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Abstract: The total factor productivity (hereafter TFP) of grain production is important to achieve
balanced development, while environmental factors are an important part of TEP. In order to explore
the characteristics and patterns of the temporal and spatial evolution of the environmental total factor
productivity (hereafter ETFP), the Malmquist-Luerberger index, and the spatial autoregressive panel
(SAR panel) model were adopted to analyze the evolutionary rules and the influencing factors of
ETFP. In this study, we took Poyang Lake, one of China’s main grain production areas, as a study
area, and carried out empirical research based on grain production statistical data. The results show
that: (1) ETFP shows a growth trend with the increase of grain production from 2001 to 2017, and a
great potential for improvement exists. Moreover, from the perspective of time sequence evolution
and decomposition of ETFP, which belongs to the dual-track driver of environmental technical
efficiency and environmental technological progress, relevant technologies play an important role
in promoting the improvement of TEFP; (2) Given that the objective conditions of gain production
remain unchanged, the fact that the urbanization rate and average annual rainfall have a negative
effect on ETFP, the explanatory variables such as the business scale per worker, the proportion of grain
growing population, industrial agglomeration, the proportion of grain sown area and the average
annual temperature all play a positive role. Among the variables, the business scale per worker and
the proportion of grain growing population significantly affect ETFP at the 1% level. The average
annual rainfall, industrial agglomeration and the proportion of grain sown area significantly affect
the ETFP at the 5% level. The average annual temperature significantly affects the ETFP at the
10% level.

Keywords: grain production environment; total factor productivity; agriculture; malmquist-luerberger
index; efficiency evaluation

1. Introduction

Grain is an essential output of agriculture production. Having a sufficient grain sup-
ply is not only the material basis for human survival, but also an important guarantee
for national economic development, social harmony and stability, and national security.
The Chinese central government has issued a series of policies to support and encour-
age agriculture development. For example, the Chinese central government abolished
agricultural taxes and has granted grain subsidies to peasants planting grains since 2014,
which significantly increased the farmers’ enthusiasm and led to a steadily increase in
the grain output. Nowadays, China has a production capacity of 600 million tons per
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year, and the annual output per capita has exceeded 450 kg for seven consecutive years.
By 2018, China’s grain output reached 657.892 million tons (including 61,003.6 tons of
grains, 19.203 million tons of beans, and 28.654 million tons of potatoes) [1]. At the same
time, due to the shrinking of farmland regions, farmland quality decline, farmland restruc-
turing, as well as fallowing and uncultivated land, the grain sown area has been greatly
reduced in recent years and non-grain production has become more serious, thereby posing
a potential threat to food security to a certain extent [1]. With the rapid development of
the economy, agricultural non-point source pollution is becoming more and more serious
in the process of grain production. Taking chemical fertilizer as an example, the current
annual consumption of chemical fertilizer is 59.841 million tons, which has greatly harmed
the environment. In terms of water pollution, 97.15 million tons of inorganic nitrogen flows
into the Yangtze River, the Yellow River, and the Pearl River every year, 90% of which
comes from agricultural production [2]. Therefore, ensuring the safe and stable production
of food, improving the efficiency of food production under environmental constraints,
and optimizing the spatial distribution of food production will become the focus points of
China’s agricultural policy in the future.

A substantial body of literature on grain production efficiency focused on the research
methodologies and influencing factors of grain production efficiency. Scholars’ research
methodologies on grain production efficiency included parametric and nonparametric
methods. The parametric method is used to measure production efficiency by construct-
ing production frontier functions. In general, the most commonly used method is called
Stochastic Frontier Analysis (SFA). For example, Battese [3] measured the rice production
efficiency of India farmers based on SFA. This method has been widely used in the mea-
surement of grain production efficiency [4–6]. Compared with the parametric method,
the nonparametric method does not need to set the specific function form, thereby avoiding
errors in calculation results caused by the wrong selection of production functions. In the
field of efficiency evaluation, nonparametric methods are widely used [7–9]. Nonparamet-
ric methods include Data Envelopment Analysis (DEA) and Free Disposal Hull (FDH),
which belongs to the category of linear programming modeling. Production convexity
assumption is often added to the DEA method based on the constraints of the FDH method.
Among these methods, DEA is the most widely used mainstream one to measure grain
production efficiency, whereas the FDH method is used less [10,11]. The above measures
are based on traditional grain production efficiency. With the increasingly serious environ-
mental problems that are emerging, traditional efficiency research methods cannot meet the
needs of existing studies. For this reason, some scholars turned to studying problems such
as the agricultural non-point source pollution, industrial waste, and other environmental
issues to improve the traditional efficiency model scientifically and reasonably. The most
common DEA methods include the radial Directional Distance Function (DDF) and non-
radial Slack Based Measure (SBM) methods. DDF is a method that can deal with undesired
output, which has been extended by Chung [12] from different improved directions of
input and output on the basis of Shephard distance function and is widely used [13,14].
The SBM model was proposed by Tone in 2001. Compared with the DDF model, SBM has
the advantage of considering the redundancy of production factors. Therefore, the SBM
model is favored by many scholars [15].

Existing literature documented that grain production efficiency would be affected by
several factors such as natural factors, inputs for science and technology, human capital
investments, agricultural infrastructure construction, and agricultural policies. For ex-
ample, Kokic [16] analyzed the influencing factors of total factor productivity (hereafter
TFP) of grain production in Australia and found that land use intensity was one of the
key factors affecting the TFP of grain production under the conditions of certain water
supply levels, moreover, the influence of land use depended on soil fertility to a great
extent. Guyomard [17] measured the agricultural production efficiency of French farms by
the DEA method; the results showed that technological progress played a key role in im-
proving agricultural production efficiency. Armagan [18] analyzed the TFP of agricultural
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production in Turkey by using the DEA-Malmquist productivity index and found that
the backward technical level was one of the main factors that affected the decline of the
growth rate of agricultural TFP. Wouterse [19] found that a significant relationship existed
between labor transfer and the technical efficiency of grain production. By examining
the rice production efficiency in different areas of Bangladesh based on the stochastic
profit boundary and a low efficiency effect model, Rahman [20] indicated that the infras-
tructure construction was among the main reasons for the differences of rice production
efficiency in different areas. The aforementioned literature indicated that the construction
of agricultural infrastructure is an important part of the policy of increasing agricultural
output and guaranteeing grain yield [21]. Agricultural policy is another factor affecting
the development of agricultural production in a country. Rada [22] analyzed the effect of
agricultural policies on agricultural TFP based on agricultural census statistics in Brazil
and found that agricultural policies could promote agricultural TFP.

By taking Poyang Lake Basin as a study area, the current research aims to explore
the characteristics and patterns of the temporal and spatial evolution of TFP of grain pro-
duction using a framework includes environmental factors (hereafter ETFP). Furthermore,
this paper also aims to figure out the changing trend of ETFP among different counties
towards embracing modern forms regulation and control by using regulatory measures to
achieve the balanced development of ETFP and to avoid polarization in grain production
among counties. Thus, spatial geo-graphical factors were included in this spatial econo-
metric model. This model helps to determine the mechanism which underlies the effects
of the abovementioned influencing factors on ETFP. Combined with the changes of grain
production and the driving factors leading to these changes, this paper presents effective
policy suggestions on the optimization of the spatial distribution of grain production.
Improving the comprehensive grain production capacity of the Great Lake Basin is of
great theoretical and practical significance for the effective determination of the balance of
supply and demand grain production.

2. Materials and Methods
2.1. Study Area

Poyang Lake Basin, located in the middle and lower sections of the Yangtze River
Economic Belt in China, represents an essential part of the Yangtze River Basin (Figure 1).
The whole basin covers an area of roughly 1.62 × 105 km2. The basin located in Jiangxi
Province covers an area of 1.57× 105 km2; it therefore accounts for 96.9% of the entire basin
area and 93.9% of the land area of Jiangxi Province [23]. The basin area is highly consistent
with the jurisdiction of Jiangxi Province. Considering the high level of coincidence in
jurisdiction between Poyang Lake basin and Jiangxi Province as well as the integrity of
the data collected, the county (city, district) data of Jiangxi Province was applied in this
paper to study the environmental efficiency of grain production carried out in Poyang Lake
basin. It covers a total of 11 districts and cities, including Nanchang City, Jingdezhen City,
Pingxiang City, Jiujiang City, Xinyu City, Yingtan City, Ganzhou City, Ji’an City, Yichun
City, Fuzhou City, Shangrao City, etc., along with 100 counties within its jurisdiction, with a
total area of 1.67 × 105 km2. The whole territory is dominated by mountains and hills,
accounting for 36% and 42% of the total area covered by Poyang Lake basin respectively.
The surrounding areas are high in altitude, while the surrounded area is low in altitude,
with the topography shown to be inclined from outside to inside. It is mainly comprised of
five tributaries, which are Ganjiang River, Xinjiang River, Rao River, Fuhe River, and Xiu
River [24]. Poyang Lake Basin is classified into the subtropical humid monsoon climate,
which is characterized by mild climatic conditions, sufficient sunshine, abundant solar
energy resources, relatively higher precipitation, an annual precipitation ranging from
1400 to 1800 mm, plentiful river runoff, and abundant water resources. Across the Poyang
Lake Basin, grain production is concentrated in the middle and upper stretches of Poyang
Lake Plain, Ganjiang River, Fuhe River, and Xinjiang River. Poyang Lake Plain has a
long history of being among the nine major commercial grain production bases across
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China, with rice as the predominant variety. Compared with neighboring provinces such as
Zhejiang, Jiangsu, and Fujian, the economy in this region is underdeveloped; accordingly,
the agricultural production faced challenges such as an insufficient agricultural investment
and low efficiency in grain production and grain yield per unit area. There remains a certain
gap with other provinces that rely mainly on rice production. In recent years, with a series
of agricultural production supporting policies introduced to promote grain production in
China, especially the preferential policies targeted at those major grain producing areas and
counties, the level of grain yield per unit area has been on the increase year on year with
the relatively stability in the area of grain production. In 2018, the amount of grain yield
per unit area reached 5886.9 kg/hm2, which exceeds the national average of 265.9 kg/hm2.
This demonstrated that the efficiency of grain production in this region has also improved.
In spite of this, there remain significant variations in the amount of grain yield per unit
area between different counties, which is attributed to the difference in natural conditions
and resource endowments.
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2.2. Data Sources

Poyang Lake Basin, containing 100 counties (cities and districts) such as Nanchang
County and Chaisang District, is the main grain production area in Jiangxi. Notably, 19 of
Jiangxi’s municipal districts (including Lianxi, Qingshanhu, Linchuan, Yushui, Anyuan,
Qingyuan, Zhanggong, Xinzhou, Wanli, Changjiang, Xunyang, Yuehu, Xihu, Donghu,
Jizhou, Zhujiang, Qingyunpu, Xiangdong, and Yuanzhou) and Gongqingcheng City have
high levels of urbanization as well as a very low proportion of grain production or even
no grain production, causing little impact on the research result; thus, 80 counties (cities
and districts) in Puyang Lake Basin were selected as the object of study in this paper.
The research period used is from 2001 to 2017. The data for this research are from the
Jiangxi Statistical Yearbook [25], Nanchang Statistical Yearbook [26], Jiujiang Statistical
Yearbook [27], Jingdezhen Statistical Yearbook [28], Shangrao Statistical Yearbook [29],
Yingtan Statistical Yearbook [30], Fuzhou Statistical Yearbook [31], Jian Statistical Year-
book [32], Xinyu Statistical Yearbook [33], Yichun Statistical Yearbook [34], and Statistical
Communiques of counties (cities and districts). Some data were calculated based on the
yearbook data.
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2.3. Research Methods
2.3.1. Malmquist-Luerberger Index

The Malmquist-Luerberger index is a dynamic index method based on the Malmquist
index, which considers unexpected outputs. The Malmquist index is a nonparametric
model used to measure and decompose TFP growth rates. It is one of the most important
methods used to analyze the dynamic changes of production efficiency. The Malmquist
index time t to time t + 1 is calculated as follows:

MIt+1
t

(
xt+1, yt+1, xt, yt

)
=

√
Et(xt+1, yt+1)

Et(xt, yt)
× Et+1(xt+1, yt+1)

Et+1(xt, yt)
(1)

where x refers to the input index of the decision unit. y refers to the desirable output.
Et(xt, yt) and Et+1(xt, yt) represent the efficiency value of a decision-making unit of the
evaluated object in time t and time t + 1, respectively. Et(xt+1, yt+1) represents the input
and output index data of a decision unit of the evaluated object in time t + 1, as well as the
efficiency value obtained by projection on the production front in the time t. Et+1(xt, yt) is
the input and output index data of the evaluation object’s decision-making unit in the time
t, while the efficiency value was obtained by referring to the efficiency value of a decision-
making unit in the time t + 1. According to the quantitative relationship involving the
Malmquist index, technical efficiency index, and technical progress index, the Malmquist
index was divided into two parts: a technical efficiency change index and a technical
progress index. The specific calculation formula is as follows:

MIECt+1
t =

Et+1(xt+1, yt+1)
Et(xt, yt)

(2)

MITCt+1
t =

√
Et(xt, yt)

Et+1(xt, yt)
× Et(xt+1, yt+1)

Et+1(xt+1, yt+1)
(3)

MIt+1
t =

√
Et(xt+1, yt+1)

Et(xt, yt)
× Et+1(xt+1, yt+1)

Et+1(xt, yt)
=

Et+1(xt+1, yt+1)
Et(xt, yt)

×

√
Et(xt, yt)

Et+1(xt, yt)
× Et(xt+1, yt+1)

Et+1(xt+1, yt+1)
(4)

MIt+1
t = MIECt+1

t ×MITCt+1
t . (5)

The technical efficiency index (MIECt+1
t ) measures the maximum possible approx-

imation of the decision-making units from time t to time t + 1 to the production frontier.
It reflects the speed of catching up with the advanced outcomes, also known as the “catch-
ing up effect” [35]; The technological progress index (MITCt+1

t ) measures the speed of
technological frontier progress from time t to time t + 1, It reflects the extent of outward
expansion of the production possibility boundary [36]. The calculation formula of ML
productivity index from output time t to time t + 1 based on Chung [12] is as follows:

MLt+1
t =

√√√√√1 + Et
(

xt+1, yt+1, bt+1, gt+1
y ,−gt+1

b

)
1 + Et

(
xt, yt, bt, gt

y,−gt
b

) ×
1 + Et+1

(
xt+1, yt+1, bt+1, gt+1

y ,−gt+1
b

)
1 + Et+1

(
xt, yt, bt, gt

y,−gt
b

) (6)

where b refers to the undesirable output. g refers to the output adjustment. The Malmquist-
Luerberger index can be divided into the environmental technical efficiency index (MLECt+1

t )
and the environmental technical progress index (MLTCt+1

t ). The calculation formula of the
ML productivity index from time t to time t + 1 can be further divided as follows:

MLt+1
t = MLECt+1

t ×MLTCt+1
t (7)



Land 2021, 10, 606 6 of 21

MLECt+1
t =

1 + Et+1
(

xt+1, yt+1, bt+1, gt+1
y ,−gt+1

b

)
1 + Et

(
xt, yt, bt, gt

y,−gt
b

) (8)

MLTCt+1
t =

√√√√√ 1 + Et
(

xt+1, yt+1, bt+1, gt+1
y ,−gt+1

b

)
1 + Et+1

(
xt+1, yt+1, bt+1, gt+1

y ,−gt+1
b

) × 1 + Et
(

xt, yt, bt, gt
y,−gt

b

)
1 + Et+1

(
xt, yt, bt, gt

y,−gt
b

) (9)

where the environmental efficiency change index (MLECt+1
t ) and environmental technol-

ogy progress index (MLTCt+1
t ) have the same meaning as the efficiency change index and

technology progress index in the Malmquist index method. MLECt+1
t is used to measure

the maximum possible approximation of decision-making unit to the production frontier
from time t to time t + 1, which reflects the speed of technological backwardness catching
up with the advanced outcomes, also known as the catching-up effect [37]. MLTCt+1

t is
used to measure the speed of technical frontier advancement from time t to time t + 1,
which reflects the outward expansion of production possibility boundary.

2.3.2. Spatial Autoregressive Regression Panel Model

The Spatial autoregressive regression panel (SAR Panel) model is used to explore the
spatial spillover effect or neighbor diffusion effect of dependent variables by studying the
correlation between dependent variables. One approach for building the SAR model begins
with the usual regression formulation described in Equation y = Xβ + z + ε. Instead of
modeling the correlation directly, an explicit autocorrelation structure is imposed:

z = Bz + v (10)

where the spatial dependence matrix, B, relates z to itself, and v ∼ N
(
0, Q2

z I
)
.

These models are generally attributed to Whittle [38]. Solving for z, we noted
that (I − B)−1 must exist [39,40], and then z has zero mean and a covariance matrix

∑ = Q2
z
(
(I − B)

(
I − B′

))−1. The spatial dependence in the SAR model comes from the
matrix B that causes the simultaneous autoregression of each random variable based on
its neighbors. When constructing B = ρW, the weights matrix W does not have to be
symmetric because it does not appear directly in the inverse of the covariance matrix (i.e.,
precision matrix). The covariance matrix is

∑ = ((I − ρW)(I − ρW ′ ))−1. (11)

The model created by Equation y = Xβ + z + ε and z = Bz + v has been termed
the “spatial error” model version of SAR models. An alternative is to simultaneously
autoregress the response variable and the errors, y = ρWy + xβ + ε, yielding the “SAR
lag model” [41],

y = (I − ρW)−1Xβ + (I − ρW)−1ε (12)

which allows the matrix W to smooth covariates in X, as well as creating autocorrelation in
the error for y [42]. A final version is to simultaneously autoregress both response and a
separate random effect m (e.g., the SAR mixed model).

y = ρWy + Xβ + WXv + ε (13)

2.4. Index Selection

Based on the relevant studies conducted by international scholars, five input indi-
cators, namely, labor, land, mechanical power, water resources, and chemical fertilizer
inputs, were selected according to the rationality and scientificity of the TFP index system
of grain production and data availability [43,44]. Among these factors, labor input was
represented by the individuals employed in primary industries; land input was repre-
sented by the sown area of grain crops; mechanical power input was represented by the



Land 2021, 10, 606 7 of 21

total power of agricultural machinery; water sources input was represented by effective
irrigation area; finally, chemical fertilizer input was represented by the application amount
of agricultural chemical fertilizer (chemical fertilizer purity). The above input indexes were
all included in the agricultural statistical data. To accurately calculate the input of grain
production, the weight coefficient was adopted to separate the input factors of grain produc-
tion from the generalized agriculture [45,46]. Among these factors, the weight coefficient
A1 = total sown area of grains/total sown area of crops, and A2 = total value of agricul-
ture production/total output value of agriculture, forestry, animal husbandry, and fishery.
A3 refers to the product of A1 and A2. Finally, land input was still represented by the sown
area of grains; labor input was represented by individuals employed in primary industry
multiplied by A3; mechanical power input, water resources input, and chemical fertilizer
input were represented by the original inputs multiplied by A1.

Two kinds of output indexes, namely, desirable and undesirable outputs, were selected.
The desirable output was represented by total grain output of each year. The undesirable
output was represented by total nitrogen (TN) and total phosphorus (TP) (The sources of
pollution to grains include chemical fertilizer, pesticide, and agricultural film. The main
grain crop of Poyang Lake Basin is rice. Chemical fertilizer and pesticide are the main
sources of agricultural non-point source pollutants. Only non-point source pollution
from chemical fertilizers was calculated as an undesirable output due to data availability
and a failure to measure the non-point source pollution of pesticide). Relevant studies
have proven that excessive application of chemical fertilizer not only produces negative
externalities to the environment but also gradually becomes the main source of agricultural
non-point source pollution [47,48]. The calculation is as follows:

Fpollution = Fertilizer·K·µ·ϕ (14)

where Fpollutionrefers to the content of total nitrogen or total phosphorus pollutants
caused by chemical fertilizer in the application. Fertilizer refers to fertilizer purity. K refers
to scale factors of nitrogen and phosphorus in chemical fertilizer, namely, 42% and 18%,
respectively. µ refers to the content of nitrogen in chemical fertilizer, and the proportions of
N and P in the effective components of phosphate fertilizer were 30% and 18%, respectively.
ϕ refers to the loss rates of nitrogen and phosphorus fertilizers into the water, which were
calculated to be 25% and 20%, respectively. The specific proportions of K, µ, and ϕwere
based on the results of [49] on agricultural non-point source pollution in the Poyang
Lake area.

According to Class III water quality standards in GB3838-2002, the TN and TP pol-
lutants were converted into equivalent standard-pollution emissions. The calculation
formula was as follows: equivalent-standard pollution emission (m3) = total emission of
pollutants/evaluation standard of pollutant emissions. The evaluation standards of TN
and TP pollutant emissions were 1 and 0.2 mg/L, respectively [50].

3. Results
3.1. The Evolution of Total Factor Productivity of Grain Production Environment

As part of consideration of environmental factors, we also analyzed the ETFP of
80 counties (cities and districts) in Poyang Lake Basin in 2001–2017. In general, the annual
mean of ETFP of 80 counties (cities and districts) in 2001–2017 is 1.0181, indicating that the
average annual growth rate of ETFP is 1.81%. The ETFP value in 2004 is the largest (1.1408),
followed by that in 2017 (1.0615). The ETFP value in 2003 is the smallest (0.9687), followed
by that in 2002 (0.9811), as shown in Table 1.

Based on the results of decomposition, the annual mean of technical efficiency of ETFP
in 2001–2017 is 1.0061, indicating that the average annual growth rate of technical efficiency
of ETFP is 0.61%. The technical efficiency of ETFP in 2010 was the largest (1.0602), followed
by that in 2001 (1.0514). The technical efficiency of ETFP in 2011 was the smallest (0.9384),
followed by that in 2015 (0.9556). The average annual growth rate of technical progress of
ETFP is 1.36%. The years where the technical progress of ETFP reached its highest levels
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were 2004 (1.1662), followed by 2009 (1.0794). The technical progress of ETFP in 2003 was
the smallest (0.9331), followed by that in 2014 (0.9401).

Table 1. The value and decomposition of environmental total factor productivity (ETFP) in 2001–2017.

Years ML Index MLEC Index MLTC Index

2001 0.9998 1.0514 0.9509
2002 0.9811 1.0382 0.9450
2003 0.9687 1.0382 0.9331
2004 1.1408 0.9782 1.1662
2005 1.0113 1.0152 0.9962
2006 1.0186 0.9969 1.0218
2007 1.0215 1.0256 0.9960
2008 1.0248 0.9757 1.0504
2009 1.0352 0.9590 1.0794
2010 1.0108 1.0602 0.9534
2011 1.0000 0.9384 1.0656
2012 1.0201 1.0286 0.9917
2013 1.0300 1.0025 1.0275
2014 0.9815 1.0441 0.9401
2015 1.0026 0.9556 1.0492
2016 0.9993 1.0074 0.9920
2017 1.0615 0.9891 1.0733

Mean value 1.0181 1.0061 1.0136
Note: ML: Malmquist Luerberger; MLEC: Environmental technical efficiency index; MLTC: Environmental
technology progress index.

From the perspective of a time series evolution trend, the ETFP in 2001–2017 shows a
trend of volatility, fluctuates upward, fluctuates downward, and then fluctuates upward
again. The fluctuations were found to be frequent. The ETFP shows a steady upward
trend in 2001–2009, except for 2004. This finding indicates that when the other conditions
remain unchanged, if the adverse reaction effect of agricultural non-point source pollution
caused by chemical fertilizer and pesticide is smaller, then the relationship between grain
growth and environment is more harmonious [51]. Jiangxi, as a pilot province, abolished
its agricultural tax in 2003. Consequently, the ETFP increased significantly in 2004. By 2006,
the agricultural tax of the whole province was abolished completely, thereby promoting
the improvement of ETFP in Poyang Lake Basin. Therefore, the technical efficiency of grain
production showed an overall increasing trend during this period, but the increase was
relatively slow. Except for the fact that the ETFP in 2014 and 2016 was lower than that in the
year before, the ETFP was 2010–2017 is higher than 1.0000, indicating that the ETFP showed
a rising trend during this period. The possible reason for this trend is that a series of policies
to benefit peasants were issued, and ecological and environmental protection programs
were introduced. Jiangxi provincial and local governments have actively responded to
people’s needs by implementing these policies. For example, the grain production mode
of all counties has changed from the traditional extensive type to the intensive type.
In grain production, the goal of pursuing grain yield has changed and is now focusing
on quality, while an equal amount of attention is now given to grain production and
environmental protection.

Although the ETFP shows an overall growth trend for 2001–2017, a great potential
for improvement exists. According to the decomposition of ETFP, the ETFP is deter-
mined jointly by environmental technical efficiency and environmental technical progress.
Figure 2 shows that the ETFP was driven by both environmental technical efficiency and
environmental technology progress in 2001–2017. Therefore, the improvement of technical
efficiency in the grain production promotes the technological progress of food production
environment and strengthens the coordinated development of environment and grain
production, thereby making this strategy the key to ETFP.
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Figure 2. The evolution of ETFP in Poyang Lake Basin in 2001–2017.

3.2. The Influencing Factors of Total Factor Productivity of Grain Production Environment

The results of the evolution of ETFP show the great differences among counties
(as well as cities and districts) in the study area. However, the cause of the differences
remains unclear and the best way to improve the ETFP remains a contentious point.
Thus quantitative research is discussed in this section to analyze the influencing factors
affecting ETFP. The results would provide a theoretical basis for promoting the coordinated
development of grain production and environmental protection. In view of the spatial
flow of grain production factors and the spatial effect of production in different counties,
the spatial econometric model was adopted, which can effectively capture the spatial effect
and elucidate its rules when discussing the influencing factors affecting ETFP.

3.2.1. Variable Selection and Description

According to the framework structure of the evaluation of the ETFP and the principle
of efficiency measurement, increasing grain outputs, reducing agricultural non-point source
pollution redundancy, and lowering input redundancy are the main ways to improve the
ETFP. The relevant literature on the influencing factors on ETFP indicates that the possible
factors include: spatial and geographical factors, the urbanization rate, average annual
temperature, average annual precipitation, multiple-crop index, industrial agglomeration,
the average business scale per worker, the proportion of grain-growing population, fiscal
policies for supporting agriculture, the total power of agricultural machinery per unit area,
and the proportion of the grain sown area. The details of these factors are as follows:

Urbanization rate. This reflects the process and extent of population moving to
cities. Referring to the practice of [52] and [53], the proportion of urban population
to total population was used as the urbanization index in this paper. Considering the
availability and accessibility of permanent population data, the urbanization rate based
on the registered residence was adopted. To alleviate the heteroscedasticity phenomenon,
the urbanization rate was used under logarithmic processing, represented by lnUr.

Natural environmental factors. Grain production is sensitive to natural environmental
changes and the deterioration of ecological environment certainly affects grain production
efficiency [54]. Therefore, the annual mean temperature and annual mean precipitation
were selected for this study. These meteorological data were preprocessed for spatial inter-
polation by ARCMAP 10.8. To alleviate the heteroscedasticity phenomenon, annual mean
temperature and annual mean precipitation were processed by logarithmic operations,
and then represented by lnT and lnRf, respectively.
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Multiple-crop index. This was represented by dividing the total sown area of crops in
a county by the area of cultivated land. To alleviate the heteroscedasticity phenomenon,
multiple-crop index was processed by using a logarithmic operation, and then represented
by lnMci.

Industrial agglomeration. Location entropy was adopted to measure the degree of
grain industry agglomeration. The calculation formula is as follows:

Iaim =
Qim/Qi
Qm/Q

(15)

where Iaim refers to the location entropy index of grain industry m in i county. Qim refers to
the total value of output of grain industry in i county. Qi refers to the total value of output
of the agricultural industry in i county. Qm refers to the total value of output of the grain
industry minus the output in Poyang Lake Basin. Q refers to the total value of output of
the agricultural industry in Poyang Lake Basin. If Iaim is more than 1, then the degree of
grain agglomeration in i county is higher, indicating that the specialization degree of grain
in this county exceeds the average level in Poyang Lake Basin as a whole. If Iaim is smaller
than 1, then the degree of grain agglomeration in i county is lower, indicating that the
specialization degree of grain in this county is lower than the average level in Poyang Lake
Basin as a whole. To alleviate the heteroscedasticity phenomenon, industrial agglomeration
was processed by a logarithmic operation, which is represented by lnIa.

Average business scale per worker. This reflects the average ability per grain-planting
labor force to engage in grain production, which is represented by dividing the grain
sowing area of a county by its grain-planting labor force. The grain-planting labor force
was represented by the number of employees in the primary industry multiplied by the
sown area of grains/the sown area of crops. To alleviate the heteroscedasticity phenomenon,
the average business scale per worker was processed by a logarithmic operation, which did
not affect the co-integration relationship among variables but did eliminate the difference
between the average business scale per worker and the explained variables in various
dimension, represented by lnAls.

Proportion of the grain-growing population. This was represented by dividing the
grain-growing population in a county by its total population; the grain-planting labor
force was represented by the number of employees in primary industries multiplied
by the sown area of grains/the sown area of crops. To alleviate the heteroscedasticity
phenomenon, the proportion of grain-growing population was processed by using a
logarithmic operation, which is represented by lnPgpp.

Fiscal policies for supporting agriculture. The local fiscal policies for supporting
agriculture are very important for grain production. The proportion of agriculture related
expenditure of each country to total fiscal expenditure is used to represent the fiscal policies
for supporting agriculture on the basis of the existing literature research. The fiscal expen-
diture for supporting agriculture is represented by the total amount of the expenditure on
supporting rural production, while the total fiscal expenditure is the general budgetary
expenditure. To alleviate the heteroscedasticity phenomenon, fiscal policies for supporting
agriculture were processed by a logarithmic operation, which is represented by lnFsap.

Total power of agricultural machinery per unit area. This was represented by dividing
the total power of agricultural machinery in a county by the sown area of crops. To alleviate
the heteroscedasticity phenomenon and eliminate the difference between the absolute
value of total power of agricultural machinery per unit area and the explained variable in
dimensions, the total power of agricultural machinery per unit area was obtained through
logarithmic processing, which is represented by lnTpampua.

Proportion of grain sown area. This was represented by dividing the sown area of
grains in a county by the sown area of crops. Under logarithmic processing, it is represented
by lnPgsa.
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The above data came from the statistical yearbooks of cities in Jiangxi Province over
relevant years and the statistical bulletins on the national economic and social development
of counties.

3.2.2. Multiple Commonality Test of Variables

In order to avoid a high correlation between explanatory variables in the regression
model, which leads to model estimations being distorted or inaccurate, multiple collinearity
tests were carried out on the explanatory variables of the urbanization rate, average annual
temperature, average annual precipitation, multiple-crop index, industrial agglomeration,
average business scale per worker, proportion of grain-growing population, fiscal policies
for supporting agriculture, total power of agricultural machinery per unit area, and pro-
portion of the grain sown area. The results are shown in Table 2, in which the correlation
between fiscal policies for supporting agriculture and proportion of the grain-growing pop-
ulation is the largest (0.4400). Generally speaking, the closer the correlation coefficient of
two explanatory variables is to 1.0000, the stronger the correlation is. From the correlation
coefficient between the explanatory variables in the Table 2, there is no obvious multiple
collinearity problem between the explanatory variables.

Table 2. Multiple commonality test of the influencing factors of total factor productivity.

Variables lnUr lnT lnPfe lnMci lnIa lnAls lnPgpp lnRf lnTpampua lnPgsa

lnUr 1.0000
lnT −0.0713 1.0000
lnRf 0.1051 −0.0722 1.0000

lnMci −0.1518 0.0987 −0.0316 1.0000
lnIa −0.0082 0.0573 0.0104 0.1120 1.0000

lnAls 0.3801 −0.0757 0.1080 0.1853 0.1803 1.0000
lnPgpp −0.3017 0.3430 −0.0762 0.0208 0.0398 −0.4077 1.0000
lnFsap −0.0208 0.1076 0.0054 0.0003 0.1856 0.4400 −0.1475 1.0000

lnTpampua 0.1912 0.0157 0.0885 −0.3995 −0.1557 −0.0151 0.2308 0.4144 1.0000
lnPgsa −0.0746 0.3786 0.0310 −0.1422 −0.0917 −0.0672 0.4118 0.0525 0.1044 1.0000

Note: lnUr: Urbanization rate; lnT: annual mean temperature; lnPfe: annual mean precipitation; lnMci: Multiple-crop index; lnIa: Industrial
agglomeration; lnAls: Average business scale per worker; lnPgpp: Proportion of grain-growing population; lnFsap: Fiscal policies for
supporting agriculture; lnTpampua: Total power of agricultural machinery per unit area; lnPgsa: Proportion of grain sown area.

3.2.3. Stability Test of Variables

Table 3 shows that when the significance value of each variable was tested, the results
showed that the first order difference of all variables passed the five panel unit root tests of
the ADF-Fisher test, PP-Fisher test, IPS test, Breitung test, and LLC test at the significance
level of 1%. It can be seen that the influencing factors of total factor productivity are all
first order single integral sequences, which can be used for quantitative regression analysis
of each panel data sequence.

Table 3. Stability tests of the influencing factors of total factor productivity.

Variables ADF-Fisher Test PP-Fisher Test IPS Test Breitung Test LLC Test Stability

lnUr −19.4908 *** −25.0045 *** −31.4256 *** −15.2963 *** −25.8143 *** Yes
lnT −17.6564 *** −18.8608 *** −21.6290 *** −8.2657 *** −18.8891 *** Yes
lnRf −8.7507 *** −10.4566 *** −10.2257 *** −10.6004 *** −7.1997 *** Yes

lnMci −22.8512 *** −30.1026 *** −27.3355 *** −21.8019 *** −33.9216 *** Yes
lnIa −21.7863 *** −29.3432 *** −33.8887 *** −19.9206 *** −34.0141 *** Yes

lnAls −12.7358 *** −16.0812 *** −30.5982 *** −16.9721 *** −16.6919 *** Yes
lnPgpp −22.0033 *** −28.5660 *** −32.9729 *** −23.8738 *** −28.9715 *** Yes
lnFsap −16.4022 *** −24.0724 *** −30.1142 *** −12.1593 *** −24.2702 *** Yes

lnTpampua −18.3670 *** −30.7438 *** −25.1761 *** −20.9095 *** −26.5262 *** Yes
lnPgsa −20.8611 *** −28.7829 *** −27.3656 *** −23.1546 *** −32.6967 *** Yes

Note: *** mean passing a significance test at 1% levels, respectively.
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3.2.4. Spatial Panel Model Test and Model Selection

In order to select a reasonable spatial measurement model, two steps needed to be
completed before the empirical analysis of a spatial panel; the first involved assessing
whether the panel regression model is a fixed effect or random effect model; for the second,
on the basis of step 1, the appropriate spatial panel model needed to be selected (a spatial
panel autoregressive model or a spatial panel error model).

Table 4 lists the Hausman test results of the spatial panel autoregressive model (SAR
model) and the spatial panel error model (SEM model) of ETFP. The statistical values of
the Hausman test from the SAR and SEM models were 25.5700 and 25.6300, respectively.
These two results passed the significance test at a 1% level. Based on the above analysis,
we can see that the ETFP rejected the original hypothesis (the P value is greater than 0.05),
which indicates that the spatial measurement model with fixed effects is more suitable.

Table 4. Fixed and random effects test of a spatial panel model.

Hausman Test
ETFP

Statistics Value p Value

SAR 25.5700 0.0044
SEM 25.6300 0.0043

Based on the fixed effect spatial measurement model, the LMSAR, LMSEM, Robust
LMSAR, and Robust LMSEM tests were adopted for the SAR and SEM models. The results
are shown in Table 5, which include the test results of the Moran’s I indices, the Lagrange
Multiplier (LM), and Robust Lagrange multiplier (Robust LM) of the SAR and SEM model.
The results show that the ETFP Moran’s I index was 21.5350, and at the 1% level, this ex-
plains why the ETFP has a spatial effect. LMSAR results were 442.9880 at the 1% level,
while LMSEM results were 431.2340, and passed the significance test at the 1% level. Robust
LMSAR results were 12.7520 at the 1% level, Robust LMSEM statistics were 0.9980 and the
significance level was 31.80. It can be seen that the SAR model is more robust than the SEM
model. Therefore, it was more appropriate to construct a SAR model.

Table 5. Spatial effects test of the SAR model and SEM model.

Test
ETFP

Statistics Value p Value

Moran’s I 21.5350 *** 0.0000
LMSAR 442.9880 *** 0.0000
LMSEM 431.2340 *** 0.0000

Robust LMSAR 12.7520 *** 0.0000
Robust LMSEM 0.9980 *** 0.3180

Note: *** mean passing the significance test at 1% levels, respectively.

3.2.5. The Estimated Results of Spatial Panel Model

Spatial panel model estimation was conducted to determine the influencing factors of
ETFP by using Stata15.0 Tools. Table 6 shows the estimated regression results of spatial
panel regression model for the ETFP based on a spatial adjacency weight matrix. Models I,
II, III, and IV in the table were based on no fixed, spatial fixed, time fixed, and time-space
bidirectional fixed effects of the spatial panel.

From the perspective of the regression coefficient of model explanatory variables,
most of the regression coefficients of explanatory variables in Model II (the space fixed
effect model) passed the significance test. In general, Model II was better than Model III
(the time fixed effect model) and Model IV (the time-space bidirectional fixed effect model).
In addition, the AIC and BIC values of Model II were lower than those of Models III and IV,
and the R2 of Model II was higher than those of Models III and IV. The significant differences
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existed in the ETFP among counties. If the differences among counties are ignored, then the
estimated results cause an obvious deviation. In the spatial panel autoregressive model,
it was assumed that all counties (cities and districts) have the same level of ETFP to Model I
(no fixed effect model), which obviously ignores the regional differences of ETFP. For Model
III (time fixed effect model), the influence of time was considered, but the influence of
the regional difference of ETFP was also ignored, and the estimated results also caused a
different deviation. In terms of Model IV (the bidirectional fixed effect model), the influence
of the regional differences on the ETFP and the influence of time were considered, thereby
theoretically avoiding the deviations caused by time and regional differences. However,
based on the spatial econometric estimated results in Table 2, the AIC and BIC values of
Model IV were higher than those of Model II, and the R2 of Model IV was lower than that of
Model II. This finding indicates that Model IV is inferior to Model II, which may be due to
the fact that the time fixed effect affects the ETFP in the current period and has a radiation
influence on other periods. Under the background of regional differences, the estimated
result of the bidirectional fixed effect model was not better than that of the space fixed
effect model. Based on the above analysis, choosing a spatial panel autoregressive model
(Model II) with fixed effect is more appropriate.

Table 6. Spatial econometric estimation results of ETFP based on the SAR model.

Variables

Model I Model II Model III Model IV
No Fixed Effect Space Fixed Effect Time Fixed Effect Bidirectional Fixed Effect

Regression
Coefficient T Regression

Coefficient T Regression
Coefficient T Regression

Coefficient T

LnUr −0.0027 −0.4000 −0.0027 −0.4000 −0.0081 * −1.6700 −0.0115 −1.6200
lnT 0.0263 1.0800 0.1197 * 1.7700 −0.0293 −1.1800 0.0991 1.0900
lnRf −0.0086 ** −2.3400 −0.0086 ** −2.2400 0.0080 0.5000 0.0090 0.4800

lnMci 0.0019 0.2400 0.0048 0.4400 0.0029 0.3400 0.0039 0.3300
lnIa 0.0088 1.1500 0.0295 ** 2.0400 0.0083 1.1200 0.0337 ** 2.4000

lnAls 0.0072 1.2600 0.0652 *** 2.9900 0.0150 ** 2.4500 0.0706 *** 2.8800
lnPgpp 0.0078 0.9900 0.0535 *** 2.2000 0.0149 * 1.7700 0.0585 ** 2.1900
lnFsap 0.0019 0.5600 0.0067 1.2100 0.0056 0.9700 0.0236 * 1.8500

lnTpampua 0.0029 0.6100 0.0029 0.6100 0.0040 0.9800 0.0034 0.5700
lnPgsa 0.0080 0.5900 0.0621 ** 2.0200 −0.0092 ** 0.6200 0.0053 0.1500
ρ 0.6034 *** 0.5817 *** 0.0667 0.0725

R2 0.2330 0.4364 0.2154 0.3170
LogL 1870.1470 1987.8662 1917.2952 1981.3320
AIC −3806.5904 −3778.3980 −3938.6640 −3992.2220
BIC −3733.5770 −3811.8150 −3876.0810 −3929.6390

Note: *, **, and ***mean passing a significance test at 10%, 5%, and 1% levels, respectively.

3.2.6. Robustness Test of the SAR Model

In order to verify the applicability of selected spatial weight, it was necessary to
further test the robustness of the spatial metrological regression results. The regression
coefficient and significance of each factor were investigated based on the spatial weight
matrix to determine whether the results were robust when the geospatial weight matrix
and economic spatial weight matrix were adopted, respectively. After standardizing the
two weights, the regression analysis of the spatial adjacency weight matrix, geographic
distance spatial weight matrix, and economic distance spatial weight matrix was carried
out, respectively, and the results were model I, model II, and model III (Table 7). The sign
direction of the regression coefficient of model II and model III was completely consistent
with the results of model I, and the magnitude of regression coefficient was relatively
stable, while the level of significance was basically unchanged. These results show that the
spatial effect of the main influencing factors on the ETFP remained stable, and there was
no great difference due to the different selection of the spatial weight matrix. Therefore,
the measurement and estimation results of the SAR model based on fixed effects are robust.
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Table 7. The ETFP robustness test results based on spatial fixed effects.

Variables

Model I Model II Model III

No Fixed Effect Robustness Test Robustness Test

Regression
Coefficient T Regression

Coefficient T Regression
Coefficient T

LnUr 0.0027 −0.4000 −0.0040 −0.6000 −0.0020 −0.2800
lnT 0.1197 * 1.7700 0.1606 ** 2.2900 0.1565 ** 2.2300
lnRf −0.0086 ** −2.2400 −0.0144 * −1.6800 −0.0145 * −1.6800

lnMci 0.0048 0.4400 0.0036 0.3200 0.0020 0.1800
lnIa 0.0295 ** 2.0400 0.0322 ** 2.1500 0.0315 ** 2.1000

lnAls 0.0652 *** 2.9900 0.0732 *** 3.2300 0.0731 *** 3.2200
lnPgpp 0.0535 *** 2.2000 0.0695 *** 2.7500 0.0641 ** 2.5300
lnFsap 0.0067 1.2100 0.0047 0.8100 0.0046 0.8000

lnTpampua 0.0029 0.6100 0.0039 0.7800 0.0032 0.6400
lnPgsa 0.0621 ** 2.0200 0.0684 ** 2.1300 0.0787 ** 2.4600
ρ 0.5817 *** 0.3519 *** 0.2851 ***

R2 0.4364 0.2593 0.3169
LogL 1987.8662 1901.1998 1900.1342
AIC −3778.3980 −3778.3996 −3776.2684
BIC −3811.8150 −3715.8167 −3713.6855

Note: Model I: the spatial adjacency weight matrix model; Model II: geographic distance spatial weight matrix model; Model III: economic
distance spatial weight matrix model. *, **, and *** mean passing a significance test at 10%, 5%, and 1% levels, respectively.

3.2.7. Analysis on the Estimated Results of Spatial Panel Model
Analysis of Measurement Results of Spatial Autoregressive Coefficient

In recent years, some scholars have started to focus on the spatial effect on the field
of grain production, and they agree that the spatial and geographical factors have an
important effect on the ETFP of grain production [55]. According to the spatial panel
autoregressive results with a fixed effect, the estimated value of spatial autoregressive
coefficient ρ of the ETFP is 0.5817 and passes the significance test at 1% level. The spatial cor-
relation coefficient reveals that geographical factors are positive and pass the significance
probability test. This further verifies the rationality of choosing a spatial measurement
model instead of the traditional panel data model used in this paper. A spatial dependence
exists on the ETFP among neighboring counties: the ETFP is closely related to the urbaniza-
tion rate, fiscal policies for supporting agriculture, and the proportion of the grain-growing
population. It also depends on the ETFP level in neighboring counties with similar spatial
characteristics to a certain extent. A mutual positive impact was found on the level of
the ETFP among counties. The spatial mobility of the ETFP increases with deepening
agricultural marketization. Accordingly, the relationship between different counties in
terms of grain production is becoming increasingly close, and the mutual dependence of
ETFP in neighboring counties is becoming more obvious.

Analysis of Measurement Results of Influencing Factors

Based on the measurement estimated results of spatial panel autoregressive model
with fixed effects (Table 2), the factors influencing the ETFP were analyzed as follows:

Urbanization Rate

The value of urbanization rate was −0.0027, indicating that the influence of the urban-
ization rate on ETFP is negative. On the premise that other conditions remain unchanged,
if the urbanization rate increases by one percent, then the ETFP will decrease by 0.0027 per-
cent. This result may be due to the fact that the rapid growth of the economy and the
improvement of the population urbanization rate change the demographic structure of the
rural labor force. The employment opportunities, remuneration for labor, and living condi-
tions in urban areas are significantly higher than those in rural areas; thus, the young and
middle-aged labor force from rural areas is more willing to stay in cities. The people who
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stay in rural areas are the elderly, women, and children, meaning the structure of the labor
force engaged in grain production have an aging or tender constitution. Considering both
the age and knowledge structures of the remaining rural labor force engaged in grain pro-
duction, modern agricultural development does not fully meet its needs. This phenomenon
is manifested in the serious aging, low scientific quality, and unclear understanding of agri-
cultural non-point source pollution. Most of the remaining rural labor force still maintains
a traditional extensive mode of grain production, which is not conducive to the promotion
and application of new technologies and new concepts. This fact will aggravate the degree
of unreasonable utilization of resources and the damage to the environment, which will
hinder the development of grain production and is not conducive to the improvement of
the ETFP.

Natural Environment Factors

Grain production is the most sensitive and the most vulnerable agricultural area
affected by climate change in the natural environment, and it is closely related to climatic
conditions. The grain production environment is affected by climate changes, such as
in temperature and precipitation, the impact of which varies with time and space [56].
The impact of climate change on grain production includes the input and output of grain
production factors, which leads to the change of ETFP.

From the regression results of the spatial autoregressive model with fixed effect shown
in Table 2, the coefficient of average annual temperature is shown to be 0.1197, indicating
that the impact of the average annual temperature on the ETFP is positive. On the premise
that other conditions are unchanged, if the average annual temperature increases by one
percent, then the ETFP will increase by 0.1197 percent, and the average annual temperature
significantly affects the ETFP at a 10% level. Based on the original data, the average
annual temperature in Poyang Lake Basin is 18 ◦C, and the interannual variation shows
a slowly rising trend. In general, the climate is suitable for and conducive to the growth
of grain. The climate promotes the improvement of the ETFP. The coefficient of average
annual precipitation was found to be −0.0086, indicating that the impact of average
annual precipitation on the ETFP is negative. On the premise that other conditions remain
unchanged and if the average annual rainfall increases by one percent, then the ETFP will
decrease by 0.0086 percent, and the average annual precipitation will significantly affect
the ETFP at the 5% level. The average annual precipitation in Poyang Lake Basin is above
1000 mm, and the interannual precipitation fluctuates greatly and frequently. Too much
precipitation is not conducive to the improvement of the ETFP to a certain extent.

Multiple-Crop Index

The coefficient of multiple-crop index was found to be 0.0048, indicating that the
impact of multiple-crop index on the ETFP is positive. The multiple-crop index is no longer
being restricted by soil, moisture, and chemical fertilizer due to the technical progress of
grain production and the improvement of management measures. Consequently, the uti-
lization potential of cultivated land is tapped, and the land productivity is improved [57],
which is conducive to the improvement of the ETFP.

Industrial Agglomeration

The coefficient of industrial agglomeration was found to be 0.0295, indicating that
the impact of industrial agglomeration on the ETFP is positive. Industrial agglomeration
significantly affects the ETFP at the 5% level. This finding indicates that the influence effect
of industrial agglomeration on the ETFP is positive under certain conditions. Namely,
if the level of industrial agglomeration is high, then the ETFP is also high. This finding
may be due to the fact that great importance was attached to the agricultural non-point
source of pollution in recent years, which has greatly reduced the use of pesticides and
chemical fertilizers. Consequently, the environmental quality improves, which slows down
the undesirable output redundancy to a certain extent. The industrial agglomeration pro-
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vides advanced production technology and causes a technology diffusion effect, which is
conducive to the improvement of ETFP.

Average Business Scale per Worker

The coefficient of the average business scale per worker was found to be 0.0652,
indicating that the impact of average business scale per worker on the ETFP is positive.
The average business scale per worker significantly affects the ETFP at the 1% level.
This indicates that the influence effect of average business scale per worker on the ETFP is
positive under certain conditions. The result may be due to the fact that the agricultural
mechanization level adapts to the expansion of the average business scale per worker,
which promotes the improvement of local agricultural modernization, is conducive to the
reasonable allocation of grain production factors, reduces the waste of costs and negative
externality caused by environmental pollution, and improves the ETFP.

Proportion of Grain-Growing Population

The coefficient of proportion of grain-growing population was found to be 0.0535,
indicating that the impact of the proportion of grain-growing population on the ETFP is
positive. The proportion of grain-growing population significantly affects the ETFP at 1%
level. Based on the original data, the proportion of grain-growing population showed a
slowly declining trend in 2001–2017. Theoretically, the ETFP needs to be reduced. However,
due to the continuous development of agricultural modernization and the continuous
improvement of agricultural socialized service system, the scale of grain planting and
the mechanization level in the region are enhanced. Such enhancement makes up for
the shortage of rural labor force and reduces the negative external level of environment,
which in turn enhances the ETFP.

Fiscal Policies for Supporting Agriculture

The coefficient of fiscal policies for supporting agriculture was found to be 0.0067;
as mentioned in the previous analysis framework, the government’s financial support
policy changes the relative prices of agricultural products and means of food produc-
tion, thereby showing a positive impact on peasants’ production behavior. For example,
with the strong support of fiscal policies for supporting agriculture, the infrastructure for
agricultural production has continuously improved, and the funds for agricultural scientific
research, agricultural scientific and technological achievement transformations, subsidies
for growing superior grain cultivators, and policy subsidies for agricultural products have
increased yearly to provide good production conditions for grain production. These good
production conditions are as follows: an increase in the relative prices of agricultural
products and reduction in the relative prices of means of grain production; improvement
in villager incomes and mobilization of their enthusiasm for grain production; provision
of guidance to villagers to reasonably adjust the structure and quantity of the chemical
factor input in agriculture; promotion of the coordinated development of grain economy
and environment; and improvement of the ETFP.

Total Power of Agricultural Machinery per Unit Area

The coefficient of total power of agricultural machinery per unit area was found to
be 0.0029, This phenomenon may be due to the fact that the northern area of Jiangsu is
relatively flat with concentrated cultivated land, which allows agricultural mechanization.
Consequently, it facilitates the improvement of the scale management level of cultivated
land, and it is conducive to a loose soil structure and the absorption of nutrients by crops
to reduce the negative environmental externality caused by chemical fertilizer. However,
this area is surrounded by mountains in the eastern, western, and southern sides, and the
central hills are undulating, while there is serious land fragmentation and a relatively
low scale level, which hinder the development of agricultural mechanization. The total
power of agricultural machinery per unit area has a positive promoting effect on the
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ETFP, but such an effect is not significant. Therefore, combined with the situation of grain
production and land topography, solving the problem of land fragmentation is a way to
improve the level of agricultural mechanization and is also an important way to improve
the ETFP.

Proportion of Grain Sown Area

The coefficient of the proportion of grain sown area was found to be 0.0621, and the
proportion of grain sown area significantly affects the ETFP at the 5% level. This finding
may be due to the fact that if the proportion of grain sown area is larger, then it will facilitate
the large-scale production of grain, which is conducive to the gradual improvement of the
grain production environment and the reasonable utilization of resources. For example,
the large-scale production of grain helps to improve agricultural mechanization, optimize
the construction of irrigation infrastructure, and improve the effective irrigation rate in
grain production. At the same time, the application amount of pesticide and chemical
fertilizer is greatly reduced. Consequently, the standard emissions of input factors and
agricultural non-point source pollution in grain production are lowered, which allows the
improvement of ETFP.

4. Discussion

The main approaches to measuring the total factor productivity of grain production
include the parametric method and non-parametric method. Among them, parameter
method is applied to measure production efficiency by constructing the production frontier
function. In general, the parameter method used to measure total factor productivity is
Stochastic Frontier Analysis (SFA). Currently, this method has been commonly adopted
to measure the total factor productivity of grain production [58,59]. Since the method
(such as the production function method and the stochastic production frontier method)
is required to set the specific form of production function, and given the risk of making
errors in setting the specific production function, the non-parametric method removes the
need to set a specific function form, which makes it advantageous over the parametric
method. Besides, the prospect of making errors in the calculation result due to the selection
of the wrong production function can be avoided. With regard to the total factor pro-
ductivity evaluation of grain production, non-parametric methods have been extensively
applied [8,60]. Some scholars adopted the above-mentioned methods to measure the total
factor productivity of grain production, which led to the argument that there is still no
consensus that has been reached on the main reasons behind the changes in the total
factor productivity of grain production [61,62]. Allowing for this, agricultural non-point
source pollution was introduced in this study into the analytical framework applied to
the total factor productivity of grain production, and Malmquist-Luerberger index was
adopted to measure the total factor productivity of a grain production environment in
Poyang Lake Basin. As indicated by the results, the changes in total factor productivity of
grain production environment in Poyang Lake Basin were determined by environmental
technical efficiency and environmental technological progress during the period from 2001
to 2017. Moreover, the spatial autoregressive model was applied to explore the influencing
factors in the total factor productivity of the grain production environment in Poyang Lake
Basin, which led to the finding about the mechanism followed by the influencing factors
in the total factor productivity of grain production environment in Poyang Lake Basin.
It is of much practical significance to optimize the spatial layout of grain production for
ensuring food security. Besides the urbanization rate and average annual precipitation,
the influencing factors that have a negative effect on ETFP are the multiple-crop index,
industrial agglomeration, average business scale per worker, proportion of grain-growing
population, fiscal policies for supporting agriculture, total power of agricultural machinery
per unit area, and the proportion of the grain sown area. However, there is still room to
further this study. Firstly, it is necessary to subdivide the grain structure and conduct a
study on the level of total factor productivity of the production environment for differ-
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ent varieties of grain. Due to constraints such as manpower, time, and statistical data,
this study focused on grain as a whole, which led to the lack of attention paid to specific
grain varieties such as rice, corn, wheat, and so on. Secondly, the influencing factors in total
factor productivity of grain production environment were analyzed from macro and micro
perspectives. On the basis of grain production practices, as well as the related theories and
academic research, the corresponding indicators were selected in this study to analyze the
influencing factors in total factor productivity of a grain production environment from a
macro point of view, with no micro-level investigation conducted. Through a study carried
out on the total factor productivity of grain production environment from both macro and
micro perspectives, not only can the suggestions on how to improve the level of total factor
productivity of the overall grain production environment in the region be made, but it is
also possible to formulate more targeted policies from the perspective of practitioners.

5. Conclusions

The evolution and influencing factors of ETFP in Poyang Lake Basin in 2001–2017
are analyzed in this paper. In general, ETFP shows an overall growth trend in 2001–2017
and has a great potential to improve. Moreover, from the perspective of time sequence
evolution and decomposition of ETFP, the ETFP is driven by environmental technical
efficiency and environmental technological progress in dual tracks. This finding shows that
the keys to improving ETFP were the technical efficiency of grain production environment
and the coordinated development of environment and grain production. The urbanization
rate and average annual precipitation have negative effects on the ETFP, whereas other
explanatory variables have positive effects. Among the variables, the average business
scale per worker and the proportion of the grain growing population significantly affect
the ETFP at the 1% level; average annual rainfall, industrial agglomeration, and proportion
of grain sown area significantly affect the ETFP at the 5% level; finally, the average annual
temperature significantly affects the ETFP at the 10% level.

According to the findings of this paper, several policy implications can be mentioned:
Firstly, the infrastructure construction and the mechanization of grain production

should be improved. Infrastructure is the key factor affecting the input of grain production
factors. The study area is composed of mountains with a high terrain around them and a
low terrain in the middle. The terrain is inclined from the outside to the inside, and it is
composed of five tributaries. The climate is mild with sufficient sunshine, and this area is
rich in light energy resources and has a relatively high amount of precipitation and plenty
of water resources, though the spatial and temporal distributions are uniform. Thus op-
timizing the grain production infrastructure is very important. Firstly, considering the
restrictions of the terrain conditions, the construction of water conservancy infrastructure,
such as low-pressure irrigation and sprinkling irrigation and other facilities constructed for
irrigation ditches and farmland, needs to be strengthened in the mountainous areas where
grain production is conducted. Secondly, flood and drought events are frequent in the study
area. Therefore, the continuous improvement of modern facilities, such as transportation
and communication, is conducive to flood control and drought resistance. Moderately
improving the mechanization of grain production can effectively replace the labor force
in a mechanized operation mode, gradually increase the utilization rate of machinery in
mountainous areas, promote the development of agricultural machinery, and accelerate
the change of traditional grain production mode, thereby improving the ETFP.

Thirdly, to adjust the structure of grain production and reduce agricultural non-
point source pollution. Based on the influence of different grain structures on fertilizer
non-point source pollution, the planting area of grain with large fertilizer consumption
needs to be reduced appropriately. By continuously improving the utilization rate of
chemical fertilizer and straw incorporation and increasing the application of organic
fertilizer, nutrient loss and pollution can be reduced. According to the relevant policies and
technical standard, and based on the actual situation of areas, fertilizer non-point source
pollution prevention and control policies in line with the local situation are formulated,



Land 2021, 10, 606 19 of 21

and the relevant laws and regulations on the use of chemical fertilizer are improved.
Consequently, the local villagers’ behavior was continuously regulated, the amount of
fertilizer input was controlled, meaning that the level of fertilizer input could reduce the
chemical fertilizer non-point source pollution.

Fourth, the cross regional exchange and cooperation should be strengthened, as it
could effectively improve the ETFP and ultimately achieve the best ETFP with the same
efficiency value in the region. From the perspective of the long term development of ETFP,
the governments need to break the traditional administrative and regional barriers, conduct
overall planning, and set up a cross county environmental cooperation mechanism and
pollution compensation system to provide a good external environment for cross county
exchange and cooperation. In addition, the governments need to actively promote the
exchanges and cooperation of cross regional economic and technological development,
as well as guide the flow of advanced technology, high technology talent, and excellent
management modes to relatively backward regions. Doing all of the above mentioned
actions would promote the rapid increase of ETFP, and form a virtuous circle of win–win
cooperation, thereby coordinating the growth rate of ETFP in different regions.
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