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Abstract: The exploration of crop seasonality across a region offers a way to help understand the
phenological spatial patterns of complex landscapes, like agricultural ones. Knowing the role of
environmental factors in influencing crop phenology patterns and processes is a key aspect for
understanding the impact of climate and land use changes on agricultural landscape dynamics. We
identified pixels with similar phenological behavior (i.e., pheno-clusters) and compared them to the
land cover map of the study area to assess the role of the land management component in controlling
the phenological patterns identified. Results demonstrated that soil texture is the most important
factor for permanent crops, while large amount of rainfall and high values of available water content
are the main drivers in spring cultivations (i.e., irrigated crops). Scarce water availability (in terms of
soil texture, low annual precipitation and high minimum temperature) represented the main driving
factor for non-irrigated crops, whose phenology is characterized by summer drought and fall-winter
productivity. Compared to vegetation maps that use only land cover from a single season or period,
using seasonality of the NDVI time series to classify the agricultural landscape provides different
and more ecologically relevant information about croplands.

Keywords: agroecosystem; Copernicus Sentinel-2; Mediterranean; multivariate analysis; phenology

1. Introduction

Phenology is the study of the timing of recurring biological events, the causes of their
timing, and the related biotic and abiotic driving forces [1]. Accordingly, phenology can
contribute to many scientific disciplines, from climate change, biodiversity, agriculture,
and forestry to human health. The knowledge of timing of phenological events and their
spatial variability can provide valuable data for land-use planning, crop zonation, pest
control, species conservation and protection, and pollen release and its implications for
human health [2].

The investigation of phenology has a long tradition in agriculture and its long-term in-
terest has come from the need for understanding plant development and growth dynamics
and their relation to the surrounding environment. Recently, considerable literature [3,4]
has grown up around the topic of crop phenology as an important parameter for crop
growth monitoring, yield prediction, growth simulation, and decision-making tools to face
climate change.

As the impacts of climate change intensify, the need to understand the functioning
of the agro-ecosystems has stimulated scientific communities to elucidate environmental
controls on vegetation dynamics [5]. Phenology variables are indicated as some of the most
sensitive data to climate conditions, and therefore represent key indicators of crop growth
and development and play an important role in vegetation monitoring [6]. However,
compared to natural vegetation, crop growth is not only driven by natural (climate and soil)
conditions, but also modified through field management activities. Agro-ecosystems are
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strongly affected by natural conditions and human activities [4,7,8]. Patterns in crop growth
are influenced by processes involving land use type, soil conditions, water availability,
and regional climate [8,9], and any changes in crop phenology are closely related to these
environmental controlling factors.

Satellite-based observations with a wide spatial coverage and short revisit times have
become a valuable tool for monitoring vegetation growth and retrieving vegetation phenol-
ogy based on remotely sensed vegetation index (VI) time-series data [4,10,11]. Vegetation
index time series are powerful indicators reflecting the dynamics of vegetation growth
and vegetation coverage, such as the Normalized Difference Vegetation Index (NDVI) [12].
The NDVI is the most used vegetation index applied in agricultural applications and is
a measure of photosynthetic capacity of the vegetation cover [13]. The advantage of this
method is that vegetation phenological information can be continuously monitored at local
to global scales. On the downside, it must be noted that the satellite-based indicators do not
directly infer crop development stages (in sensu stricto), but are, instead, monitoring crop
growth and the intra-seasonal variations of the agricultural land cover [14], which is not
always closely linked to key developmental events [4]. For this reason, the scientific com-
munity generally refers to land surface phenology (LSP) when satellite-based techniques
are used [3].

The appearance of crop profiles is affected by regional variations in climate, soil and
management practices, and satellite images help to interpret crop vitality, soil properties,
and climate stress. Hence, using VI time series, information about cropping phenology pat-
terns can be extracted by examining the number of peaks in a vegetation index time series,
which corresponds well to the growing cycles of crops, such as heading, maturing, and
senescence [8]. For example, vegetation index time series of single cropping presents only
one growth cycle per year, while that of double cropping presents two cycles [15]. Hence,
cropping phenology patterns of a territory can be identified and mapped by examining
the periodic variations in the vegetation index time series [8,16,17]. The crop seasonality
should be accounted for by setting-up individual crop profiles for each homogenous agro-
region [18,19]. Therefore, quantifying how cropping phenology patterns respond to this
environmental forcing at landscape scale is crucial for understanding crop spatio-temporal
dynamics [20].

While in forestry the role of the environmental factors in influencing forest phenology
patterns and processes at territorial scale has been largely explored [21–23], in agricul-
tural studies this kind of research question has received less attention, maybe due to the
more dynamic character of agricultural systems [19] and the major interest towards crop
type identification (Gao and Zhang, 2021, [24]). Liu et al. [25] developed a phenology-
based method to identify cropping patterns, but they did not consider any environmental
variables as drivers. Wu et al. [26] proved that spatial patterns of cropping systems and
phenology in Chinese cropland were highly related to the geophysical environmental fac-
tors, but without taking into account the impacts of biophysical forces and anthropogenic
drivers. The knowledge of phenological patterns and their different drivers at landscape
scale can provide a valuable support tool for planning agricultural land use conversion,
managing climate change impacts, and developing adaptative strategies. The main impacts
of climate change on agriculture include soil production decline, water security declines,
and increasing frequency of weather extremes [27]; in this perspective, how landscape is
organized and managed is central to achieving a balance between productive and other
ecosystem services. A key challenge is therefore facing the lack of spatially differentiated
management approaches since climate change causes regionally differentiated impacts [27].
To fill this research gap, in this study we propose a multivariate approach that is based on
temporal NDVI profiles of crop types to quantify the dependency of crop seasonality on
multiple environmental drivers, at landscape scale. The proposed method aims to identify
crop seasonality using a three-year NDVI times series from Sentinel-2, to quantify the role
of the main biophysical and land management controlling factors on the identified crop
phenology patters, and to map such patterns.
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2. Materials and Methods
2.1. Study Area

The study area is located in the Capitanata plain (Foggia province), the second largest
plain in Italy (about 7000 km2), in the northern part of Apulia region placed in the south-
eastern part of Italy (Figure 1). The regional topography is mainly flat or slightly sloping,
except for the Gargano area, situated in the northwest of the region. The climate of the
study area is classified as Mediterranean semi-arid, characterized by moderately cold and
rainy winters and dry summer seasons. Annual rainfall (avg. 550 mm/year) is unevenly
distributed throughout the year, being mostly concentrated during the winter months.
Long-term mean air temperature is 15.4 ◦C, while the average minimum and maximum
yearly temperatures are 3.5 and 29.5 ◦C, respectively; however, temperatures may fall
below 0 ◦C in winter and rise above 40 ◦C in summer. The soil texture of this area is
predominantly and homogenously clay, apart from a southern sandy clay loam area [28].
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Due to its climatic conditions and land characteristics, Apulia is one of the most
important regions in Italy for the agriculture production: in particular Foggia province is
important for wheat, vegetables, and olive production, accounting for about 12%, 13%, and
4% of the wheat, total open air growing area, and the amount of olive surface at national
level, respectively [29].

2.2. Environmental Data

In the present study the environmental data considered are soil variables (SOIL),
climate information (CLIM), and land use (LU).

The soil profiles were extracted from the National Soil Database (NSD; https://esdac.
jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy, accessed on 17 June 2021),
complete of physical and chemical analytical data. Soil information gathered and har-
monized in the NSD was collected from different soil survey projects: 169 soil mini-pits
from the statistical monitoring program of the Italian Ministry of Agricultural and Forestry
Policies, and 95 soil profiles from soil survey of Apulia Region at 1:50,000 scale. This set of

https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy
https://esdac.jrc.ec.europa.eu/content/carta-dei-suoli-ditalia-soil-map-italy
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264 georeferenced sample points, distributed throughout the study area, were characterized
with the biophysical variables described in the following sections.

The pedological (SOIL) variables selected are (Table 1): texture (sand and silt), soil
organic carbon content (OCC), and available water content (AWC). We considered these
variables because they are strictly connected with the crop growing. Soil texture indicates
the relative content of particles of various sizes, such as sand, silt, and clay in the soil; it is an
important soil characteristic that influences stormwater infiltration rates and consequently
how much water is available to the plant [30]. It is one of the most important properties
of a soil since it greatly affects crop production, land use, and management The OCC is
important to soil nutrient status in agroecosystems, has an important role in the physical,
chemical, and biological function of agricultural soils [30]. AWC is an indicator of a soil’s
ability to retain water and to make it sufficiently available for plant use. AWC is the water
held in soil between its field capacity and permanent wilting point [31].

Table 1. Soil data statistics in the study area.

Sand (%) Silt (%) OCC (Unitless) AWC (Unitless)

Min 0.5 0.5 0.14 59.07
Max 96.5 80 4.5 219.14

Mean 28.8 35.43 1.28 140.70

Climatic (CLIM) variables were acquired from the WorldClim V2 dataset (http://
www.worldclim.org/bioclim, accessed on 17 June 2021) which is a set of 1970–2000 global
climate layers (monthly gridded temperature and precipitation data) with a spatial reso-
lution of 1 km2 [32]. Even though the NDVI dataset refers to 2017–2019 and in 20 years
there could have been evident variations in climate, their effects on crops may involve
the associated responses (e.g., anticipation in the growing season, prolonged duration,
enhancer the production), rather than the kind of influence itself. Furthermore, WorldClim
V2 dataset represents climate annual trends, seasonality, and extreme or limiting factors,
and consequently it has been widely used for agroecological studies. The climatic variables
considered in this study were the following: Max Temperature of Warmest Month (Tmax),
Min Temperature of Coldest Month (Tmin), Annual Precipitation (Ptot). For each soil sample
point, the corresponding CLIM variables were extracted.

Land management information of the study area were derived from the Land Use
(LU) map of Apulia region (www.sit.puglia.it, accessed on 17 June 2021). The LU map
referred to year 2011 and was realized according to the Corine Land Cover (CLC) project
(https://www.eea.europa.eu, accessed on 17 June 2021). Since agricultural land (class 2)
in CLC database for Apulia region did not change much from 2012 and 2017—only 0.06%
(from 15,615.7 km2 in 2012 to 15,606.2 km2 in 2017) [33], in this study the LU map was
chosen for its relatively higher spatial resolution (1:5000) with respect to the CLC map,
although it is older. For this study, only agricultural classes were selected (Table 2).

Table 2. Main agricultural land use classes of the Capitanata plain and their surface.

LU Code Description Surface (ha)

211 Non irrigated arable land 70,915
212 Permanently irrigated lands 181,107
221 Vineyards 28,563
223 Olive groves 28,858

2.3. Satellite Data

For this research, Copernicus Sentinel-2 (S2) imagery of the study area was collected
for years 2017, 2018, and 2019. All available images were downloaded and analyzed
through Google Earth Engine platform (https://code.earthengine.google.com, accessed
on 17 June 2021) [34]. S2 imagery was collected with an approximate 5-day temporal

http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
www.sit.puglia.it
https://www.eea.europa.eu
https://code.earthengine.google.com
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resolution. Band 4 (red, 10 m spatial resolution) and band 8 (near infrared, 10 m spatial
resolution) were used to compute NDVI. Images featuring more than 5% of clouds and
cirrus pixels were discarded. Cloudy pixels on remaining images were masked using
the QA60 bit-mask band provided. The QA60 band masks opaque and cirrus clouds at
60 m spatial resolution. Due to its coarser resolution than the optical bands, NDVI may be
computed on undetected cloudy pixels, particularly at the boundary between the cloud
and non-cloud mask [35], resulting in out of bound values. NDVI profiles for the sample
points were collected, and profiles consisting of less than 15 time points per year were
discarded. To address the removal of entire cloudy images, the masking of cloudy pixels
and the presence of out of bound NDVI values at the cloud’s boundaries a harmonic model
of time was fitted to each profile and NDVI harmonic trajectories were predicted every
15 days (Figure 2):

ˆNDV It,x,y = αx,y + δx,yt +
3

∑
ω=1

[
βω,x,ycos(2πωt) + γω,x,ysin(2πωt)

]
(1)

where α,δ,βω, and γω are harmonic model coefficients fitted to each (x,y) coordinates pair.
The resulting datasets consisted of 25 images per year (Table 3); for each sample point, the
modeled temporal trajectories for the years 2017, 2018, and 2019 have been extracted.

Land 2021, 10, 656 5 of 13 
 

2.3. Satellite Data 
For this research, Copernicus Sentinel-2 (S2) imagery of the study area was collected 

for years 2017, 2018, and 2019. All available images were downloaded and analyzed 
through Google Earth Engine platform (https://code.earthengine.google.com, accessed on 
17 June 2021) [34]. S2 imagery was collected with an approximate 5-day temporal resolu-
tion. Band 4 (red, 10 m spatial resolution) and band 8 (near infrared, 10 m spatial resolu-
tion) were used to compute NDVI. Images featuring more than 5% of clouds and cirrus 
pixels were discarded. Cloudy pixels on remaining images were masked using the QA60 
bit-mask band provided. The QA60 band masks opaque and cirrus clouds at 60 m spatial 
resolution. Due to its coarser resolution than the optical bands, NDVI may be computed 
on undetected cloudy pixels, particularly at the boundary between the cloud and non-
cloud mask [35], resulting in out of bound values. NDVI profiles for the sample points 
were collected, and profiles consisting of less than 15 time points per year were discarded. 
To address the removal of entire cloudy images, the masking of cloudy pixels and the 
presence of out of bound NDVI values at the cloud’s boundaries a harmonic model of 
time was fitted to each profile and NDVI harmonic trajectories were predicted every 15 
days (Figure 2): 

^௧,௫,௬ܫ ܸܦܰ = ௫,௬ߙ + ݐ௫,௬ߜ + ൣߚఠ,௫,௬ܿݏሺ2ݐ߱ߨሻ + ሻ൧ଷݐ߱ߨሺ2݊݅ݏఠ,௫,௬ߛ
ఠୀଵ  (1)

where ߚ,ߜ,ߙఠ , and ߛఠ  are harmonic model coefficients fitted to each (x,y) coordinates 
pair. The resulting datasets consisted of 25 images per year (Table 3); for each sample 
point, the modeled temporal trajectories for the years 2017, 2018, and 2019 have been ex-
tracted. 

 
Figure 2. Six exemplary sample points of NDVI values collected for year 2017 (cyan dots) and harmonic models of time 
fitted to them (red lines). Missing NDVI values were due to cloudy image removals and clouds masking. 
Figure 2. Six exemplary sample points of NDVI values collected for year 2017 (cyan dots) and harmonic models of time
fitted to them (red lines). Missing NDVI values were due to cloudy image removals and clouds masking.



Land 2021, 10, 656 6 of 13

Table 3. Correspondence between NDVI temporal bands and date.

Temporal
Bands Date DOY Temporal

Bands Date DOY

b01 1-Jan 1 b14 15-Jul 196
b02 16-Jan 16 b15 30-Jul 211
b03 31-Jan 31 b16 14-Aug 226
b04 15-Feb 46 b17 29-Aug 241
b05 2-Mar 61 b18 13-Sep 256
b06 17-Mar 76 b19 28-Sep 271
b07 1-Apr 91 b20 13-Oct 286
b08 16-Apr 106 b21 28-Oct 301
b09 1-May 121 b22 12-Nov 316
b10 16-May 136 b23 27-Nov 331
b11 31-May 151 b24 12-Dec 346
b12 15-Jun 166 b25 27-Dec 361
b13 30-Jun 181

2.4. Methodology

The multivariate approach used in this work consists of three steps according to the
flowchart of Figure 3.
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First, information on the crop phenology of Capitanata was obtained from the S2
NDVI modeled time-series from 2017 to 2019 (25 images per year). On this basis, we per-
formed a Principal Component Analysis (PCA) to summarize the phenological information
associated to the temporal bands of the three annual NDVI time-series [14,36] and took
into consideration the first three PCs.

In the second step, we performed a Redundancy Analysis (RDA) on the sample
points to explore the explanatory power of the quantitative biophysical drivers on the
crop phenology patterns through the years. RDA is a supervised multivariate statistical
technique that measures redundancy, i.e., the proportion of the total variance of one set
of response variables explained by a canonical variate from another set of explanatory
variables [37]. Accordingly, the RDA axes represent the percentage of the variance of the
response variables explained by the predictors. The first three PCA axis of each year were
considered as response variables, while the bioclimate and soil variables were used as
predictors. Due to their high heterogeneity, the explanatory variables were standardized
prior to analysis.

Then, to identify homogeneous units in terms of phenology patterns (i.e., pheno-
clusters, PhCls), a k-Means (kM) classification was performed all over the study area based
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on the first three PCA axis of each year, and the mean NDVI annual profile for each cluster
was computed. Finally, to compute the separation among the different pheno-clusters in
terms of land use, we carried out a Corresponding Factor Analysis (CFA) across the whole
study area. The CFA is a multivariate technique that detects associations and oppositions
existing between categorical subjects (LU types) and objects (PhCls), measuring their
contribution to the total inertia for each factor [38]. All the statistical analysis of this study
were performed with XLSTAT [39].

3. Results

The PCA of the NDVI temporal bands provided high proportions of explained vari-
ance for the first three principal axes (PC1, PC2 and PC3), 80% for 2017, 79% for 2018, and
77% for 2019, respectively (Figure 4). According to Figure 5, all the three years behaved
similarly: the first PC is mainly related to the summer NDVI temporal bands, while the
second PC to the fall-winter bands, and the third PC to the spring ones. Accordingly, the
first three PCs can be considered a synthetic expression of the crop annual seasonality in
terms of timing and number of productivity peaks.
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Figure 5. Histogram of the Principal Component Analysis (PCA) factor loadings of the NDVI
temporal bands over the first three PC axis (year 2019 as an example).

The canonical axes obtained from the RDA between the first three PCs and the CLIM and
SOIL driving variables (Figure 6) explained about 80% of the total variance of the response
variables, with a high significance level (p < 0.001). Considering the coarse-scale approach
of this study, this result proves the strong influence of soil and climate on the vegetation
seasonality of Capitanata crops, and that for the three years considered the PCs have the
same phenological meaning. RDA demonstrated that PC1 is guided by soil variables, while
PC2 and PC3 by climatic ones. In detail, crops with summer productivity (i.e., PC1) are
mainly driven by soils with high value of sand in the texture and low values of OCC. To
the contrary, crops characterized by a fall-winter productivity (i.e., PC2) are controlled by
high Tmin, high variability in annual precipitations, and low AWC values. Meanwhile, PC3,
linked to spring productivity, resulted as explained by low Tmax, large amount of annual
precipitation, and soils with high value of silt in the texture. This means that crops with high
summer NDVI values, and thus with peak of productivity during the dry season, are usually
associated to drained soils. Crops with high PC2 values, i.e., autumn-winter crops, mainly
depend on mild winter times and a marked alternance of dry and wet period. Finally, crops
with high spring NDVI values, and thus with a peak of productivity during the wet season,
are controlled by abundant rainfall and high available water content.

The k-Means classification allowed distinguishment of four phenologically homoge-
neous clusters, called pheno-clusters (PhCls). Figure 7 shows their mean annual NDVI
profile. PhCl1 showed highest NDVI values during the summer season and moderate
values in the other months; this could represent the typical NDVI curve of permanent tree
crops (i.e., vineyards, olive groves, and fruit trees). PhCl2 showed an opposite, bimodal
behavior: low NDVI values during the dry season and high NDVI values during spring
and fall-winter. PhCl2 is characterized by a rainfed crop NDVI curve, with homogeneous
coverage: during the summer season NDVI values are low, approximately between 0.2 and
0.4, like for grasslands, and it could be associated with rainfed pastures, largely diffuse in
the Capitanata.
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Figure 7. Mean NDVI profile of the four pheno-clusters (PhCls) identified.

PhCl3 and PhCl4 showed a marked unimodal NDVI curve with a peak in spring in
both cases, but with different intensity, lower in the former (NDVI value around 0.5) and
higher in the latter (NDVI value around 0.7). During summertime, NDVI presents very
low values, less than 0.2, typical of bare soil, and these curves could be associated with
rainfed arable land. The NDVI of PhCl4 has the typical curve related to a single winter
cropping system, like winter wheat which is the dominant cultivation in this area.

The CFA biplot of Figure 8 (about 83% of explained variance) shows that the PhCl1
is positively correlated with the agricultural LU class of 221 and 223, while LU class 211
corresponds to two different pheno-clusters: PhCl2 and PhCl4, classes associated at typical
NDVI related to single winter crops. The non-irrigated arable lands (211) resulted as mainly
explained by high late spring NDVI-based productivity; the presence of this LU type is
mainly linked to the water load derived from the early spring precipitations which nourish
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the subsequent growing season. The irrigated arable lands (212) were mainly characterized
by high NDVI values during spring-summer, and low NDVI values in winter; this LU
type is the less dependent on the precipitation seasonality, due to the human-based water
provision, and hence its NDVI-based productivity can continue also during the dry months.
Finally, the LU classes of vineyards and olive groves (221 and 223, respectively) were
explained by high values of NDVI-based productivity from summer to winter; this LU
type represents a perennial tree cropping system, able to sustain the summer dryness and
to maintain green leaves until fall-winter, when the photosynthetic activity gradually stops,
or even beyond (e.g., olive groves are evergreen crops). Figure 9 shows the distribution of
the pheno-clusters throughout the study area.
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4. Discussion

This paper attempted to identify crop phenology patterns in a robust and cost-efficient
way across a large agricultural landscape in a Mediterranean region and potentially in
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retrospective, by using a multivariate approach. In this study, the spatial and temporal
variability of crop growth was assessed using remote sensing phenological information in
relation to the main biophysical and anthropogenic drivers. Accordingly, our study demon-
strates the potential of satellite-based phenology to provide information about temporal
and spatial variability of crop growth across a typical Mediterranean landscape, which,
additionally, may provide relevant information for agricultural management. Phenological
patterns provide comprehensive insight of the spatio-temporal crop growth variability
across the variable seasons, which advances our understanding of the crop responses to
changing conditions, at local to regional scale [40]. The method proposed in this study
provides a pathway towards effective estimation and monitoring of crop growth variability
through time and space, which is a key concern for sustainable agriculture success. It can be
used to develop future, more detailed studies to fully utilize the potential of phenological
indicators for site characterization, monitoring, and prevision of the impact of extreme
weather events, identification of crop response patterns to a disease, etc.

Results confirmed that climate, in terms of precipitation and air temperature, is the
main driver of phenology in a Mediterranean landscape, in particular for arable crops,
by controlling soil moisture and water availability to plants and affecting evapotranspi-
ration [41]. Precipitation seasonality, high temperature, and consecutive droughts in this
region strongly affect the crop cover dynamics and have resulted in adaptations of farm-
ing system management in response to climatic variation. These factors could all have
affected the phenological variability and the productivity of the cropping systems in the
study region, resulting in phenological changes over space. The results from this study
are expected to represent a framework for other investigations about agriculture adapta-
tion and mitigation strategies, for instance, to drought and water stress. The phenology
datasets and the trend results could be combined with climate data to estimate the crop
water requirements and provide a tool for landscape managers and stakeholders to make
decisions for the extension of agricultural areas according to the available water resources
in a context of water stress. In this study, we simplified anthropogenic factors into generic
land use, therefore, further work is needed to separate the effects of climate and human
activities fully and precisely on agroecosystems at local scale [23].

Furthermore, the framework presented allowed to map the crop phenology pattern dis-
tribution across the landscape. Due to the dynamic character of agricultural systems, crop
mapping based on multi-temporal approaches is superior to single-date image analyses [19].
While traditional approaches using classification algorithms entail field observations to
train or test the classifier, the use of crop-specific VI temporal profiles (i.e., behavior of a
certain crop type throughout the year) is independent of ground truth data [19]. Several
studies investigated the use of crop-specific seasonal profiles for crop discrimination and
mapping at different spatial scales, from local to regional level [18,19]. VI temporal features
are taken as the major theoretical basis for distinguishing crops from other vegetation,
and one crop type phenology from another [41]. Time-series-based methods for cropping
pattern identification exploit the fact that VI annual trends representing a specific crop
seasonality are usually more similar than profiles representing different crops [19,42].

5. Conclusions

Our analysis demonstrates the potential of phenology to assess crop growth variability
and to provide a comprehensive understanding of the joint role of soil, climate, and land
use on crop seasonality. Single vegetation index images have been successfully utilized
to recognize crop variability across a region [43,44]. However, the single image approach
has been criticized for lacking information on intra-seasonal growth dynamics [45]. Multi-
seasonal images and the associated phenological patterns allow the revelation of the
intra-annual biophysical properties of crops across the landscape, as jointly driven by
soil, climate, and land use [40]. This potentially provides a better understanding of crop
variability, which is a key factor to improve management practices at farm level and to
monitor land use changes in agricultural areas.
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Furthermore, the method presented in this analysis shows the efficacy of phenology
to recognize crop growth variability, obtained in a cost-effective way, over large areas,
using high resolution satellite. Considering the increasing availability of remote sensing
imagery, the spatio-temporal variability estimation using phenological patterns can provide
valuable information for agriculture suitability assessment, in terms of energy demand and
water stress. Currently, Sentinel-2 is the appropriate imagery for such analysis thanks to
its high spatial and temporal resolution, suitable to study heterogeneous landscapes, like
agricultural ones, and seasonal phenomena, like those related to crop phenology.
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