioral preferences such as risk aversion or a lack of
willingness to innovate. The use of timber from the illipe nut trees is not considered in
this application, but may play a role as a motivating factor to adopt agroforestry [141].
Additionally, functioning markets for illipe nuts and products are assumed to exist, but in
practice marketing opportunities in the area are restricted through the remote location of
the villages. For simplification, the baseline decision heuristic was restricted to the main
livelihoods prevalent in the study area (rice and jungle rubber cultivation). Additionally,
illipe nut harvest season is assumed to occur every four years, but may depend on weather
conditions [142]. Due to a lack of data, it was not possible to include belowground biomass
and further ecosystem services such as soil enrichment, water cycling, or air quality.

These limitations can stimulate further research. Different decision-making processes
with additional livelihood options and accounting for behavioral aspects may be con-
sidered for further analysis. Future research should assess further ecosystem services
and the interaction between them, and how biodiversity impacts ecosystem services. As-
sessing other aspects of climate change such as droughts and changing rainfall patterns
applying empirically based simulation approaches will increase the understanding of
the potential of agroforestry for climate change mitigation. Besides, the SAFARI model
could be extended to explore additional policy options. In this context, demand for illipe
nuts could be included in the model to explore different marketing strategies aiming at
supporting local communities to realize economic profits while conserving biodiversity
through agroforestry.

5. Conclusions

The present paper explores how agroforestry adoption affects famers’ livelihoods,
land use, biodiversity, and carbon sequestration over time. To link behavioral and environ-
mental dynamics and compare different scenarios, an empirical agent-based model was
implemented and adjusted to a case study in rural Indonesia. By connecting individual
farmer decisions with ecological processes, the ABM demonstrates that agroforestry main-
tains native forests while significantly improving livelihoods, hence realizing advantages
on the household and landscape levels. The simulations show that when farmers decide to
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include illipe rubber agroforestry into their livelihood portfolios, they benefit from such
adoption through diversified and increased incomes. These valuable livelihood improve-
ments even intensify in the long-term. Moreover, the simulations confirm that agroforests
significantly contribute to biodiversity conservation and carbon sequestration. Especially
in the climate change scenario, agroforests gain importance due to strengthened farmers’
resilience as well as direct and indirect environmental benefits. Thus, the findings clearly
indicate that, compared with the existing agricultural practices, adopting such agroforestry
systems is advantageous for the small-scale farmers as well as the environment, and poses
a valuable alternative to rubber and oil palm monoculture. The findings provide policy
makers and development practitioners with insights into how the promotion of these
agroforestry systems can support climate change mitigation and adaptation, biodiver-
sity conservation, and poverty alleviation in developing countries in the long term. The
simulation results also imply that policy-makers should consider several aspects when
introducing IRA. Firstly, possible adoption barriers need to be removed, for example by
providing inputs and trainings through extension services. Secondly, policy-makers should
raise awareness of the economic and environmental benefits to stimulate demand for this
agricultural practice. Another option to increase investment into agroforestry could be the
financial compensation for environmentally friendly practices. Thirdly, attractive market-
ing opportunities are needed, possibly drawing upon international demand for illipe nuts
for cosmetics or as substitutes to palm oil. Although the illipe rubber agroforestry system
is adjusted to the Indonesian case study, the findings provide general socio-economic
implications that are of interest for other comparable regions and countries, and indicate
relevant upscaling possibilities.
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