The Energy System of an Ecovillage: Barriers and Enablers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bernthal, F.; Dowdeswell, E.; Luo, J.; Attard, D.; Vellinga, P.; Karimanzira, R.; Climate Change. The IPCC Response Strategies. World Meteorological Organization, United Nations Environment Program. 1990. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/ipcc_far_wg_III_full_report.pdf (accessed on 22 May 2021).
- Vajda, G. Energia és Társadalom; MTA: Budapest, Hungary, 2009. [Google Scholar]
- Vajda, G. Okok és Következmények az Energetikában; Akadémia Kiadó: Budapest, Hungary, 2014. [Google Scholar]
- European Court of Auditors. Uniós üvegházhatásúgáz-Kibocsátások: A Kibocsátásokról Megfelelően Beszámolnak, de Jobb Rálátás Szükséges a Jövőbeli Csökkentésekre. LU: Publications Office. 2019. Available online: https://op.europa.eu/webpub/eca/special-reports/greenhouse-gas-emissions-18-2019/hu/ (accessed on 21 April 2021).
- Hitchcock, G. An integrated framework for energy use and behaviour in the domestic sector. Energy Build. 1993, 20, 151–157. [Google Scholar] [CrossRef]
- Wilk, R. Consumption, human needs, and global environmental change. Glob. Environ. Chang. 2002, 12, 5–13. [Google Scholar] [CrossRef]
- König, W. Energy efficiency in industrial organizations—A cultural-institutional framework of decision making. Energy Res. Soc. Sci. 2020, 60, 101314. [Google Scholar] [CrossRef]
- Ma, G.; Lin, J.; Li, N.; Zhou, J. Cross-cultural assessment of the effectiveness of eco-feedback in building energy conservation. Energy Build. 2017, 134, 329–338. [Google Scholar] [CrossRef]
- European Commission. Closing the Loop—An EU Action Plan for the Circular Economy. 2015, p. 21. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:8a8ef5e8-99a0-11e5-b3b7-01aa75ed71a1.0012.02/DOC_1&format=PDF (accessed on 27 April 2021).
- Eurostat. Greenhouse Gas Emissions by IPCC Source Sector, EU-27, 2018. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=File:Greenhouse_gas_emissions_by_IPCC_source_sector,_EU-27,_2018.png (accessed on 21 April 2021).
- Yang, X.; Liu, Y.; Wang, M.; Bezama, A.; Thrän, D. Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition. Land 2021, 10, 135. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Al-Shboul, D.; Al-Rawabdeh, A.; Jaradat, R. Establishing Regional Power Sustainability and Feasibility Using Wind Farm Land-Use Optimization. Land 2021, 10, 442. [Google Scholar] [CrossRef]
- Prieto-Amparán, J.; Pinedo-Alvarez, A.; Morales-Nieto, C.; Valles-Aragón, M.; Álvarez-Holguín, A.; Villarreal-Guerrero, F. A Regional GIS-Assisted Multi-Criteria Evaluation of Site-Suitability for the Development of Solar Farms. Land 2021, 10, 217. [Google Scholar] [CrossRef]
- Rutherford, J.; Williams, G. Environmental Systems and Societies: Course Companion, 2015th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Stremke, S. Designing Sustainable Energy Landscapes: Concepts, Principles and Procedures; Wageningen University: Wageningen, The Netherlands, 2010. [Google Scholar]
- Tillie, N. Synergetic Urban Landscape Planning in Rotterdam: Liveable Low-Carbon Cities; Delft University of Technology: Delft, The Netherlands, 2018. [Google Scholar]
- Stremke, S. Energy-landscape nexus: Advancing a Conceptual Framework for the Design of Sustainable Energy Landscapes. In Proceedings of the ECLAS Conference 2013, Hamburg, Germany, 22–24 September 2013; pp. 391–397. [Google Scholar]
- Council of Europe. European Landscape Convention. 2000, p. 7. Available online: https://rm.coe.int/1680080621 (accessed on 10 June 2021).
- Tress, B. (Ed.) From Landscape Research to Landscape Planning: Aspects of Integration, Education and Application; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Girot, C.; Imhof, D. (Eds.) Thinking the Contemporary Landscape, 1st ed.; Princeton Architectural Press: New York, NY, USA, 2017. [Google Scholar]
- Murphy, M.D. Landscape Architecture Theory: An Ecological Approach; Island Press: Washington, DC, USA, 2016. [Google Scholar]
- Yap, N.T. Towards a Circular Economy: Progress and Challenges. Green Manag. Int. 2005, 11–24. Available online: https://www.jstor.org/stable/greemanainte.50.11 (accessed on 27 April 2021).
- Salvia, R.; Andreopoulou, Z.S.; Quaranta, G. The Circular Economy: A Broader Perspective for Rural Areas; Torrossa: Fiesole, Italy, 2018; pp. 87–105. [Google Scholar] [CrossRef]
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Molnár, Z.; Babai, D. Inviting ecologists to delve deeper into traditional ecological knowledge. Trends Ecol. Evol. 2021. [Google Scholar] [CrossRef]
- Kümmel, R. The Second Law of Economics: Energy, Entropy, and the Origins of Wealth; Springer Science + Business Media, LLC.: New York, NY, USA, 2011. [Google Scholar]
- Lutzenhiser, L. A cultural model of household energy consumption. Energy 1992, 17, 47–60. [Google Scholar] [CrossRef]
- Ravindra, K.; Kaur-Sidhu, M.; Mor, S.; John, S. Trend in household energy consumption pattern in India: A case study on the influence of socio-cultural factors for the choice of clean fuel use. J. Clean. Prod. 2019, 213, 1024–1034. [Google Scholar] [CrossRef]
- Bach, L.; Hopkins, D.; Stephenson, J. Solar electricity cultures: Household adoption dynamics and energy policy in Switzerland. Energy Res. Soc. Sci. 2020, 63, 101395. [Google Scholar] [CrossRef]
- Jelinski, L.W.; Graedel, T.E.; Laudise, R.A.; McCall, D.W.; Patel, C.K. Industrial ecology: Concepts and approaches. Proc. Natl. Acad. Sci. USA 1992, 89, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Allenby, B. The ontologies of industrial ecology? Prog. Ind. Ecol. Int. J. 2006, 3, 28. [Google Scholar] [CrossRef]
- Svensson, N.; Funck, E.K. Management control in circular economy. Exploring and theorizing the adaptation of management control to circular business models. J. Clean. Prod. 2019, 233, 390–398. [Google Scholar] [CrossRef]
- Belaud, J.-P.; Adoue, C.; Vialle, C.; Chorro, A.; Sablayrolles, C. A circular economy and industrial ecology toolbox for developing an eco-industrial park: Perspectives from French policy. Clean Technol. Environ. Policy 2019, 21, 967–985. [Google Scholar] [CrossRef] [Green Version]
- FAO. Organic Agriculture: What Is Organic Agriculture? Available online: http://www.fao.org/organicag/oa-faq/oa-faq1/en/ (accessed on 27 April 2021).
- Waerther, S. Sustainability in ecovillages—A reconceptualization. Int. J. Manag. Appl. Res. 2014, 1, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Liverød, M. Alternatives to the Present Global Development Pattern: Ecovillages—A Model for Sustainable Living? 2016. Available online: https://uia.brage.unit.no/uia-xmlui/handle/11250/2414557 (accessed on 16 June 2021).
- Andreas, M.; Wagner, F. Realizing Utopia: Ecovillage Endeavors and Academic Approaches; Rachel Carson Center for Environment and Society: Munchen, Germany, 2013; 156p. [Google Scholar] [CrossRef]
- Kisdi, B. Az ökotudatos életmód metamorfózisai. Farkas Judit: Leválni a köldökzsinórról. Ökofalvak Magyarországon. Replika 2018, 335–345. [Google Scholar] [CrossRef] [Green Version]
- évi CXC. Törvény a Nemzeti Köznevelésről. 2011. Available online: https://net.jogtar.hu/jogszabaly?docid=a1100190.tv (accessed on 17 June 2021).
- Farkas, J. Kicsi kis hősök. Kovász 2014, 18, 43–66. [Google Scholar]
- Héra, G.; Ligeti, G. Módszertan: Bevezetés a Társadalmi Jelenségek Kutatásába; Osiris: Budapest, Hungary, 2014. [Google Scholar]
- Patton, M.Q. Qualitative Research & Evaluation Methods: Integrating Theory and Practice, 4th ed.; Sage Publications, Inc.: Thousand Oaks, CA, USA, 2015. [Google Scholar]
- Központi Statisztikai Hivatal. Available online: https://www.ksh.hu/energiagazdalkodas (accessed on 25 March 2021).
- Database—Energy—Eurostat. Available online: https://ec.europa.eu/eurostat/web/energy/data/database (accessed on 25 March 2021).
- Data & Statistics. IEA. Available online: https://www.iea.org/data-and-statistics (accessed on 29 April 2021).
- Copernicus, L.M.S. CLC 2018—Copernicus Land Monitoring Service. 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 25 April 2021).
- Agrárminisztérium. Magyarország Ökoszisztéma Alaptérképe. 2019. Available online: http://web.map.fomi.hu/nosztep_open/ (accessed on 26 April 2021).
- Google. Google Satellite. Available online: https://www.google.com/maps (accessed on 27 April 2021).
- Urmee, T.; Md, A. Social, cultural and political dimensions of off-grid renewable energy programs in developing countries. Renew. Energy 2016, 93, 159–167. [Google Scholar] [CrossRef]
- Sovacool, B. The cultural barriers to renewable energy and energy efficiency in the United States. Technol. Soc. 2009, 31, 365–373. [Google Scholar] [CrossRef]
- Esteves, A.M. Radical Environmentalism and “Commoning”: Synergies between Ecosystem Regeneration and Social Governance at Tamera Ecovillage, Portugal. Antipode 2017, 49, 357–376. [Google Scholar] [CrossRef]
- Stephenson, J.; Barton, B.; Carrington, G.; Gnoth, D.; Lawson, R.; Thorsnes, P. Energy cultures: A framework for understanding energy behaviours. Energy Policy 2010, 38, 6120–6129. [Google Scholar] [CrossRef] [Green Version]
- OECD. Glossary of Statistical Terms. Available online: https://stats.oecd.org/glossary/detail.asp?ID=2290 (accessed on 28 March 2021).
- 123map GmbH & Co. KG. Stromnetzkarte. Available online: https://www.flosm.de/html/Stromnetz.html?lat=46.2044786&lon=17.6606551&r=7323.6259&st=0&sw=cabledistributioncabinet,generator,powerbay,powerbiofuel,powerbiogas,powerbiomass,powerbusbar,powercable,powercoal,powercompensator,powerconverter,powergeothermal,powerhydro,powerline,powerline110k,powerline115k,powerline20k,powerline220k,powerline220v,powerline225k,powerline30k,powerline380k,powerline3k,powerline400k,powerline420k,powerline500v,powerline50k,powerline6k,powerline750k,powerline765k,powerlinedchigh,powerlinedclow,powernuclear,poweroil,powerpole,powersolar,powersubstation,powerswitch,powertidal,powertower,powerwaste,powerwind,transformer (accessed on 28 April 2021).
- Birnbaum, J.; Fox, L. Sustainable Revolution: Permaculture in Ecovillages, Urban Farms, and Communities Worldwide; North Atlantic Books: Berkeley, CA, USA, 2014. [Google Scholar]
- Jacke, D.; Toensmeier, E. Edible Forest Gardens; Chelsea Green Pub. Co.: White River Junction, VT, USA, 2005. [Google Scholar]
- Holden, J. (Ed.) An Introduction to Physical Geography and the Environment, 3rd ed.; Prentice Hall: Harlow, UK, 2012. [Google Scholar]
- Ghimessy, L. A Tájpotenciál: Táj, Víz, Ember, Energia; Mezőgazdasági Kiadó: Budapest, Hungary, 1984. [Google Scholar]
- Kay, J.J. On complexity theory, exergy, and industrial ecology. In Construction Ecology: Nature as the Basis for Green Buildings; Spon Press: New York, NY, USA, 2002; pp. 72–107. [Google Scholar]
- Gross, M. 3. Community by Experiment: Recursive Practice in Landscape Design and Ecological Restoration. In Community and Ecology; McCright, A.M., Nichols Clark, T., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2006; Volume 10, pp. 43–62. [Google Scholar] [CrossRef]
- Kocsis, K. (Ed.) Magyarország Nemzeti Atlasza: Természeti Környezet; Magyar Tudományos Akadémia Csillagászati és Földtudományi Kutatóközpont Földrajztudományi Intézet: Budapest, Hungary, 2018. [Google Scholar]
- Osende, B.; Abraham, J.P.; Mowry, G. Small-Scale Use of Solar Power in Remote, Developing Regions: A Case Study. J. Sustain. Dev. 2011, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Freeman, J.; Guarracino, I.; Kalogirou, S.; Markides, C. A small-scale solar organic Rankine cycle combined heat and power system with integrated thermal energy storage. Appl. Therm. Eng. 2017, 127, 1543–1554. [Google Scholar] [CrossRef]
- Abedinia, O.; Raisz, D.; Amjady, N. Effective prediction model for Hungarian small-scale solar power output. IET Renew. Power Gener. 2017, 11, 1648–1658. [Google Scholar] [CrossRef]
- Innovációs és Technológiai Minisztérium. Második Nemzeti Éghajlatváltozási Stratégia; Információs és Technológiai Minsztérium: Budapest, Hungary, 2018; p. 251. [Google Scholar]
- Baranyák, Z.; Zalai, N. Napelemes Erőmű Koncepcióterv Derekegyház és Újhartyán Számára; Magyar Természetvédők Szövetsége: Budapest, Hungary, 2016. [Google Scholar]
- 5 kW-os Napelem Rendszer árak. Available online: https://napelemrendszer.info/napelem-arak/5-kw-os-napelem-rendszer-arak.html (accessed on 2 May 2021).
- Cattaneo, B.; Photovoltaic Geographical Information System (PVGIS). EU Science Hub—European Commission. 15 June 2018. Available online: https://ec.europa.eu/jrc/en/pvgis (accessed on 2 May 2021).
- 370 Wp/Mono: NUJC370—NUJC370—Napelemek—Monokristályos Szilikon Fotovoltaikus Modulok—Product Details Solar Modules. Available online: https://www.sharp.hu/cps/rde/xchg/hu/hs.xsl/-/html/product-details-solar-modules.htm?product=NUJC370 (accessed on 2 May 2021).
- Szűcs, G.; Ezek a Legkisebb Fogyasztású Elektromos Autók. Villanyautósok, 26 December 2019. Available online: https://villanyautosok.hu/2019/12/26/ezek-a-legkisebb-fogyasztasu-elektromos-autok/ (accessed on 2 May 2021).
- Grantham, A.; Pudney, P.; Ward, L.; Whaley, D.; Boland, J. The viability of electrical energy storage for low-energy households. Sol. Energy 2017, 155, 1216–1224. [Google Scholar] [CrossRef]
- Kaschub, T.; Jochem, P.; Fichtner, W. Solar energy storage in German households: Profitability, load changes and flexibility. Energy Policy 2016, 98, 520–532. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Tian, S.; Tarroja, B.; Ogunseitan, O.A.; Samuelsen, S.; Schoenung, J.M. Flow battery production: Materials selection and environmental impact. J. Clean. Prod. 2020, 269, 121740. [Google Scholar] [CrossRef]
- Islam, M.A.; Hasanuzzaman, M.; Rahim, N.A.; Nahar, A.; Hosenuzzaman, M. Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security. Sci. World J. 2014, 2014, 197136. [Google Scholar] [CrossRef] [Green Version]
- Sovacool, B.; Mukherjee, I. Conceptualizing and measuring energy security: A synthesized approach. Energy 2011, 36, 5343–5355. [Google Scholar] [CrossRef]
- Gyulai, I. A Biomassza Dilemma; Magyar Természetvédők Szövetsége Föld Barátai Magyarország: Budapest, Hungary, 2008. [Google Scholar]
- Sørensen, B. Renewable Energy: Physics, Engineering, Environmental Impacts, Economics and Planning, 5th ed.; Academic Press: London, UK, 2017. [Google Scholar]
- Villeneuve, J.; Palacios, J.H.; Savoie, P.; Godbout, S. A critical review of emission standards and regulations regarding biomass combustion in small scale units (<3 MW). Bioresour. Technol. 2012, 111, 1–11. [Google Scholar] [CrossRef]
- Wheeler, R. Creating Carbon-Negative Communities: Ecovillages and the UN’s New Sustainable Development Goals. Communities. 2016, pp. 24–27. Available online: https://www.ic.org/creating-carbon-negative-communities-ecovillages-and-the-uns-new-sustainable-development-goals/ (accessed on 10 June 2021).
- MacKay, D. Sustainable Energy—Without the Hot Air, Reprinted; UIT Cambridge: Cambridge, UK, 2010. [Google Scholar]
- Kaplan, J.O.; Krumhardt, K.M.; Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quat. Sci. Rev. 2009, 28, 3016–3034. [Google Scholar] [CrossRef]
- Ritchie, H.; Roser, M.; Energy. Our World in Data. March 2014. Available online: https://ourworldindata.org/energy (accessed on 15 November 2020).
- Hovi, M.; Sundrum, A.; Thamsborg, S.M. Animal Health and Welfare in Organic Livestock Production in Europe: Current State and Future Challenges. Livest. Prod. Sci. 2003, 80, 41–53. [Google Scholar] [CrossRef] [Green Version]
- VaarstHugo, M.; Alrøe, H.F. Concepts of Animal Health and Welfare in Organic Livestock Systems. J. Agric. Environ. Ethics 2012, 25, 333–347. [Google Scholar] [CrossRef]
- Hazzan, O.; Dori, Y.J.; Even-Zahav, A.; Heyd-Metzuyanim, E.; Tal, T. Application of Management Theories for STEM Education: The Case of SWOT Analysis, 1st ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Moreda, G.; Muñoz-García, M.; Barreiro, P. High voltage electrification of tractor and agricultural machinery—A review. Energy Convers. Manag. 2016, 115, 117–131. [Google Scholar] [CrossRef]
- Erasmus, C.J. Search of the Common Good: Utopian Experiments Past and Future, 1st ed.; The Free Press, Collier Macmillan: New York, NY, USA; London, UK, 1985. [Google Scholar]
- Roysen, R.; Mertens, F. New normalities in grassroots innovations: The reconfiguration and normalization of social practices in an ecovillage. J. Clean. Prod. 2019, 236, 117647. [Google Scholar] [CrossRef]
- Hassan, A.; Wall, G. The Ecovillage: Concept and Applications. In Driving Agribusiness with Technology Innovations; IGI Global: Hershey, PA, USA, 2017; pp. 56–69. [Google Scholar] [CrossRef]
- Pasqualetti, M.; Stremke, S. Energy landscapes in a crowded world: A first typology of origins and expressions. Energy Res. Soc. Sci. 2018, 36, 94–105. [Google Scholar] [CrossRef]
- Bridge, G.; Bouzarovski, S.; Bradshaw, M.; Eyre, N. Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy 2013, 53, 331–340. [Google Scholar] [CrossRef]
- Boyer, R.H. Achieving one-planet living through transitions in social practice: A case study of Dancing Rabbit Ecovillage. Sustain. Sci. Pract. Policy 2016, 12, 47–59. [Google Scholar] [CrossRef]
- LaBelle, M.C. Energy Cultures: Technology, Justice, and Geopolitics in Eastern Europe; Edward Elgar Publishing: Cheltenham, UK; Northampton, MA, USA, 2020. [Google Scholar]
Activity | Energy Resource | Place of the Production |
---|---|---|
Living labor | Muscle power | Local |
Lighting | Electricity | Local |
Network | ||
Electric devices | Electricity | Local |
Network | ||
Cooking | Biomass | Local |
Natural gas | Non-local | |
Electricity | Network | |
Heating | Biomass | Local |
Transport | Petrol | Non-local |
Diesel |
Activity | Energy Resource | Place of the Production |
---|---|---|
Machine work | Electricity | Network |
Petrol | Non-local | |
Diesel | Non-local | |
Living labor | Muscle power | Local |
Activity | Energy Resource | Place of the Production |
---|---|---|
Living labor | Muscle power | Local |
Lighting | Electricity | Local |
Network | ||
Electric devices | Electricity | Network |
Cooking | Biomass | Local |
Natural gas | Non-local | |
Electricity | Network | |
Heating | Biomass | Local |
Transport | Petrol | Non-local |
Diesel |
Corine Land Cover 2018 | Ecosystem Map of Hungary |
---|---|
Non-irrigated arable land □ | Fruit and berry, and other plantations □ |
Complex cultivation patterns with scattered buildings □ | |
Green urban areas without trees □ | |
Land principally occupied by agriculture □ | Black-locust-dominated mixed plantations □ |
Other ligneous vegetation, woodlands □ | |
Closed grasslands in hills and mountains or on cohesive soil □ | |
Green urban areas with trees □ | |
Tall-herb vegetation of marshes and fens standing in water □ | |
Fens and mesotrophic wet meadows, grasslands with periodic water effect □ | |
Complex cultivation patterns □ | Other herbaceous vegetation □ |
Arable land □ | |
Other ligneous vegetation, woodlands □ | |
Low building □ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, Z.; Prohászka, V.; Sallay, Á. The Energy System of an Ecovillage: Barriers and Enablers. Land 2021, 10, 682. https://doi.org/10.3390/land10070682
Szabó Z, Prohászka V, Sallay Á. The Energy System of an Ecovillage: Barriers and Enablers. Land. 2021; 10(7):682. https://doi.org/10.3390/land10070682
Chicago/Turabian StyleSzabó, Zita, Viola Prohászka, and Ágnes Sallay. 2021. "The Energy System of an Ecovillage: Barriers and Enablers" Land 10, no. 7: 682. https://doi.org/10.3390/land10070682
APA StyleSzabó, Z., Prohászka, V., & Sallay, Á. (2021). The Energy System of an Ecovillage: Barriers and Enablers. Land, 10(7), 682. https://doi.org/10.3390/land10070682