Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin
Abstract
:1. Introduction
- What are the spatiotemporal patterns of the distribution of residential property transactions in Dublin over the last decade?
- Can residential property transaction data be used to identify neighborhood changes in the city?
- Which areas in the city have been attractive for real estate market activity?
2. Literature Review and Background
3. Materials and Methods
3.1. Data
3.2. Methodology
- Gi* is the spatial dependency of a variable at location i;
- n is all number of sampling points or property transactions;
- xj is the value of X at location j;
- wi,j is the weight value between properties i and j.
4. Results and Discussion
4.1. Results
4.2. Validation and Comparison of Results
5. Conclusions
- The housing market or housing price and the number of property transactions in Dublin are systematically influenced by macro factors of the national and European economy (e.g., Brexit) and global crises such as COVID-19. In the Irish context, the real estate market has been experiencing multiple crises and booming periods in the last decade and need effective housing policies [79].
- Spatiotemporal methods and techniques, especially STC, partitioning or reclassifying housing price and the number of property transactions, can reveal different urban spatial patterns and associated underlying socioeconomic processes at small areas and allow us to observe the effects of national and global crises and sociospatial (housing) policies. The study also shows that Dublin is experiencing intraurban displacement of the residential property transactions and citizens to more affordable regions of western areas, and we are observing increasing spatial inequality in Dublin as a result.
- Dublin is an old/aging city in terms of housing with relatively low numbers of houses being constructed. This attribute of the housing market needs more research and attention from urban managers and policy designers because the age of properties probably can have various unintentional consequences for all stakeholders and citizens in terms of energy consumption and maintenance cost [80]. Older properties usually do not have proper insulation and heating systems that are essential factors in energy consumption and budget [81].
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Pose, A.; Storper, M. Housing, urban growth and inequalities: The limits to deregulation and upzoning in reducing economic and spatial inequality. Urban Stud. 2019, 57, 223–248. [Google Scholar] [CrossRef]
- Shi, Q.; Dorling, D. Growing socio-spatial inequality in neo-liberal times? Comparing Beijing and London. Appl. Geogr. 2020, 115, 102139. [Google Scholar] [CrossRef]
- López-Morales, E.J. Real estate market, state-entrepreneurialism and urban policy in the ‘gentrification by ground rent dispossession’ of Santiago de Chile. J. Lat. Am. Geogr. 2010, 9, 145–173. [Google Scholar] [CrossRef]
- Shoup, D.C. The optimal timing of urban land development. Pap. Reg. Sci. Assoc. 1970, 25, 33–44. [Google Scholar] [CrossRef]
- McDonald, J.F.; McMillen, D.P. Urban Economics and Real Estate: Theory and Policy; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 9780470591482. [Google Scholar]
- Rabiei-Dastjerdi, H.; McArdle, G.; Matthews, S.A.; Keenan, P. Gap analysis in decision support systems for real-estate in the era of the digital earth. Int. J. Digit. Earth 2020, 14, 121–138. [Google Scholar] [CrossRef]
- Sdino, L.; Rosasco, P.; Torrieri, F.; Oppio, A. A Mass Appraisal Model Based on Multi-criteria Evaluation: An Application to the Property Portfolio of the Bank of Italy. In International Symposium on New Metropolitan Perspectives; Springer: Cham, Switzerland, 2018; pp. 507–516. [Google Scholar]
- Renigier-Biłozor, M.; Wisniewski, R.; Kaklauskas, A.; Biłozor, A. Rating Methodology for Real Estate Markets—Poland Case Study. Int. J. Strateg. Prop. Manag. 2014, 18, 198–212. [Google Scholar] [CrossRef] [Green Version]
- Cellmer, R.; Cichulska, A.; Bełej, M. Spatial analysis of housing prices and market activity with the geographically weighted regression. ISPRS Int. J. Geo-Inf. 2020, 9, 380. [Google Scholar] [CrossRef]
- Cellmer, R.; Cichulska, A.; Bełej, M. The Regional Spatial Diversity of Housing Prices and Market Activity–Evidence from Poland. Acta Sci. Pol. Adm. Locorum 2021, 20. [Google Scholar] [CrossRef]
- Coiacetto, E. Real estate development industry structure: Consequences for urban planning and development. Plan. Pract. Res. 2006, 21, 423–441. [Google Scholar] [CrossRef]
- Hartmann, P. Real Estate Markets and Macroprudential Policy in Europe. J. Money Credit Bank. 2015, 47, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Liow, K.H.; Webb, J.R. Common factors in international securitized real estate markets. Rev. Financ. Econ. 2009, 18, 80–89. [Google Scholar] [CrossRef]
- Michelsen, C.C.; Madlener, R. Homeowners’ preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany. Energy Econ. 2012, 34, 1271–1283. [Google Scholar] [CrossRef]
- Manco, G.; Baglioni, M.; Giannotti, F.; Kuijpers, B.; Raffaetà, A.; Renso, C. Querying and reasoning for spatiotemporal data mining. In Mobility, Data Mining and Privacy; Springer: Berlin/Heidelberg, Germany, 2008; pp. 335–374. [Google Scholar]
- Gurran, N.; Bramley, G. (Eds.) Urban Planning and the Housing Market: International Perspectives for Policy and Practice; Palgrave Macmillan: London, UK, 2017; ISBN 978-1-137-46403-3. [Google Scholar]
- Ratcliffe, J.; Stubbs, M.; Keeping, M. Urban Planning and Real Estate Development, 3rd ed.; Routledge: London, UK, 2009; ISBN 9780415450775. [Google Scholar]
- Yuan, F.; Wu, J.; Wei, Y.D.; Wang, L. Policy change, amenity, and spatiotemporal dynamics of housing prices in Nanjing, China. Land Use Policy 2018, 75, 225–236. [Google Scholar] [CrossRef]
- Oppio, A.; Bottero, M.; Dell’Anna, F.; Dell’Ovo, M.; Gabrielli, L. Correction to: Evaluating the Urban Quality through a Hybrid Approach: Application in the Milan (Italy) City Area. Comput. Sci. Appl. ICCSA 2020, 12253, C1. [Google Scholar]
- Saphores, J.-D.; Li, W. Estimating the value of urban green areas: A hedonic pricing analysis of the single family housing market in Los Angeles, CA. Landsc. Urban Plan. 2012, 104, 373–387. [Google Scholar] [CrossRef]
- Rahadi, R.A.; Wiryono, S.K.; Koesrindartoto, D.P.; Syamwil, I.B. Factors influencing the price of housing in Indonesia. Int. J. Hous. Mark. Anal. 2015, 8, 169–188. [Google Scholar] [CrossRef]
- Kellett, J.; Morrissey, J.; Karuppannan, S. The impact of location on housing affordability. In Proceedings of the 6th Australasian Housing Researchers’ Conference, Adelaide, Australia, 8–10 February 2012. [Google Scholar]
- Richardson, H.W. Regional and Urban Economics; Penguin: London, UK, 1978; ISBN 0140809309. [Google Scholar]
- Alonso, W. Location and Land Use. Toward a General Theory of Land Rent; Harvard University Press: Cambridge, MA, USA, 1964. [Google Scholar]
- Helbich, M.; Brunauer, W.; Vaz, E.; Nijkamp, P. Spatial heterogeneity in hedonic house price models: The case of Austria. Urban Stud. 2014, 51, 390–411. [Google Scholar] [CrossRef] [Green Version]
- Jackson, J.R. Intraurban variation in the price of housing. J. Urban Econ. 1979, 6, 464–479. [Google Scholar] [CrossRef]
- Buonanno, P.; Montolio, D.; Raya-Vílchez, J.M. Housing prices and crime perception. Empir. Econ. 2013, 45, 305–321. [Google Scholar] [CrossRef]
- Tita, G.E.; Petras, T.L.; Greenbaum, R.T. Crime and residential choice: A neighborhood level analysis of the impact of crime on housing prices. J. Quant. Criminol. 2006, 22, 299. [Google Scholar] [CrossRef]
- Grigsby, W.G.; Rosenburg, L.S. Urban Housing Policy; Transaction Publishers: Piscataway, NJ, USA, 2012; ISBN 1412850584. [Google Scholar]
- Rabiei-Dastjerdi, H.; Matthews, S.A. Who Gets What, Where, and How Much? Composite Index of Spatial Inequality at Small Area in Tehran. Reg. Sci. Policy Pract. 2021, 13, 191–205. [Google Scholar] [CrossRef]
- Jones, C.; Leishman, C.; MacDonald, C. Sustainable urban form and residential development viability. Environ. Plan. A 2009, 41, 1667–1690. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.; Burton, E.; Jenks, M. Achieving Sustainable Urban Form; Routledge: London, UK, 2000; Available online: https://www.routledge.com/Achieving-Sustainable-Urban-Form/Burton-Jenks-Williams/p/book/9780419244509 (accessed on 16 May 2021).
- Venables, A.J. Breaking into Tradables: Urban Form and Urban Function in a Developing City; The World Bank: Washington, DC, USA, 2017; ISBN 1813-9450. [Google Scholar]
- Xiao, Y.; Webster, C. Urban Morphology and Housing Market; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9811027625. [Google Scholar]
- Rabiei-Dastjerdi, H.; McArdle, G. Identifying Patterns of Neighbourhood Change Based on Spatiotemporal Analysis of Airbnb Data in Dublin. In Proceedings of the 4th International Conference on Smart Grid and Smart Cities (ICSGSC), Osaka, Japan, 18–21 August 2020; pp. 113–117. [Google Scholar]
- Bramley, G.; Leishman, C.; Watkins, D. Understanding neighbourhood housing markets: Regional context, disequilibrium, sub-markets and supply. Hous. Stud. 2008, 23, 179–212. [Google Scholar] [CrossRef]
- Ortalo-Magne, F.; Rady, S. Housing Market Fluctuations in a Life-Cycle Economy with Credit Constraints. 1998. Available online: https://ssrn.com/abstract=102933 (accessed on 16 May 2021).
- Benito, A. The down-payment constraint and UK housing market: Does the theory fit the facts? J. Hous. Econ. 2006, 15, 1–20. [Google Scholar] [CrossRef]
- Hay, C.; Smith, N. The story of a North Sea bubble: The strange demise of the Anglo-liberal growth model in the United Kingdom and Ireland. Eur. Political Sci. Rev. EPSR 2013, 5, 401. [Google Scholar] [CrossRef]
- De Visser, J. The Impact of a Full Premier League-Takeover on House Prices. Master’s Thesis, University of Groningen, Groningen, The Netherlands, 2021. [Google Scholar]
- Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; ISBN 1461214947. [Google Scholar]
- Getis, A.; Ord, J.K. The analysis of spatial association by use of distance statistics. In Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 127–145. [Google Scholar]
- Oliver, M.A.; Webster, R. Kriging: A method of interpolation for geographical information systems. Int. J. Geogr. Inf. Syst. 1990, 4, 313–332. [Google Scholar] [CrossRef]
- Aumond, P.; Can, A.; Mallet, V.; de Coensel, B.; Ribeiro, C.; Botteldooren, D.; Lavandier, C. Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. J. Acoust. Soc. Am. 2018, 143, 2847–2857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wackernagel, H. Ordinary Kriging. In Multivariate Geostatistics; Wackernagel, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 74–81. ISBN 978-3-662-03100-1. [Google Scholar]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989; p. 561. [Google Scholar]
- Van Beers, W.; Kleijnen, J. Kriging Interpolation in Simulation: A Survey. In Proceedings of the IEEE 2004 Winter Simulation Conference, Agent of Change, Washington, DC, USA, 5–8 December 2004; ISBN 0780387864. [Google Scholar]
- Hedley, N.R. Hagerstrand revisited: Interactive space-time visualizations of complex spatial data. Informatica 1999, 23, 155–168. [Google Scholar]
- ESRI. Create Space Time Cube from Defined Locations (Space Time Pattern Mining). Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/createcubefromdefinedlocations.htm (accessed on 16 May 2021).
- Andrienko, G.; Andrienko, N.; Demsar, U.; Dransch, D.; Dykes, J.; Fabrikant, S.I.; Jern, M.; Kraak, M.-J.; Schumann, H.; Tominski, C. Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 2010, 24, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- McLeod, A.I. Kendall Rank Correlation and Mann-Kendall Trend Test. R Package Kendall 2005. Available online: http://btr0x2.rz.uni-bayreuth.de/math/statlib/R/CRAN/doc/packages/Kendall.pdf (accessed on 16 May 2021).
- Hashim, H.; Wan Mohd, W.M.; Sadek, E.; Dimyati, K.M. Modeling urban crime patterns using spatial space time and regression analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W16, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Petrasova, A.; Hipp, J.A.; Mitasova, H. Visualization of pedestrian density dynamics using data extracted from public webcams. ISPRS Int. J. Geo-Inf. 2019, 8, 559. [Google Scholar] [CrossRef] [Green Version]
- Mazeikaite, G.; O’Donoghue, C.; Sologon, D.M. The Great Recession, financial strain and self-assessed health in Ireland. Eur. J. Health Econ. 2019, 20, 579–596. [Google Scholar] [CrossRef] [Green Version]
- Tuori, K.; Tuori, K. The Eurozone Crisis: A Constitutional Analysis; Cambridge University Press: Cambridge, UK, 2014; ISBN 1107729882. [Google Scholar]
- Healy, T. The Impact of Brexit on Ireland’s Housing Market; The Nevin Economic Research Institute: Dublin, Ireland, 2018. [Google Scholar]
- McGrath, P. Brexit and Likely Implications for Ireland. SSRN J. 2016. [Google Scholar] [CrossRef]
- Sorin, G.M.; Darker, C.; Whiston, L.; Donnelly-Swift, E.; Barry, J.; Kelly, B.D. Physical and Mental Health in Post-Recession Ireland: A Community Study; The Meath Foundation: Dublin, Ireland, 2018. [Google Scholar]
- Szczepańska, A.; Gościewski, D.; Gerus-Gościewska, M. A GRID-Based Spatial Interpolation Method as a Tool Supporting Real Estate Market Analyses. ISPRS Int. J. Geo-Inf. 2020, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Mitas, L.; Mitasova, H. Spatial interpolation. In Geographical Information Systems: Principles, Techniques, Management and Applications; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Simpson, G.; Wu, Y.H. Accuracy and effort of interpolation and sampling: Can GIS help lower field costs? ISPRS Int. J. Geo-Inf. 2014, 3, 1317–1333. [Google Scholar] [CrossRef] [Green Version]
- South Dublin County Council’s Online Consultation Portal. Lucan, Palmerstown & Adamstown. Available online: https://consult.sdublincoco.ie/en/consultation/south-dublin-county-development-plan-2022-2028-strategic-issues-consultation-booklet/chapter/lucan-palmerstown-adamstown (accessed on 19 April 2021).
- News, R. Quintain Gets Permission for 245 New Homes in Lucan. RTÉ [Online]. 16 July 2020. Available online: https://www.rte.ie/news/business/2020/0716/1153622-quintain-ireland-new-lucan-homes/ (accessed on 19 April 2021).
- Ongar, Dublin 15 Neighbourhood Guide—Information on Property, Local Amenities, Schools, Maps, Services and Transportation Links. Available online: https://www.myhome.ie/neighbourhood-guide/ongar/1438 (accessed on 19 April 2021).
- Adamstown Development Gross Value Is at €80 Million. Available online: https://www.echo.ie/show/article/adamstown-development-gross-value-is-at-80-million (accessed on 19 April 2021).
- Hesse, M.; Rafferty, M. Relational Cities Disrupted: Reflections on the Particular Geographies of COVID-19 for Small but Global Urbanisation in Dublin, Ireland, and Luxembourg City, Luxembourg. Tijdschr. Econ. Soc. Geogr. 2020, 111, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Moore-Cherry, N.; Bonnin, C. Playing with time in Moore Street, Dublin: Urban redevelopment, temporal politics and the governance of space-time. Urban Geogr. 2020, 41, 1198–1217. [Google Scholar] [CrossRef]
- Kelly, A.; Tjeur, C. The National Deprivation Index for Health & Health Services Research-Update 2013; Small Area Health Research Unit Department of Public Health & Primary Care Trinity College Dublin: Dublin, Ireland, 2013. [Google Scholar]
- Pratschke, J.; Haase, T. A longitudinal study of area-level deprivation in Ireland, 1991–2011. Environ. Plan. B Plan. Des. 2015, 42, 384–398. [Google Scholar] [CrossRef] [Green Version]
- Murray, S. Here Are the Towns in Ireland with the Highest Household Incomes. Available online: https://www.thejournal.ie/cso-malahide-4690048-Jun2019/ (accessed on 19 April 2021).
- Darker, C.; Whiston, L.; Long, J.; Donnelly-Swift, E.; Barry, J. Health Assets and Needs Assessment (HANA) Tallaght, 2014; Trinity College Dublin, Adelaide Health Foundation and Tallaght Hospital: Dublin, Ireland, 2014. [Google Scholar]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Van Ham, M.; Tammaru, T.; Ubarevičienė, R.; Janssen, H. Urban Socio-Economic Segregation and Income Inequality: A Global Perspective; Springer Nature: Basingstoke, UK, 2021. [Google Scholar]
- Desmond, M.; Shollenberger, T. Forced Displacement from Rental Housing: Prevalence and Neighborhood Consequences. Demography 2015, 52, 1751–1772. [Google Scholar] [CrossRef] [PubMed]
- Gomes, E.; Inácio, M.; Bogdzevič, K.; Kalinauskas, M.; Karnauskaitė, D.; Pereira, P. Future scenarios impact on land use change and habitat quality in Lithuania. Environ. Res. 2021, 197, 111101. [Google Scholar] [CrossRef]
- Uesugi, M. Changes in Occupational Structure and Residential Segregation in Tokyo. In Urban Socio-Economic Segregation and Income Inequality; Springer Nature: Basingstoke, UK, 2021; p. 209. [Google Scholar]
- Van Ham, M.; Tammaru, T.; Ubarevičienė, R.; Janssen, H. Rising inequalities and a changing social geography of cities. An introduction to the global segregation book. In Urban Socio-Economic Segregation and Income Inequality; Springer Nature: Basingstoke, UK, 2021. [Google Scholar]
- Ng, M.K.; Lau, Y.T.; Chen, H.; He, S. Dual Land Regime, Income Inequalities and Multifaceted Socio-Economic and Spatial Segregation in Hong Kong. In Urban Socio-Economic Segregation and Income Inequality; Springer Nature: Basingstoke, UK, 2021; p. 113. [Google Scholar]
- Kitchin, R.; Hearne, R.; O’Callaghan, C. Housing in Ireland: From crisis to crisis. SSRN Electron. J. 2015. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, T.; Andersson, S.; Sjögren, J.-U. Building energy parameter investigations based on multivariate analysis. Energy Build. 2009, 41, 71–80. [Google Scholar] [CrossRef]
- Dadzie, J.; Runeson, G.; Ding, G. Determinants of sustainable upgrade for energy efficiency—The case of existing buildings in Australia. Energy Procedia 2018, 153, 284–289. [Google Scholar] [CrossRef]
- Keely, R.; Lyons, R.C. Housing Prices, Yields and Credit Conditions in Dublin since 1945. J. Real Estate Financ. Econ. 2020. [Google Scholar] [CrossRef]
- Lisi, G. Property valuation: The hedonic pricing model–location and housing submarkets. J. Prop. Invest. Financ. 2019, 37, 589–596. [Google Scholar] [CrossRef]
- D’Amato, M.; Kauko, T. Advances in Automated Valuation Modeling; Springer International Publishing AG: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Del Giudice, V.; de Paola, P.; Francesca, T.; Nijkamp, P.J.; Shapira, A. Real estate investment choices and decision support systems. Sustainability 2019, 11, 3110. [Google Scholar] [CrossRef] [Green Version]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 9401577994. [Google Scholar]
- Osland, L. An application of spatial econometrics in relation to hedonic house price modeling. J. Real Estate Res. 2010, 32, 289–320. [Google Scholar] [CrossRef]
- Rabiei Dastjerdi, H. Making Invisible City Visible: A Solution for Mapping Hidden Socioeconomic Patterns in Tehran. Socio-Spatial Studies 2019, 3, 39–49. [Google Scholar] [CrossRef]
- Gneiting, T.; Ševčíková, H.; Percival, D.B. Estimators of fractal dimension: Assessing the roughness of time series and spatial data. Stat. Sci. 2012, 27, 247–277. [Google Scholar] [CrossRef]
- Eiter, T.; Mannila, H. Computing Discrete Fréchet Distance; Christian Doppler Laboratory for Expert Systems: Vienna, Austria, 1994. [Google Scholar]
- Sharma, K.P.; Pooniaa, R.C.; Sunda, S. Map matching algorithm: Curve simplification for Frechet distance computing and precise navigation on road network using RTKLIB. Clust. Comput. 2019, 22, 13351–13359. [Google Scholar] [CrossRef]
Postal Area | Date | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Grand Total | |
Dublin 1 | 83 | 97 | 424 | 597 | 1536 | 1568 | 381 | 366 | 309 | 315 | 165 | 5841 |
Dublin 2 | 21 | 20 | 71 | 124 | 188 | 197 | 205 | 117 | 98 | 80 | 35 | 1156 |
Dublin 3 | 143 | 153 | 238 | 261 | 346 | 395 | 289 | 282 | 306 | 282 | 177 | 2872 |
Dublin 4 | 160 | 194 | 559 | 488 | 569 | 556 | 794 | 492 | 462 | 449 | 267 | 4990 |
Dublin 5 | 139 | 170 | 245 | 221 | 279 | 292 | 278 | 305 | 292 | 338 | 186 | 2745 |
Dublin 6 | 160 | 181 | 367 | 393 | 458 | 506 | 489 | 484 | 474 | 380 | 225 | 4117 |
Dublin 6W | 167 | 122 | 193 | 253 | 425 | 347 | 273 | 233 | 245 | 219 | 139 | 2616 |
Dublin 7 | 232 | 177 | 422 | 451 | 688 | 678 | 624 | 493 | 501 | 581 | 338 | 5185 |
Dublin 8 | 159 | 137 | 303 | 371 | 499 | 606 | 432 | 442 | 447 | 416 | 238 | 4050 |
Dublin 9 | 292 | 252 | 485 | 542 | 751 | 841 | 684 | 584 | 609 | 743 | 348 | 6131 |
Dublin 10 | 44 | 49 | 108 | 96 | 107 | 119 | 116 | 112 | 107 | 111 | 71 | 1040 |
Dublin 11 | 75 | 67 | 243 | 230 | 205 | 338 | 225 | 264 | 265 | 276 | 153 | 2341 |
Dublin 12 | 218 | 207 | 338 | 364 | 392 | 448 | 445 | 410 | 409 | 441 | 269 | 3941 |
Dublin 13 | 150 | 115 | 213 | 348 | 428 | 361 | 310 | 309 | 338 | 329 | 194 | 3095 |
Dublin 14 | 218 | 222 | 364 | 386 | 469 | 498 | 431 | 522 | 494 | 405 | 275 | 4284 |
Dublin 15 | 343 | 263 | 547 | 688 | 834 | 1009 | 1020 | 1083 | 1028 | 994 | 485 | 8294 |
Dublin 16 | 177 | 140 | 310 | 330 | 451 | 553 | 474 | 355 | 379 | 390 | 194 | 3753 |
Dublin 17 | 66 | 54 | 152 | 144 | 236 | 209 | 195 | 148 | 127 | 128 | 72 | 1531 |
Dublin 18 | 158 | 120 | 345 | 361 | 665 | 748 | 444 | 411 | 394 | 318 | 205 | 4169 |
Dublin 20 | 56 | 57 | 112 | 106 | 132 | 162 | 137 | 135 | 134 | 168 | 84 | 1283 |
Dublin 22 | 425 | 241 | 454 | 523 | 796 | 706 | 651 | 620 | 856 | 833 | 516 | 6621 |
Dublin 24 | 282 | 165 | 375 | 535 | 617 | 843 | 585 | 671 | 696 | 849 | 411 | 6029 |
N County | 478 | 346 | 816 | 986 | 1762 | 2031 | 1449 | 1430 | 1518 | 1698 | 928 | 13,442 |
S County | 437 | 509 | 1089 | 1185 | 1433 | 1513 | 1250 | 1093 | 1023 | 972 | 607 | 11,111 |
Grand T | 4683 | 4058 | 8773 | 9983 | 14,266 | 15,524 | 12,181 | 11,361 | 11,511 | 11,715 | 6582 | 110,637 |
Trend | 2010–2011 | 2012–2015 | 2016–2017 | 2018 | 2019–2020 | 2010–2020 |
---|---|---|---|---|---|---|
Direction | Not Significant | Increasing | Not Significant | Increasing | Decreasing | Increasing |
Statistic | −0.85 | 6.99 | 0.39 | 3.34 | −4.74 | 3.16 |
p-value | 0.39 | 0.00 | 0.69 | 0.00 | 0.00 | 0.00 |
No | Name | Type of Neighborhood Change/ Spatial Characteristics | Reference |
---|---|---|---|
1 | Lucan | Recently developed | [62,63] |
2 | Ongar | Recently developed | [64] |
3 | Adamstown | Recently developed | [62,65] |
4 | Docklands | Gentrification | [66,67,68] |
5 | Malahide | Affluent area | [69,70] |
6 | Tallaght | Poverty and spatial segregation | [69,71] |
7 | Jobstown | Poverty and spatial segregation | [58] |
Class | Area (m2) | Price Range (000s EUR) | Min Z-Score | Max Z-Score | Range Z-Score | Mean Z-Score |
---|---|---|---|---|---|---|
1 | 55,190,000 | 161.16–286.14 | −1.82 | 8.01 | 9.83 | 4.87 |
2 | 73,320,000 | 286.14–375.86 | −2.85 | 8.00 | 10.85 | 4.04 |
3 | 66,770,000 | 375.86–478.40 | −1.88 | 8.00 | 9.88 | 2.90 |
4 | 51,320,000 | 478.40–629.00 | −1.43 | 7.20 | 8.63 | 2.55 |
5 | 23,540,000 | 629.00–978.29 | −0.32 | 6.34 | 6.66 | 1.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabiei-Dastjerdi, H.; McArdle, G. Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin. Land 2021, 10, 566. https://doi.org/10.3390/land10060566
Rabiei-Dastjerdi H, McArdle G. Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin. Land. 2021; 10(6):566. https://doi.org/10.3390/land10060566
Chicago/Turabian StyleRabiei-Dastjerdi, Hamidreza, and Gavin McArdle. 2021. "Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin" Land 10, no. 6: 566. https://doi.org/10.3390/land10060566
APA StyleRabiei-Dastjerdi, H., & McArdle, G. (2021). Novel Exploratory Spatiotemporal Analysis to Identify Sociospatial Patterns at Small Areas Using Property Transaction Data in Dublin. Land, 10(6), 566. https://doi.org/10.3390/land10060566