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Abstract: There is growing concern about the consequences of future urban expansion on carbon
storage as our planet experiences rapid urbanization. While an increasing body of literature was
focused on quantifying the carbon storage impact of future urban expansion across the globe, rare
attempts were made from the comparative perspective on the same scale, particularly in Central
Asia. In this study, Central Asian capitals, namely Ashkhabad, Bishkek, Dushanbe, Nur Sultan, and
Tashkent, were used as cases. According to the potential impacts of BRI (Belt and Road Initiative)
on urban expansion, baseline development scenario (BDS), cropland protection scenario (CPS), and
ecological protection scenario (EPS) were defined. We then simulated the carbon storage impacts of
urban expansion from 2019 to 2029 by using Google Earth Engine, the Future Land Use Simulation
model, and the Integrated Valuation of Environmental Services and Tradeoffs model. We further
explored the drivers for carbon storage impacts of future urban expansion in five capitals. The results
reveal that Nur Sultan will experience carbon storage growth from 2019 to 2029 under all scenarios,
while Ashkhabad, Bishkek, Dushanbe, and Tashkent will show a decreasing tendency. EPS and CPS
will preserve the most carbon storage for Nur Sultan and the other four cities, respectively. The
negative impact of future urban expansion on carbon storage will be evident in Ashkhabad, Bishkek,
Dushanbe, and Tashkent, which will be relatively inapparent in Nur Sultan. The potential drivers for
carbon storage consequences of future urban expansion include agricultural development in Bishkek,
Dushanbe, and Tashkent, desert city development in Ashkhabad, and prioritized development of
the central city and green development in Nur Sultan. We suggest that future urban development
strategies for five capitals should be on the basis of differentiated characteristics and drivers for the
carbon storage impacts of future urban expansion.

Keywords: carbon storage; urban expansion; multi-scenario simulation; Central Asian Republics

1. Introduction

Since the late 19th century, the earth witnessed climate change with a warming rate
of 0.17 ◦C per decade as greenhouse gas continued to increase [1,2]. As climate change
becomes a primary contemporary global concern, carbon storage is increasingly perceived
as an essential ecosystem service to address this issue [3–5]. Carbon storage indicates the
capacity of the terrestrial ecosystem to remove atmospheric CO2. It was estimated that
soil organic carbon, one of the carbon pools, could offset 5–15% of the global fossil-fuel
emissions [6]. Moreover, the enhancement of carbon storage is endowed with economic
benefits since the Kyoto Protocol proposed assigning credits for carbon sequestration in
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forestry and agricultural soils [7]. Therefore, there is growing attention on carbon storage
change across the world [8], given the predicted climate change in the coming decades [9].

However, unprecedented global urban expansion and consequent land-use change
during the last century imposed direct and indirect impacts on carbon storage. On the
one hand, urban expansion by consuming vegetation cover resulted in the loss of veg-
etation biomass [10] while preserving forest increased carbon storage [11,12]. On the
other hand, the transformation from non-urban to urban land use changed the density
of soil organic carbon [13], which may transfer the soil from sink to source for atmo-
spheric carbon. Unfortunately, global carbon storage will be vulnerable to the triple global
urban land circa 2000 that is predicted to occur by 2030 [14]. Thus, simulating the conse-
quences of urban expansion on carbon storage is intensified as an urgent task for achieving
sustainable urban growth.

Currently, scholars have increasingly put attention to simulating the impacts of urban
expansion on carbon storage at different scales. At the global scale, Seto et al. [14] esti-
mated the carbon loss from global urban expansion by 2030 and concluded that the most
considerable carbon stock loss would occur in pan-tropical Africa. At the national scale,
Eigenbrod et al. [15], Lawlera et al. [16], and Liu et al. [17] analyzed the spatiotemporal
change of carbon storage according to the simulations of urbanization and consequent land-
use change in Britain, the United States, and China, respectively. The results showed that
Britain and China would experience different degrees of decline in carbon storage, while
the United States would experience an increase. At the regional scale, case studies were
focused on Changsha-Zhuzhou-Xiangtan urban agglomeration [18], Hubei province [19],
Beijing [20], and Charlotte [21], which came to the same conclusion of carbon storage loss
with future urban expansion. However, there are still two challenges to be addressed in the
existing literature. First, while a plethora of previous literature has focused on quantifying
the carbon storage impact of future urban expansion for a single region, few attempts have
been made through the comparison among different regions on the same scale [22]. That is,
there have been a lack of comparative studies to link with future urban expansion patterns,
carbon storage impacts, and related drivers. Second, most existing studies investigating
the carbon consequences of land-use change were focused on China, America, and Europe.
Nevertheless, some areas have not been receiving attention to the same extent, such as
Central Asia [23].

Central Asia is chronically overlooked in the studies on global carbon balance [23,24].
This region has been covered by extensive grasslands and deserts for centuries. The
grasslands foster fertile soils to store more soil organic carbon because of the better root
production [25]. In terms of deserts, the soil organic carbon density in Central Asia is
1–2 times as that of the global hot deserts [26]. As Li et al. [26] reported, carbon storage in
Central Asia amounted to 43–44.58 Pg that was equaled to 18–24% of the global amount in
deserts and dry shrublands. As Central Asia entered a more agrarian society during the 20th
century, human-induced vegetation change imposed a profound influence on terrestrial
carbon storage. The widespread conversion of grassland to cropland and grazing-induced
grassland degradation resulted in a loss of carbon storage [27]. According to Sommer and
de Pauw [28], these two types of vegetation change were responsible for the depletion of
4.1% of the total soil carbon storage in Central Asia. Currently, the region is experiencing
continuous urbanization, with an annual growth rate of urbanization above 1% during
the past two decades. The fraction will be kept at approximately 1% in the forthcoming
decade [29], indicating the continuous urban expansion and urban population growth,
which may pose a long-term impact on carbon storage. However, despite the similar
physical environments, environmental issues, and urbanization trends in Central Asia, the
concern about whether their cities share a similar characteristic and driver for the carbon
storage impacts of future urban expansion remains rarely explored.

Furthermore, Central Asian Republics are increasingly impacted by the BRI (Belt and
Road Initiative) that was proposed by the Chinese government as a strategy to strengthen
economic cooperation in 2013 [30,31]. Benefiting from investment funds for economic coop-
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eration and infrastructure development by the BRI, urban expansion in Central Asian cities
was accelerated through building cooperation development zones, developing transporta-
tion networks, and improving infrastructures [32]. The increasing prevalence of advanced
agricultural technology helped to crack the issues of water shortage and mass production,
facilitating extensive reclamation of agricultural land. For instance, China’s Huaxin Cement
company and Zhongtai Textile company signed an agreement with Tajikistan to build a ce-
ment industrial park and textile industrial park near Dushanbe, respectively. However, the
large-scale expansion of land development and transportation networks may exacerbate en-
vironmental risks in Central Asian regions, including carbon emission [33], habitat loss [34],
and resource overexploitation [35]. A growing body of literature emphasized to devise of
proactive regulations to cope with these environmental and ecological challenges [33,35,36].
Under the circumstances, it is of great significance to consider such uncertainties induced
by the BRI—motivating urban growth, facilitating agricultural development, or devising
environmental strategy—when assessing carbon storage impacts of future urban expansion
in Central Asian cities.

To address the knowledge gap, we used five capitals of Central Asian Republics as
study cases to (1) simulate urban expansion and consequent carbon storage change under
three BRI-related scenarios, (2) compare the consequences of urban expansion on carbon
storage, and (3) explore the potential drivers for carbon storage impact of urban expansion
across five capitals. In this study, urban expansion was defined in a broad sense that
included both built-up land growth and associated land-use change [37].

2. Study Area and Data
2.1. Study Area

Central Asia is often defined as five republics, including Kazakhstan, Turkmenistan,
Uzbekistan, Tajikistan, and Kyrgyzstan [38,39]. The capitals of Central Asian Republics
include Ashkhabad (Turkmenistan), Bishkek (Kyrgyzstan), Dushanbe (Tajikistan), Nur Sultan
(Kazakhstan), and Tashkent (Uzbekistan). In this study, 20 km buffer zones centering on
urban cores were defined as study areas due to the different administrative scales among five
republics (Figure 1). The regions of Bishkek and Tashkent were clipped by national boundaries.
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Figure 1. Locations of five Central Asian capitals.

While Nur Sultan and Tashkent are located in flatlands, Bishkek, Dushanbe, and
Ashkhabad are located in mountain feet and basins. Five cities are characterized by a



Land 2021, 10, 608 4 of 17

temperate continental climate, with hot and dry summer and cold winter. These regions
are varied in precipitation. Ashkhabad has an average precipitation of less than 100 mm/yr,
while the other four cities have an average precipitation of approximately 400 mm/yr.
In 2018, the total population in five capitals approximated 7 million. With the above 6%
population of their respective nations, they play important roles in the economy, politics,
trading, and education. As Central Asia has transformed from nomadic society to agrarian
society since the era of the Soviet Union [25], cropland and built-up land became the most
common landscapes in capital regions. Furthermore, these regions have experienced steppe
degradation [27], deforestation [23], inappropriate irrigation [24], and water exhaustion [39].
Due to the ongoing urbanization in the future, dramatic land-use change is likely to result
in more ecological impacts.

2.2. Data Sources

In the present work, terrain data, socioeconomic data, road networks, and ancillary
geographic data were used to simulate urban expansion in the Future Land Use Simulation
(FLUS) model. The digital elevation model (DEM) with a 30 m resolution was obtained
from the Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 4 June 2021). Slope
and topographic relief were derived from DEM. Population density, a raster map with
250 m resolution, was downloaded from Joint Research Centre, European Commission
(https://data.jrc.ec.europa.eu/, accessed on 4 June 2021). 12 monthly nightlight imageries
for 2018 with a resolution of 0.5◦, downloaded from the National Geophysical Data Center
(https://www.ngdc.noaa.gov/, accessed on 4 June 2021), were used to generate composite
nightlight imagery by using an average algorithm. Point of Interest (POI) and road network
were downloaded from Open Street Map (https://www.openstreetmap.org/, accessed
on 4 June 2021). The ancillary geographic data, including the coordinates of central
business districts (CBD) and town centers, was collected from the Google Map (https:
//www.google/maps, accessed on 4 June 2021). All datasets were reprojected to the
Universal Transverse Mercator coordinate system, with a pixel size of 100 m × 100 m.

Land use maps and carbon density were used to estimate carbon storage in the
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model. Land use maps
for 2009 and 2019 were derived from Google Earth Engine (GEE), including six types—
cropland, forest, grassland, water, built-up land, and unused land. The carbon densities
of six land types were obtained from Li et al. [26]. These simulated carbon densities were
validated to be matched well with field observations, which indicated the applicability to
estimate carbon storage in Central Asia.

3. Methods
3.1. Interpreting Land Use in GEE

We used GEE to interpret land use from Landsat satellite images. GEE (https://
code.earthengine.google.com/, accessed on 4 June 2021) is a cloud-based platform for the
analysis of petabyte-scale satellite imagery and geospatial datasets on a global scale [40].
It provides access to collected earth-observing remote sensing imagery, which can be
interpreted using cloud computing technology. Due to the parallel computing based
on millions of servers distributed across the globe, the process of interpreting land use
for extensive coverage only costs a few minutes [41]. An example can be found via:
https://code.earthengine.google.com/1d04a8a5f6a366d67c1762c308db10c0, accessed on
4 June 2021.

Land use interpretation was conducted in GEE by using JavaScript code, which
included the following steps (Figure 2). Firstly, we used Landsat 5 TM, Landsat 7 ETM+,
and Landsat 8 calibrated top-of-atmosphere reflectance data to classify land use of five
capitals in 2009 and 2019, respectively. Cloud, snow, and cloud shadow in all imageries
were masked by removing the bitmasks in the band “pixl_qa”. All available imageries
from 1 April to 30 October 2009, and 2019 were composited to one imagery using a median
algorithm, respectively.

http://www.gscloud.cn/
https://data.jrc.ec.europa.eu/
https://www.ngdc.noaa.gov/
https://www.openstreetmap.org/
https://www.google/maps
https://www.google/maps
https://code.earthengine.google.com/
https://code.earthengine.google.com/
https://code.earthengine.google.com/1d04a8a5f6a366d67c1762c308db10c0
https://code.earthengine.google.com/1d04a8a5f6a366d67c1762c308db10c0


Land 2021, 10, 608 5 of 17

Land 2021, 10, x FOR PEER REVIEW 5 of 18 
 

Land use interpretation was conducted in GEE by using JavaScript code, which in-

cluded the following steps (Figure 2). Firstly, we used Landsat 5 TM, Landsat 7 ETM+, 

and Landsat 8 calibrated top-of-atmosphere reflectance data to classify land use of five 

capitals in 2009 and 2019, respectively. Cloud, snow, and cloud shadow in all imageries 

were masked by removing the bitmasks in the band “pixl_qa”. All available imageries 

from 1 April to 30 October 2009, and 2019 were composited to one imagery using a median 

algorithm, respectively. 

 

Figure 2. Schematic illustration of land use interpretation in GEE. 

Secondly, the bands of red, green, near-infrared, short-wave infrared, thermal infra-

red were extracted from the composited imageries to detect textural features for classifi-

cation. The textural features included Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Built-up Index (NDBI), Normalized Difference Bareness Index 

(NDBaI), and Modified Normalized Difference Water Index (MNDWI). 

Thirdly, we used the Random Forest algorithm as a classifier. We also defined 589 

and 613 training samples for land use classification of 2009 and 2019 according to Google 

Earth (GE), respectively (Figure S1). The numbers and areas of the training samples were 

determined based on the proportion of each land type. Meanwhile, 300 validation samples 

were randomly selected in each capital and each year for accuracy assessment. By com-

paring the validation samples with high-resolution images in GE, overall accuracies were 

calculated. The overall accuracies of land use classification for all capitals are above 89.7% 

(Tables S1 and S2). 

3.2. Setting Scenarios and Estimating Land Demand 

The first step to simulate future urban expansion is defining scenarios. Considering 

the potential influence of the BRI on future urban expansion and related land-use change, 

including but not limited to motivating urban expansion, facilitating agricultural devel-

opment, and cracking environmental issues, we set three scenarios, namely baseline de-

velopment scenario (BDS), cropland protection scenario (CPS), and ecological protection 

scenario (EPS). The BDS is assumed that the BRI’s investment funds for economic cooper-

ation and infrastructure development will be continued without a distinct shift in the de-

velopmental strategy. Therefore, the current momentum of urban growth will be kept in 

the near future. The CPS is assumed to put agricultural development as a priority of the 

BRI, given that the agricultural sector has played an increasingly dominant role in the 

economic development of Central Asia during the 20th century [25]. Under the CPS, pro-

tecting cropland will be one of the most important tasks in future urban growth. The EPS 

is assumed to respond to the BRI’s “green shift” proposed by Tracy et al. [35], which em-

phasizes the coordination of ecological regulation and economic cooperation. Under the 

EPS, ecological land will be put as the priority over urban expansion, given that land deg-

radation, deforestation, and water shrinkage have long been urgent ecological issues in 

Central Asia [23,28,39]. 

Figure 2. Schematic illustration of land use interpretation in GEE.

Secondly, the bands of red, green, near-infrared, short-wave infrared, thermal infrared
were extracted from the composited imageries to detect textural features for classification.
The textural features included Normalized Difference Vegetation Index (NDVI), Normal-
ized Difference Built-up Index (NDBI), Normalized Difference Bareness Index (NDBaI),
and Modified Normalized Difference Water Index (MNDWI).

Thirdly, we used the Random Forest algorithm as a classifier. We also defined 589
and 613 training samples for land use classification of 2009 and 2019 according to Google
Earth (GE), respectively (Figure S1). The numbers and areas of the training samples
were determined based on the proportion of each land type. Meanwhile, 300 validation
samples were randomly selected in each capital and each year for accuracy assessment. By
comparing the validation samples with high-resolution images in GE, overall accuracies
were calculated. The overall accuracies of land use classification for all capitals are above
89.7% (Tables S1 and S2).

3.2. Setting Scenarios and Estimating Land Demand

The first step to simulate future urban expansion is defining scenarios. Consider-
ing the potential influence of the BRI on future urban expansion and related land-use
change, including but not limited to motivating urban expansion, facilitating agricultural
development, and cracking environmental issues, we set three scenarios, namely baseline
development scenario (BDS), cropland protection scenario (CPS), and ecological protec-
tion scenario (EPS). The BDS is assumed that the BRI’s investment funds for economic
cooperation and infrastructure development will be continued without a distinct shift in
the developmental strategy. Therefore, the current momentum of urban growth will be
kept in the near future. The CPS is assumed to put agricultural development as a priority
of the BRI, given that the agricultural sector has played an increasingly dominant role in
the economic development of Central Asia during the 20th century [25]. Under the CPS,
protecting cropland will be one of the most important tasks in future urban growth. The
EPS is assumed to respond to the BRI’s “green shift” proposed by Tracy et al. [35], which
emphasizes the coordination of ecological regulation and economic cooperation. Under
the EPS, ecological land will be put as the priority over urban expansion, given that land
degradation, deforestation, and water shrinkage have long been urgent ecological issues in
Central Asia [23,28,39].

Under the BDS, the amounts of future land use were estimated according to the
land conversion probability of 2009–2019, which is calculated by the Markov chain [42].
According to Hu et al. [43], Kindu et al. [44], and Chotchaiwong and Wijitkosum [45], we
defined the land conversion probability of the BDS as a benchmark, which could be adjusted
according to the priority of protecting specific land type under the CPS and EPS (Table 1).
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Table 1. Descriptions of three scenarios.

Scenarios Assumptions Future Land Demands

BDS
Following current trend of
urban expansion without

human intervention

The future land use will take place according to the
land conversion probability of 2009–2019.

CPS
Preventing urban

expansion from occupying
cropland

Compared with the BDS, the conversion
probabilities of cropland to built-up land and

unused land decrease by 80% and 100%,
respectively; the probabilities to the forest,

grassland, and water decrease by 30%, respectively.

EPS
Emphasizing urban
expansion based on
ecological protection

Compared with the BDS, the conversion
probabilities of forest, grassland, and water to

built-up land decrease by 80%; the probabilities to
unused land decrease by 100%. Water was set as a

restricted area for land conversion.

3.3. Simulating Urban Land Use by Using the FLUS Model

The urban expansion and related land-use change for 2029 were simulated using the
FLUS model. FLUS model can be used to address the complex land conversion rules of the
traditional cellular automaton (CA) model in urban simulations under the impact of diverse
driving factors. The model integrates artificial neural network (ANN) and self-adaptive
inertia and competition mechanism [46,47].

Firstly, a three-layer ANN model was used to calculate the nonlinear relationship be-
tween historical land use and related driving factors, with the aim to derive the probability-
of-occurrence for six land types at the grid-scale. In the input layer, each neuron is equal
to a driving factor. In the study, physical conditions (elevation, slope, and topographic
relief), population density, socioeconomic factors (POI density and nightlight intensity),
the proximity to waters, road networks (highways and railways), and hubs (CBD and
town centers) were defined as driving factors. The land use maps of 2009 were also used.
In the hidden layer, the ANN model was trained with six land-use types and driving
factors by using random sampling, with a sampling rate of 10%. In the output layer, the
probability-of-occurrence surfaces of six land use types for 2019 were derived by using a
sigmoid activation function, according to the following equation:

Pt
p,k = ∑

j
wj,k × sigmoid(netj(p, t)) = ∑

j
wj,k ×

1

1 + e−∑i wi.j×Xi(p,t)
(1)

where Pt
p,k refers to the probability-of-occurrence of land use type k on grid cell p at training

time t; netj(p, t) refers to the signal received by neuron j from all input neurons on cell p at
time t; Xi(p, t) refers to the ith factor related to the input neuron i on cell p at time t; wj,k
and wi,j refers to adaptive weights between the hidden layer and the output layer, which
were both calibrated during the process of ANN training.

To measure the fit goodness of ANN training performance, we used Receiver Oper-
ating Characteristic (ROC) curve to validate the probability-of-occurrence of six land use
types for 2019. The AUC values for all land types in five regions were both larger than 0.7,
indicating a good fit of ANN model to estimate the probability-of-occurrence of land use
types for 2019 [48].

Secondly, the self-adaptive inertia and competition mechanism, including neighbor-
hood effect, inertia coefficient, conversion cost, and roulette selection, was adopted to cope
with the competition and interactions among different land types [47]. In the mechanism,
the neighborhood effect was firstly considered based on the first law of geography, which
was expressed as:

αt
p,k =

∑m×m con
(

ct−1
p = k

)
n× n− 1

× wk (2)
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where αt
p,k refers to the neighborhood effect of land use type k on grid cell p at training

time t; wk refers to the weight of different land-use types; ∑m×m con
(

ct−1
p = k

)
refers to

the cell amount of land type k within n× n window at iteration time t− 1. n was set as 3.
The neighborhood weights for six land-use types are shown in Table S3.

The self-adaptive inertia coefficient was defined to regulate the land conversion
probability in light of the total amount of a land-use type under different scenarios. The
inertia coefficient could enhance the inheritance of a land-use type for adjusting the land-
use trend in the next iteration when the conversion trend was negatively correlated with
the total amount. The self-adaptive inertia coefficient was defined as:

Inertiat
k =


Inertiat−1

k i f
∣∣∣Dt−1

k

∣∣∣ ≤ ∣∣∣Dt−2
k

∣∣∣
Inertiat−1

k × Dt−2
k

Dt−1
k

i f Dt−1
k < Dt−2

k < 0

Inertiat−1
k × Dt−1

k
Dt−2

k
i f 0 < Dt−2

k < Dt−1
k

(3)

where Inertiat
k refers to the self-adaptive inertia coefficient of land use type k at time t;

Dt−1
k and Dt−2

k refer to the total amount of land use type k at iteration time t− 1 and t− 2,
respectively.

The conversion cost was set to indicate the possibility of conversion from current
land use type l to target type k. Its value cl→k includes 0 and 1, which refers to impossible
conversion and possible conversion, respectively. In the present work, the conversion costs
of all land use types were set in light of expert knowledge (Table S4).

Through the above-mentioned steps, the combined probability of six land use types
for 2019 at the cell scale could be mathematically defined as:

TPt
p,k = Pt

p,k × αt
p,k × Inertiat

k × cl→k (4)

where TPt
i,k refers to the combined probability of grid cell p from current land use type

to k at iteration time t; Pt
p,k, αt

p,k, Inertiat
k and cl→k refer to the probability-of-occurrence,

neighborhood effect, inertia coefficient, and conversion cost, respectively.
The roulette selection was built to indicate the competition among each cell of different

land-use types, with the aim to capture randomness and uncertainty in land use change.
By using the roulette selection, land-use types with a larger combined probability are more
likely to change, and those with a smaller probability are still possible to change [46].

In this study, we firstly simulated the land use pattern for 2019 based on land use maps
of 2009 and the combined probability of land use change for 2019. The actual land-use
maps of 2019 were then used to validate the simulated land maps of 2019. The indicators of
Figure of Merit (FoM) for five regions were both higher than 0.18, indicating the reliability
of the model for simulating future land use [49]. Then, land use patterns for five capitals in
2029 were simulated by coupling the land use maps of 2019, validated the FLUS model
with future land demands under three scenarios.

3.4. Estimating Carbon Storage Using the InVEST Model

The InVEST model developed by the Natural Capital Project was employed to estimate
carbon storage. In the model, carbon storage, including aboveground carbon, belowground
carbon, soil organic carbon, and dead organic matter carbon, can be calculated by using
land-use types and corresponding carbon densities. As reported by Batjes [50], global
carbon storage in the terrestrial ecosystem (2000–2500 Pg) is mainly composed of vegetation
carbon pool (500–600 Pg) and carbon storage in the upper 1 m soil (1500–1900 Pg). Due
to such a great proportion of vegetation carbon and soil organic carbon, a large body of
previous studies were focused on estimating these two types of carbon storage [17,51,52].
Therefore, we estimated aboveground vegetation carbon and soil organic carbon in this
study by using the given equation:

Ct(x,y) = A×
(

DAbove
t(x,y) + DSoil

t(x,y)

)
(5)
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where Ct(x,y) refers to carbon storage of raster cell (x, y) in land use type t, A refers to each cell
area, DAbove

t(x,y) and DSoil
t(x,y) refer to the aboveground vegetation carbon density and soil organic

carbon density (Mg/ha) in a cell (x, y) of land use type t, respectively. The mean carbon
densities of six land-use types are shown in Table 2. According to He et al. [20], Goldstein
et al. [53], and Sallustio et al. [54], the carbon density of built-up land was set as zero.

Table 2. Carbon densities of six land use types.

Land Use Type Above Ground Carbon (Mg/ha) Soil Organic Carbon (Mg/ha)

Built-up land 0 0
Unused land 8.7 41.6

Forest 157.6 280.3
Cropland 4.8 77.1
Grassland 5 55.2

Water 0 0

4. Results and Discussion
4.1. Future Urban Expansion and Carbon Storage Change
4.1.1. The Simulations of Urban Land Use for Alternative Scenarios

The simulations for urban expansion of 2029 are shown in Figure 3. Five capitals
will experience a dramatic change in both spatial patterns and the amounts of land use.
The BDSs show the most rapid urban expansion with the most considerable amounts of
built-up land. Under the BDSs, built-up land of all capitals will exhibit infilling growth
and edge growth, being likely to be more clustered. Bishkek and Dushanbe will be
increasingly characterized by scattered towns. In Nur Sultan, grassland will be vulnerable
to urban expansion, with 5.88% of its coverage being transformed to built-up land; in
other capitals, cropland and unused land will be the primary sources converted to built-up
land. Under the CPSs, the urban expansion will be the slowest, whose majority will occur
in the central urban areas. The difference between CPS and BDS is that the contiguous
croplands encircling urban areas will be rarely occupied by urban expansion under the
CPS. Croplands within the urban areas in Ashkhabad, Dushanbe, and Tashkent will be
preserved. The EPSs of all regions show moderate urban expansion, which will lead to
urban patterns similar to BDSs. Natural landscapes are forecasted to be well preserved
under the EPSs, particularly in Nur Sultan, Ashkhabad, and Dushanbe. In Nur Sultan
and Ashkhabad, increased grassland will be respectively concentrated in two regions—the
watersides along Ishim River and the piedmont along Kopet-Dag Range. In Dushanbe,
6.3 km2 grassland is predicted to increase, with the northern mountain area absorbing 80%
of the total amount.

4.1.2. Carbon Storage Changes under Three Scenarios

The carbon storage changes of five capitals under three scenarios are shown in Table 3.
Ashkhabad, Bishkek, Dushanbe, and Tashkent will experience a decreasing tendency of
carbon storage under most scenarios. The carbon storage in Tashkent will decrease to
2.61 Tg, 3.29 Tg, and 2.96 Tg under the BDS, CPS, and EPS in 2029, respectively, with a
total decline of 1.05 Tg, 0.37 Tg, and 0.7 Tg, respectively, indicating the lowest capacity
for storing carbon and the largest carbon storage loss. Carbon storages in Bishkek and
Dushanbe are predicted to decrease by 0.65 Tg and 0.52 Tg under the BDS, 0.16 Tg, and
0.16 Tg under the CPS, 0.5 Tg, and 0.17 Tg under the EPS, respectively. These results
are in agreement with previously reported findings that future carbon storage is prone
to decline [18–21]. On the contrary, Carbon storage in Nur Sultan manifests a growing
tendency under all scenarios, with a growth of 0.01 Tg, 0.11 Tg, and 0.14 Tg under the BDS,
CPS, and EPS, respectively. This result has rarely been described in previous literature.
An explanation for the difference between Nur Sultan and previous literature is that carbon
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storage loss will be more than offset by carbon storage growth resulting from increased
forest and cropland in Nur Sultan.
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Table 3. Carbon storage changes under three scenarios (Tg).

Capitals 2019
BDS CPS EPS

2029 +/− 2029 +/− 2029 +/−
Ashkhabad 5.90 5.65 −0.25 6.01 0.11 5.82 −0.08

Bishkek 6.54 5.89 −0.65 6.38 −0.16 6.04 −0.50
Dushanbe 6.01 5.49 −0.52 5.85 −0.16 5.84 −0.17
Nur Sultan 7.32 7.33 0.01 7.43 0.11 7.46 0.14
Tashkent 3.66 2.61 −1.05 3.29 −0.37 2.96 −0.70

By comparing carbon storage change among three scenarios, we found that Ashkhabad,
Bishkek, Dushanbe, and Tashkent will benefit more from the CPSs in carbon storage than
BDSs and EPSs. Under the CPSs, Bishkek, Dushanbe, and Tashkent will have the largest
amount of carbon storage, with the least carbon storage loss; Ashkhabad will experience
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carbon storage growth of 0.11 Tg. This finding differs from that of Jiang et al. [18], who
found that larger carbon storage and less carbon storage loss will occur under the EPSs.
However, EPS will be the most beneficial to Nur Sultan to store carbon, which accords with
the observation of Jiang et al. [18]. The discrepancy can be explained by the different main
sources for carbon storage between Nur Sultan and the other four cities. While forest and
grassland are more responsible for carbon sequestration in Nur Sultan, cropland plays a
crucial role in carbon sequestration in the other four cities. In this regard, carbon storage
will be more preserved when forest/grassland and cropland are protected in Nur Sultan
and the other four cities under CPSs and EPSs, respectively.

4.2. Impacts of Future Urban Expansion on Carbon Storage

As shown in Table 4 and Figure 4, BDSs, CPSs, and EPSs agree on the noticeable
depletion of carbon storage that is triggered by urban expansion in Ashkhabad, Bishkek,
Dushanbe, and Tashkent. It is estimated that urban expansion in four capitals will result in
a decline of 0.73 Tg, 0.25 Tg, and 0.51 Tg carbon storage, at least under the BDS, CPS, and
EPS, respectively. The ratios of carbon storage loss resulting from urban expansion to the
total carbon storage loss are predicted to exceed 0.9 under most scenarios. Carbon storage
in Tashkent will be particularly vulnerable to urban expansion, decreasing by 1.24 Tg,
0.45 Tg, and 1.26 Tg under the BDS, CPS, and EPS, respectively. Furthermore, the ratios
of carbon storage loss induced by urban expansion to the total carbon storage growth in
Bishkek, Dushanbe, and Tashkent will be more than 1.1 under all scenarios. These results
indicate an evident negative impact of future urban expansion on carbon storage, which is
also reported by Jiang et al. [18], Yang et al. [19], He et al. [20], and Zhang et al. [22].

Table 4. The carbon storage losses resulting from urban expansion (Tg).

Capitals BDS CPS EPS

Ashkhabad −0.75 −0.25 −0.75
Bishkek −0.74 −0.31 −0.51

Dushanbe −0.73 −0.57 −1.02
Nur Sultan −0.55 −0.35 −0.38
Tashkent −1.24 −0.45 −1.26

Land 2021, 10, x FOR PEER REVIEW 11 of 18 
 

 

Figure 4. The comparisons between carbon storage loss resulting from urban expansion and the 

total carbon storage loss/growth. Note: L and G refer to the ratio of carbon storage loss induced by 

urban expansion to the total carbon storage loss/growth, respectively. 

Meanwhile, carbon storage in Nur Sultan will show relatively less loss under the in-

fluence of urban expansion. Carbon storage loss resulting from urban expansion under 

the BDS and EPS are predicted to be the smallest, with a decline of 0.55 Tg and 0.38 Tg, 

respectively. The ratios of carbon storage loss resulting from urban expansion to the total 

carbon storage loss/growth will be less than 0.65 under all scenarios. Such small ratios 

indicate an inapparent influence of urban expansion on carbon storage loss. 

4.3. Drivers for Carbon Storage Impact of Land Use Change 

Carbon storage changes in five Central Asian capitals result from three types of land-

use change, which may be driven by the differentiated urban development modes in spe-

cific physical environments. The first type is the carbon storage loss that arose from the 

occupation of cropland by built-up land in Bishkek, Dushanbe, and Tashkent (Figure 5). 

The occupation of cropland by built-up land, mostly distribute surrounding the central 

urban areas (Figure 6), will lead to a loss of 48.5% carbon storage at least under the BDSs 

and EPSs in these three regions but also will result in 42.5% of carbon storage loss at least 

under the CPSs in Bishkek and Dushanbe. This finding accords with previous studies that 

the occupation of cropland by urban land plays a dominant role in carbon storage loss 

[17,20,22]. Such a result may be associated with the agriculture development in Bishkek, 

Dushanbe, and Tashkent as Central Asia entered agrarian society during the past centu-

ries [25]. Bishkek, Dushanbe, and Tashkent are situated in the Chu River Basin, Gissar 

Basin, and Chirchik River Valley, respectively, where prosses flat grounds and fine soils 

for cropland reclamation. The well-known rivers, including Chu River Canal, Varzob 

River, Kafirnigan River, and Chirchik River, provide plenty of possibilities for agricultural 

irrigation. The agriculture-oriented development promotes wheat, corn, and cotton filed 

as prevalent landscapes, facilitating cropland to be the main source of carbon storage. The 

loss of cropland to urban land is thus equal to the loss of carbon storage. The phenomenon 

is evident in Tashkent. As the forest was massively occupied by urban land since the mid-

dle of the 20th century [55], cropland was left to be the sole primary source to store carbon. 

Unfortunately, the growth of Tashkent’s urban agglomeration, population, and industrial 

production results in increasingly limited cropland in the last decade. Currently, the gov-

ernment plans a New City in eastern Tashkent. The planning boosts the projects of eco-

nomic cooperation and infrastructure construction in the BRI, such as building a financial 

center, which will occupy the surrounding cropland. It is thus no surprise that Tashkent 

has the lowest carbon sequestration and will experience the largest carbon storage loss 

among the five regions. 

Figure 4. The comparisons between carbon storage loss resulting from urban expansion and the total
carbon storage loss/growth. Note: L and G refer to the ratio of carbon storage loss induced by urban
expansion to the total carbon storage loss/growth, respectively.

Meanwhile, carbon storage in Nur Sultan will show relatively less loss under the
influence of urban expansion. Carbon storage loss resulting from urban expansion under
the BDS and EPS are predicted to be the smallest, with a decline of 0.55 Tg and 0.38 Tg,
respectively. The ratios of carbon storage loss resulting from urban expansion to the total
carbon storage loss/growth will be less than 0.65 under all scenarios. Such small ratios
indicate an inapparent influence of urban expansion on carbon storage loss.
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4.3. Drivers for Carbon Storage Impact of Land Use Change

Carbon storage changes in five Central Asian capitals result from three types of
land-use change, which may be driven by the differentiated urban development modes
in specific physical environments. The first type is the carbon storage loss that arose
from the occupation of cropland by built-up land in Bishkek, Dushanbe, and Tashkent
(Figure 5). The occupation of cropland by built-up land, mostly distribute surrounding the
central urban areas (Figure 6), will lead to a loss of 48.5% carbon storage at least under
the BDSs and EPSs in these three regions but also will result in 42.5% of carbon storage
loss at least under the CPSs in Bishkek and Dushanbe. This finding accords with previous
studies that the occupation of cropland by urban land plays a dominant role in carbon
storage loss [17,20,22]. Such a result may be associated with the agriculture development
in Bishkek, Dushanbe, and Tashkent as Central Asia entered agrarian society during the
past centuries [25]. Bishkek, Dushanbe, and Tashkent are situated in the Chu River Basin,
Gissar Basin, and Chirchik River Valley, respectively, where prosses flat grounds and fine
soils for cropland reclamation. The well-known rivers, including Chu River Canal, Varzob
River, Kafirnigan River, and Chirchik River, provide plenty of possibilities for agricultural
irrigation. The agriculture-oriented development promotes wheat, corn, and cotton filed as
prevalent landscapes, facilitating cropland to be the main source of carbon storage. The
loss of cropland to urban land is thus equal to the loss of carbon storage. The phenomenon
is evident in Tashkent. As the forest was massively occupied by urban land since the
middle of the 20th century [55], cropland was left to be the sole primary source to store
carbon. Unfortunately, the growth of Tashkent’s urban agglomeration, population, and
industrial production results in increasingly limited cropland in the last decade. Currently,
the government plans a New City in eastern Tashkent. The planning boosts the projects
of economic cooperation and infrastructure construction in the BRI, such as building a
financial center, which will occupy the surrounding cropland. It is thus no surprise that
Tashkent has the lowest carbon sequestration and will experience the largest carbon storage
loss among the five regions.

The second type is evident in Ashkhabad, whose carbon storage loss is triggered by
the simultaneous loss of cropland and unused land to built-up land. In Ashkhabad, the
conversion of cropland to built-up land will contribute to 51.23%, 18.58%, and 52.56% of
carbon storage loss under the DBS, CPS, and EPS, respectively (Figure 5). Also, 55.88 km2,
29.7 km2, and 54.71 km2 of unused lands are forecasted to be developed as built-up land
under the DBS, CPS, and EPS, resulting in 33.45%, 51.55%, and 32.54% of carbon storage
loss, respectively. Carbon storage loss resulting from the transformation of unused land to
built-up will be distributed along the piedmont along Kopet-Dag Range, and that resulting
from the occupation of cropland by the urban expansion will mainly occur along the
Karakum Canal and M37 Road (Figure 6). These unique characteristics of carbon storage
loss and land-use change in Ashkhabad can be explained by the desert city development.
The city is born with extensive deserts and barren mountains located in the join between
the Karakum Desert and the Kopet-Dag Range. Its dry climate and infertile soils give rise to
the unsuitability for most areas to develop crops, forests, and grasses. Barren land has thus
long been the most dominated landscape in the region that was the main source of built-up
land. However, the opening of the Karakum Canal in 1962 opened a new possibility
for urban development. Agricultural irrigation and life demands were satisfied by the
abundant water from the canal. In the urban fringe, both sides along the Karakum Canal
were exploited as cropland, which nowadays was the other source to store carbon; Within
the central city, both sides were evolved into prime locations for urban construction projects.
Unfortunately, given the greater significant economic benefit of urban construction, the
cropland along the Karakum Canal will be vulnerable to future urban growth.
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The third type is typical in Nur Sultan, whose forest and cropland development lead
to the enhancement of carbon storage. The increase of forest and cropland will contribute
to a growth of 0.83 Tg, 0.85 Tg, and 0.87 Tg carbon storage under the BDS, CPS, and EPS,
respectively, accounting for more than 95% of the total carbon storage growth. These
growths will offset 95.9%, 100%, and 100% of the total carbon storage loss under BDS,
CPS, and EPS, respectively. The carbon storage growth from forest development will
be distributed in the western bogs and along the Ishim River, and that from cropland
development will be mostly distributed in the city’s periphery (Figure 6). The possible
explanations for the type in Nur Sultan are prioritized development of the central city and
green development. Firstly, the priority of central city development prevents suburban
development from occupying cropland. Since Nur Sultan was approved as the new
capital of Kazakhstan in 1997, the city planned new government building projects and
infrastructures along the south of the Ishim River, which was focused on developing the
central city. The planned construction for the central city will be continued until 2030 [56].
Numerous projects from the BRI are primarily distributed in the central city, including light
rail projects, ring road projects, water supply engineering, etc. As a result, the possibility of
future growth is estimated to be higher as closer to the central city [57]. Inversely, towns
and villages surrounding Nur Sultan are standing still since 1991 [56]. This prevents outer
suburban from large-scale built-up land growth and thus preserves cropland. Secondly,
green development is committed to developing forests and thus maintains the integrality
of the carbon pool. Master Plan and Genplan, conducted by planners with the forestry
department, exert positive impacts on preserving steppe and fostering forests [55]. For
example, ongoing green space projects and afforestation projects are implemented to
build green zone around populated areas, create forest lines along rivers, and foster green
networks along roads; the sanitary and protected green zone of Nur Sultan is implemented,
with an area of 30,000 ha [55]. So far, the green belt surrounding Nur Sultan is partially
completed with an area of 65,000 ha, supposed to continue growing and contribute to an
increase of carbon storage.

4.4. Implications for Future Urban Growth

Comparing carbon storage impacts of future urban expansion among five capitals
under three scenarios can be useful for implementing an appropriate strategy in the BRI.
Ashkhabad, Bishkek, Dushanbe, and Tashkent show similar trends in carbon storage loss
in the future urban expansion, although distinct priorities about the BRI were considered in
setting scenarios. Authorities, planners, and enterprises should be sensitive to the carbon
storage impact of urban expansion in the BRI. Higher environmental standards, advanced
energy technologies, and low-carbon incentives should be introduced in the BRI [33,35].
Meanwhile, it should be noted that the CPS tends to result in less carbon loss than the
BDS and the EPS in most capitals (Tables 3 and 4), indicating the good potential of the
agriculture developmental strategies of the BRI for storing carbon in those four capitals.
However, due to the best capacity of carbon storage in the EPS, emphasizing ecological
governance in the BRI may be a better choice for carbon storage in Nur Sultan.

This study can also provide planning implications for future urban growth according
to distinct characteristics and drivers for the carbon storage impact of land-use change. In
the surroundings of Bishkek, Dushanbe, and Tashkent, only cropland is widely distributed;
hence, cropland loss is playing a dominant role in the reduction of carbon storage. Au-
thorities and planners should put a high priority on the balance between urban expansion
and agricultural development when drawing up urban planning. In these regions, urban
edge-growth will be the most likely way of future urban expansion (Figure 3). Under the
circumstances, appropriate urban edge-growth by occupying cropland for future urban-
ization should be approved. Planning efforts should be put into limiting the suburban
frog-leap growth that may consume cropland, to guarantee the carbon stock of cropland
and prevent inefficient urban expansion at the utmost. Agricultural activities such as crop
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rotation, applying organic fertilizer, and addressing land degradation that may contribute
to accumulating soil organic matters and vegetation biomass should be encouraged [58].

Nevertheless, the policy implications in Bishkek, Dushanbe, and Tashkent cannot
be replicated by Ashkhabad due to the disparate physical environment among these
regions. In Ashkhabad, barren land is the primary characteristic, with extensive coverage
and less carbon density. The first goal to preserve carbon storage should be focused on
simultaneously converting unused land to a built-up area and preventing the occupation
of cropland, grassland, and water from urban expansion. The spacious unused land
surrounding the city provides a deal of possibility for urban expansion, which can be
preferentially included in future urban planning. Cropland and grassland along the
Karakum canal, which take advantage of water resources, should be strictly occupied by
future urban expansion. Meanwhile, considering the high cost of fostering vegetation for
sand breaks, building new green infrastructures within urban areas is more feasible to
enhance carbon sequestration.

In Nur Sultan, carbon storage will be immune to the adverse impacts of urban expan-
sion in the next decade due to the extensive distribution of steppe, forest, and cropland.
Therefore, urban growth will be the primary task for Nur Sultan, given that the planned
construction of Nur Sultan is supposed to be completed in 2030. Nur Sultan should focus
on progressive development in the central city since nearby towns are relatively under-
developed. More attention should be paid to the concern about the trade-off between
ecological protection and agricultural development. The great carbon storage of Nur
Sultan is supported by high-quality ecological conditions. Thus, it is necessary to strictly
protect carbon-rich natural landscapes, such as supporting ongoing green plans and pro-
hibiting bog reclamation. Meanwhile, as the main source to produce food and support
economic development for Nur Sultan, sufficient cropland for agricultural development
is needed. Reclaiming steppe and unused land for cropland shall be allowable, due to it
takes advantage of fertile soils but also preserves carbon density as high as steppe.

4.5. Uncertainties

Our study has several uncertainties. Firstly, the carbon density of built-up land still
remains uncertain in the existing literature. While soil organic carbon density of built-up
land in this study was defined as 0 according to Goldstein et al. [53] and Sallustio et al. [54],
a certain value for that was determined through field surveys by Yan et al. [59]. When
above-ground carbon density (81.3 Mg/ha) and soil organic carbon density (167.7 Mg/ha)
of built-up land are taken into account according to Li et al. [26], carbon storage of five
capitals will be above 13 Tg under all scenarios, being 6.5 Tg higher than current results at
least (Table S5). Meanwhile, five capitals will experience carbon storage growth under three
scenarios, with most above 0.5 Tg. Secondly, soil organic carbon density of unused land in
deep soil is greater than that in topsoil. When soil organic carbon density (118.9 Mg/ha) of
unused land is calculated in a depth of 3 m, according to Li et al. [26], carbon storage and
carbon storage loss in Ashkhabad, Bishkek, and Dushanbe will be 1.5 Tg and 0.35 Tg more
than current results at least under most scenarios, respectively. Nevertheless, these two
values in Tashkent will be approximate to current results. To deal with the above uncer-
tainties, it is necessary to combine field observations and related literature for determining
carbon densities of built-up land and unused land.

5. Conclusions

Simulating the impacts of urban expansion on carbon storage was widely conducted
across the globe. Nevertheless, while a plethora of literature focused on quantifying the
impact of urban expansion on carbon storage, few attempts were made from a comparative
perspective, particularly in Central Asian Republics. In this study, three scenarios—BDS, CPS,
and EPS—according to the BRI experiences in Central Asian Republics were defined. The
impacts of urban expansion on carbon storage in Central Asian capitals for 2029 under BDS,
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CPS, and EPS were assessed and compared. Furthermore, the drivers for the carbon storage
impacts of future expansion from a perspective of urban development were analyzed.

The results show that urban edge-growth is likely to be prevailing in five capitals under
all scenarios. Carbon storage in Nur Sultan shows an increasing tendency from 2019 to
2029 under three scenarios, which will preserve the most carbon storage under EPS. In
contrast, Ashkhabad, Bishkek, Dushanbe, and Tashkent will experience a decrease in carbon
storage from 2019 to 2029 and have the best capacity for preserving carbon storage under
CPS. The urban expansion will result in above 0.9 of ratios to carbon storage loss under
most scenarios, except in Nur Sultan. The carbon storage consequences of urban land-use
change in five capitals are driven by the different urban development modes, including (1)
agricultural development in Bishkek, Dushanbe, and Tashkent, (2) desert city development
in Ashkhabad, and (3) prioritized the development of the central city and green development
in Nur Sultan. Therefore, it is necessary to formulate appropriate urban growth strategies
for different Central Asian capitals in the context of the BRI according to the different
characteristics and drivers in carbon storage consequences of future urban expansion.
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