Spatial Expansion of Human Settlement during the Longshan Period (~4.5–~3.9 ka BP) and Its Hydroclimatic Contexts in the Lower Yellow River Floodplain, Eastern China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
4.1. Spatial Pattern Changes of Human Settlement between the Pre-Longshan and Longshan Periods
4.2. Regional Hydroclimatic Changes in the Lower Yellow River Floodplain and the Surrounding Areas
4.3. Local Hydroclimatic Changes in the Lower Yellow River Floodplain
5. Discussion
5.1. Local Landscape Evolution in the Lower Yellow River Floodplain
5.1.1. Local Landscape Evolution with Hydroclimatic Changes
5.1.2. Regional Rivers and Their Possible Impacts on Local Landscape Evolution
5.2. Human Subsistence Strategies and Population Changes in the Lower Yellow River Floodplain
5.3. Human Responses to Hydroclimatic Changes in the Lower Yellow River Floodplain
6. Conclusions
- (1)
- The archaeological site distribution patterns were visibly different between the pre-Longshan period and the Longshan period. The pre-Longshan sites were primarily concentrated in the western highlands with two secondary strips along the southeastern foothills of the Taihang Mountains and the western fringe of the Taiyi Mountains, and only a few sites were dispersed in the lower Yellow River floodplain. In contrast, the Longshan sites were nearly ubiquitously spread across all landscapes within and around the lower Yellow River floodplain.
- (2)
- There were two evolutionary phases of the EASM and associated monsoon-related precipitation or wetness during the pre-Longshan and Longshan periods within and around the lower Yellow River floodplain: the EASM experienced a strong and wet phase between ~8.0 and ~5.0 ka BP and subsequently weakened, resulting in a drier phase between ~5.0 and ~4.0 ka BP.
- (3)
- Although the lower Yellow River channel was stable and stayed in the Hebei region of the North China Plain during the Longshan period, decreasing forest vegetation and intensifying human activities under the background of persistent drying of the hydroclimatic conditions since ~5.0 ka BP most likely caused more soil erosion and subsequent heavier sediment loads in the rivers flowing through the Loess Plateau, resulting in faster filling of preexisting lakes and marshes in the lower Yellow River floodplain.
- (4)
- The hydroclimatic variations in the lower Yellow River floodplain influenced human settlement distribution patterns during the pre-Longshan and Longshan periods. Under overall wet hydroclimatic conditions, lakes and marshes developed widely in the lower Yellow River floodplain and the surrounding highlands during the pre-Longshan period. However, persistent deterioration of local hydroclimatic settings and faster silt filling during the Longshan period caused preexisting lakes and marshes to shrink dramatically. Consequently, the pre-Longshan sites were concentrated in the circumjacent highlands; whereas the newly formed land during the Longshan period were likely to have been occupied by the rapidly increasing population who adopted the mixed millet-rice farming mode, resulting in distinct spatial expansion of human settlement in the lower Yellow River floodplain.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Redman, C.L. Resilience theory in archaeology. Am. Anthropol. 2005, 107, 70–77. [Google Scholar] [CrossRef]
- Folke, C. Resilience: The emergence of a perspective for social-ecological systems analysis. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Butzer, K.W. Collapse, environment, and society. Proc. Natl. Acad. Sci. USA 2012, 109, 3632–3639. [Google Scholar] [CrossRef] [Green Version]
- Brooke, J.L. Climate Change and the Course of Global History: A Rough Journey; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Qin, Z. Exploring the early Anthropocene: Implications from the long-term human-climate interactions in early China. Mediterr. Archaeol. Archaeom. 2021, 21, 133–148. [Google Scholar]
- Dong, G.H.; Li, R.; Lu, M.X.; Zhang, D.J.; James, N. Evolution of human-environmental interactions in China from the Late Paleolithic to the Bronze Age. Prog. Phys. Geogr. 2020, 44, 233–250. [Google Scholar] [CrossRef]
- Stanley, D.J.; Chen, Z.Y.; Song, J. Inundation, sea-level rise and transition from Neolithic to Bronze Age cultures, Yangtze Delta, China. Geoarchaeology 1998, 14, 15–26. [Google Scholar] [CrossRef]
- Sandweiss, D.H.; Maasch, K.A.; Anderson, D.G. Transitions in the Mid-Holocene. Science 1999, 283, 499–500. [Google Scholar] [CrossRef]
- Oğuz-Kırca, E.D.; Liritzis, I. Reemergence of Atlantis: The shifting paradigm and creation of neo-spatial models. Sci. Cult. 2019, 5, 69–88. [Google Scholar]
- Li, K.F.; Zhu, C.; Jiang, F.Q.; Li, B.; Wang, X.H.; Cao, B.; Zhao, X.F. Archaeological sites distribution and its physical environmental settings between ca 260-2.2 ka BP in Guizhou Privince, Southwest China. J. Geogr. Sci. 2014, 24, 526–538. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, H.; Li, J.Y.; Li, K.F.; Sun, X.L.; Lu, S.G.; Li, L.Y.; Zhu, T.X.; Guo, Q.C. Thiessen polygon analysis and spatial pattern evolution of Neolithic cultural sites (8.0-4.0 ka BP) in Huaibei Plain of Anhui, East China. Quat. Int. 2019, 521, 75–84. [Google Scholar] [CrossRef]
- Shqiarat, M. History and archaeology of water management in Jordan through ages. Sci. Cult. 2019, 5, 51–54. [Google Scholar]
- Wu, L.; Lu, S.G.; Zhu, C.; Ma, C.M.; Sun, X.L.; Li, X.X.; Li, C.C.; Guo, Q.C. Holocene environmental archaeology of the Yangtze River Valley in China: A review. Land 2021, 10, 302. [Google Scholar] [CrossRef]
- Storozum, M.; Liu, H.W.; Qin, Z.; Ming, K.D.; Fu, K.; Wang, H.; Kidder, T. Early evidence of irrigation technology in the North China Plain: Geoarchaeological investigations at the Anshang Site, Neihuang County, Henan Province, China. Geoarchaeology 2018, 33, 143–161. [Google Scholar] [CrossRef]
- Binford, M.W.; Kolata, A.L.; Brenner, M.; Janusek, J.W.; Seddon, M.T.; Abbott, M.; Curtis, J.H. Climate variation and the rise and fall of an Andean civilization. Quat. Res. 1997, 47, 235–248. [Google Scholar] [CrossRef]
- Hodell, D.A.; Curtis, J.H.; Brenner, M. Possible role of climate in the collapse of classic Maya civilization. Nature 1995, 375, 391–394. [Google Scholar] [CrossRef]
- deMenocal, P.B. Cultural responses to climate change during the late Holocene. Science 2001, 292, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Haug, G.H.; Günther, D.; Peterson, L.C.; Sigman, D.M.; Hughen, Y.R.; Aeschlimann, B. Climate and the collapse of Maya civilization. Science 2003, 299, 1731–1735. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.X.; Liu, T.S. Possible role of the “Holocene event 3” on the collapse of Neolithic cultures around the central plain of China. Quat. Int. 2004, 117, 153–166. [Google Scholar]
- Liu, F.G.; Feng, Z.D. A dramatic climatic transition at ~4000 cal. yr BP and its cultural responses in Chinese cultural domains. Holocene 2012, 22, 1181–1197. [Google Scholar] [CrossRef]
- Weiss, H.; Courty, M.A.; Wetterstrom, W.; Guichard, F.; Senior, L.; Meadow, R.; Crunow, A. The genesis and collapse of third millennium north Mesopotamian civilization. Science 1993, 261, 995–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullen, H.M.; deMenocal, P.B.; Hemming, S.; Hemming, G.; Brown, F.H.; Guilderson, T.; Sirocko, F. Climate change and the collapse of the Akkadian empire: Evidence from the deep sea. Geology 2000, 28, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Stanley, J.D.; Krom, M.D.; Cliff, R.A.; Woodward, J.C. Nile flow failure at the end of the Old Kingdom, Egypt: Strontium isotopic and petrologic evidence. Geoarchaeology 2003, 18, 395–402. [Google Scholar] [CrossRef]
- Drysdale, R.; Zanchetta, G.; Hellstrom, J.; Maas, R.; Fallick, A.; Pickett, M.; Cartwright, I.; Piccini, L. Late Holocene drought responsible for the collapse of Old World civilization is recorded in an Italian cave flowstone. Geology 2006, 34, 101–104. [Google Scholar] [CrossRef] [Green Version]
- Staubwasser, M.; Sirocko, F.; Grootes, P.M.; Segl, M. Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett. 2003, 30, 1425. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, T.; Mukherjee, A.D.; Bhushan, R.; Ram, F.; Bera, M.K.; Raj, H.; Dabhi, A.J.; Bisht, R.S.; Rawat, Y.S.; Bhattacharya, S.K.; et al. Did the Harappan settlement of Dholavira (India) collapse during the onset of Meghalayan stage drought? J. Quat. Sci. 2020, 25, 382–395. [Google Scholar] [CrossRef]
- Liu, L. The Chinese Neolithic: Trajectories to Early States; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Underhill, A.P. A Companion to Chinese Archaeology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Ren, X.L.; Xu, J.J.; Wang, H.; Storozum, M.; Lu, P.; Mo, D.W.; Li, T.Y.; Xiong, J.G.; Kidder, T.R. Holocene fluctuations in vegetation and human population demonstrate social resilience in the prehistory of the Central Plains of China. Environ. Res. Lett. 2021, 15, 055030. [Google Scholar] [CrossRef]
- Li, K.F.; Gao, W.H. Human settlement distribution patterns during the Longshan and Xinzhai-Erlitou periods and their hydrogeomorphic contexts in the Central Plains, China. Catena 2021, 204, 105433. [Google Scholar] [CrossRef]
- An, C.B.; Tang, L.Y.; Barton, L.; Chen, F.H. Climate change and cultural response around 4000 cal yr B.P. in the western part of Chinese Loess Plateau. Quat. Res. 2005, 63, 347–352. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.L.; Zha, X.C.; Su, H.X.; Jia, Y.F.; Zhu, Y.Z. Impact of monsoonal climatic change on Holocene overbank flooding along Sushui River, middle reach of the Yellow River, China. Quat. Sci. Rev. 2007, 26, 2247–2264. [Google Scholar] [CrossRef]
- Huang, C.C.; Pang, J.L.; Zha, X.C.; Su, H.X.; Jia, Y.F. Extraordinary floods related to the climatic event at 4200 a BP on the Qishuihe River, middle reaches of the Yellow River, China. Quat. Sci. Rev. 2011, 30, 460–468. [Google Scholar] [CrossRef]
- Cui, J.X.; Sun, Z.Y.; Burr, G.S.; Shao, J.; Chang, H. The great cultural divergence and environmental background of Northern Shaanxi and its adjacent regions during the late Neolithic. Archaeol. Res. Asia 2019, 20, 100164. [Google Scholar] [CrossRef]
- Yu, S.Y.; Hou, Z.F.; Chen, X.X.; Wang, Y.X.; Song, Y.G.; Gao, M.K.; Pan, J.R.; Sun, M.; Fang, H.; Han, J.Y.; et al. Extreme flooding of the lower Yellow River near the Northgrippian-Meghalayan boundary: Evidence from the Shilipu archaeological site in southwestern Shandong Province, China. Geomorphology 2020, 350, 106878. [Google Scholar] [CrossRef]
- Wang, W. Discussion on the large-scale cultural changes at ~2000 BC in China. Archaeology 2004, 1, 67–77. (In Chinese) [Google Scholar]
- Zhang, J.N.; Xia, Z.K. Deposition evidence of the 4 ka BP flood events in central China plains. Acta Geogr. Sin. 2011, 66, 685–697, (In Chinese with English Abstract). [Google Scholar]
- Sun, Q.L.; Liu, Y.; Wünnemann, B.; Peng, Y.J.; Jiang, X.Z.; Deng, L.J.; Chen, J.; Li, M.T.; Chen, Z.Y. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China. Earth-Sci. Rev. 2019, 197, 102915. [Google Scholar] [CrossRef]
- Dong, G.H.; Liu, F.W.; Yang, Y.S.; Wang, L.; Chen, F.H. Cultural expansion and its influencing factors during Neolithic period in the Yellow River valley, northern China. Chin. J. Nat. 2016, 38, 248–252, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Z.P.; Liu, J.B.; Chen, J.; Chen, S.Q.; Shen, Z.W.; Chen, J.; Liu, X.K.; Wu, D.; Sheng, Y.W.; Chen, F.H. Holocene climatic optimum in the East Asian monsoon region of China defined by climatic stability. Earth Sci. Rev. 2021, 212, 103450. [Google Scholar] [CrossRef]
- Jaffe, Y.Y.; Castellano, L.; Shelach-Lavi, G.; Campbell, R.B. Mismatches of scale in the application of paleoclimatic research to Chinese archaeology. Quat. Res. 2021, 99, 14–33. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.C. The archaeology of China: From the Late Paleolithic to the Early Bronze Age; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Wang, Q. Preliminary discussion on the prehistoric diversion of lower Yellow River channel and its relations with cultural development. Cult. Relics Cent. China 1993, 4, 65–74. (In Chinese) [Google Scholar]
- Chen, H.B. Settlements distribution and its relations with environmental changes in the Shandong-Henan-Anhui cultural region. Archaeology 2007, 2, 48–60. (In Chinese) [Google Scholar]
- Cao, B.W. Study of environmental archaeology in the Huixian and sourrounding areas. Huaxia Archaeol. 1994, 3, 61–67. (In Chinese) [Google Scholar]
- Zou, Y.L. The History Geography of Huanghuaihai Plain; Anhui Educational Publishing House: Hefei, China, 1993. (In Chinese) [Google Scholar]
- Zhang, N.; Yang, Y.; Cheng, H.; Zhao, J.Y.; Yang, X.L.; Liang, S.; Nie, X.D.; Zhang, Y.H.; Edwards, R.L. Timing and duration of the East Asian summer monsoon maximum during the Holocene based on stalagmite data from North China. Holocene 2018, 28, 1631–1641. [Google Scholar] [CrossRef]
- Hu, C.Y.; Henderson, G.M.; Huang, J.H.; Xie, S.C.; Sun, Y.; Johnson, K.R. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth Planet. Sci. Lett. 2008, 266, 221–232. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.G.; Shen, C.C.; Kong, X.G.; Wu, C.C.; Hu, H.M.; Ren, H.J.; Wang, Y. Rapid retreat of the East Asian summer monsoon in the middle Holocene and a millennial weak monsoon interval at 9 ka in northern China. J. Asian Earth Sci. 2018, 151, 31–39. [Google Scholar] [CrossRef]
- Li, K.F.; Gao, W.H. Holocene climate change in Henan area: A synthesis of proxy records. Quat. Int. 2019, 521, 185–193. [Google Scholar] [CrossRef]
- Chen, F.H.; Xu, Q.H.; Chen, J.H.; Birks, H.J.B.; Liu, J.B.; Zhang, S.R.; Jin, L.Y.; An, C.B.; Telford, R.J.; Cao, X.Y.; et al. East Asian summer monsoon precipitation variability since the last deglaciation. Sci. Rep. 2015, 5, 11186. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.Z.; Ma, C.M.; Zhu, C.; Lu, H.Y.; Zhang, X.J.; Huang, K.Y.; Guo, T.H.; Li, K.F.; Li, L.; Li, B.; et al. Variability of East Asian summer monsoon precipitation during the Holocene and possible forcing mechanisms. Clim. Dyn. 2019, 52, 969–989. [Google Scholar] [CrossRef]
- Liang, L.; Xia, Z.K.; Liu, D.C. Reconstruction of the palaeoenvironment in central north China during 5000 a BP to 4000 a BP. Acta Sci. Nat. Univ. Pekin. 2003, 39, 532–537, (In Chinese with English Abstract). [Google Scholar]
- Dong, G.H.; Xia, Z.K.; Elston, R.; Sun, X.W.; Chen, F.H. Response of geochemical records in lacustrine sediments to climate change and human impact during middle Holocene in Menjin, Henan Province, China. Front. Earth Sci. China 2009, 3, 279–285. [Google Scholar] [CrossRef]
- Jia, Y.N.; Zhang, Y.Z.; Wang, N.L.; Huang, C.C.; Qiu, H.J.; Wang, H.Y.; Yu, Y.K.; Seilbike, A.; Zou, M.B.; Lin, X.; et al. Chronostratigraphic framework and paleoenvironmental interpretation of the Holocene loess-paleosol sequence in the Luoyang Basin, Central China. Aeolian Res. 2021, 48, 100657. [Google Scholar] [CrossRef]
- Li, C.Z.; Li, B.; Li, Y.C.; Chen, B.S.; Xu, Q.H.; Zhang, W.S.; Liu, W.; Ding, G.Q. Variation of summer monsoon intensity in the North China Plain and its response to abrupt climatic events during the early-middle Holocene. Quat. Int. 2020, 550, 66–73. [Google Scholar] [CrossRef]
- Wang, J.J.; Sun, L.G.; Chen, L.Q.; Xu, L.B.; Wang, Y.H.; Wang, X.M. The abrupt climate change near 4400 yr BP on the cultural transition in Yuchisi, China and its global linkage. Sci. Rep. 2016, 6, 27723. [Google Scholar] [CrossRef] [PubMed]
- Yu, G. Sedimentology of Lake-River Systems and Environmental Evolution in Zhengzhou Region; Science Press: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Li, S.Q.; Ma, Y.F.; Guo, Y.S.; Du, J.; Wang, D.F. Relationship between distribution features of ancient settlement and changes of river and lake prior to western Zhou danasty in Zhegnzhou area. Areal Res. Dev. 2019, 38, 171–176, (In Chinese with English Abstract). [Google Scholar]
- Lu, P.; Lü, J.Q.; Zhuang, Y.J.; Chen, P.P.; Wang, H.; Tian, Y.; Mo, D.W.; Xu, J.J.; Gu, W.F.; Hu, Y.Y.; et al. Evolution of Holocene alluvial landscapes in the northeastern Songshan region, Central China: Chronology, models and socio-economic impact. Catena 2021, 197, 104956. [Google Scholar] [CrossRef]
- Rosen, A.M. The impact of environmental change and human land use on alluvial valleys in the Loess Plateau of China during the Middle Holocene. Geomorphology 2008, 101, 298–307. [Google Scholar] [CrossRef]
- Lu, P.; Wang, H.; Chen, P.P.; Storozum, M.J.; Xu, J.J.; Tian, Y.; Mo, D.W.; Wang, S.Z.; He, Y.; Yan, L.J. The impact of Holocene alluvial landscape evolution on an ancient settlement in the southeastern piedmont of Songshan Mountain, Central China: A study from the Shiyuan site. Catena 2019, 183, 104232. [Google Scholar] [CrossRef]
- Jiang, S.W.; Luo, W.H.; Tu, L.Y.; Yu, Y.Y.; Fang, F.; Liu, X.Y.; Zhan, T.; Fang, L.D.; Zhang, X.L.; Zhou, X. The Holocene optimum (HO) and the response of human activity: A case study of the Huai River Basin in eastern China. Quat. Int. 2018, 493, 31–38. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.Y.; Zhang, J.P.; Gu, Z.Y.; He, K.Y. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quat. Sci. Rev. 2014, 98, 45–59. [Google Scholar] [CrossRef]
- Yuan, J. Research on Subsistence from the Neolithic to the Bronze Age in China; Fudan University Press: Shanghai, China, 2019. (In Chinese) [Google Scholar]
- Zhao, Z.J. The process of origin of agriculture in China: Archaeological evidence from the flotation results. Quat. Sci. 2014, 34, 73–84, (In Chinese with English Abstract). [Google Scholar]
- Liao, Y.N.; Lu, P.; Mo, D.W.; Wang, H.; Storozum, M.J.; Chen, P.P.; Xu, J.J. Landforms influence the development of ancient agriculture in the Songshan area, central China. Quat. Int. 2019, 521, 85–89. [Google Scholar] [CrossRef]
- Yang, Y.Z.; Cheng, Z.J.; Yao, L.; Li, Z.Y.; Li, W.Y.; Luo, W.H.; Yuan, Z.J.; Zhang, J.; Zhang, J.Z. The emergence, development and regional differences of mixed farming of rice and millet in the upper and middle Huai River Valley, China. Sci. China Earth Sci. 2016, 59, 1779–1790. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Ma, M.M.; Chen, T.T.; Cui, Y.F.; Chen, P.P.; Zheng, L.C.; Lu, P. How did trans-Eurasian exchanges affect spatial-temporal variation in agricultural patterns during the late prehistoric period in the Yellow River valley (China)? Holocene 2021, 31, 247–257. [Google Scholar] [CrossRef]
- Lee, G.A.; Crawford, G.W.; Liu, L.; Chen, X.C. Plants and people from the Early Neolithic to Shang periods in North China. Proc. Natl. Acad. Sci. USA 2007, 104, 1087–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.N.; Xia, Z.K.; Zhang, X.H. Research on charred plant remains from the Neolithic to the Bronze Age in Luoyang Basin. Chin. Sci. Bull. 2014, 59, 3388–3397. (In Chinese) [Google Scholar] [CrossRef]
- Jin, G.Y.; Wagner, M.; Tarasov, P.E.; Wang, F.; Liu, Y.C. Archaeobotanical records of Middle and Late Neolithic agriculture from Shandong Province, East China, and a major change in regional subsistence during the Dawenkou Culture. Holocene 2016, 26, 1605–1615. [Google Scholar] [CrossRef]
- Jin, G.Y. A study on the diet of the Longshan culture residents. J. Lit. Hist. Philos. 2013, 2, 99–111, (In Chinese with English Abstract). [Google Scholar]
- Cheung, C.; Zhang, H.; Hepburn, J.C.; Yang, D.Y.; Richards, M.P. Stable isotope and dental caries data reveal abrupt changes in subsistence economy in ancient China in response to global climate change. PLoS ONE 2019, 14, e0218943. [Google Scholar]
- Tan, Q.X. The lower course of the Yellow River before the western Han dynasty. Hist. Geogr. 1980, 1, 48–64. (In Chinese) [Google Scholar]
- Zhao, S.Q. The Physical Geography of China; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Wu, C.; Xu, Q.; Zhang, X.; Ma, Y. Study on the Palaeochannel in the North China Plain; China Science and Technology Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Chen, Y.Z.; Syvitski, J.P.M.; Gao, S.; Overeem, I.; Kettner, A.J. Socio-economic impacts on floodings: A 4000-year history of the Yellow River, China. Ambio 2012, 41, 682–698. [Google Scholar] [CrossRef] [Green Version]
- Kidder, T.R.; Liu, H.W.; Xu, Q.H.; Li, M.L. The alluvial geoarchaeology of the Sanyangzhuang site on the Yellow River floodplain, Henan Province, China. Geoarchaeology 2012, 27, 324–343. [Google Scholar] [CrossRef]
- Guo, S.Y.; Yan, G.S.; Xue, D.; Zhang, E.H.; Zhang, S.; Chen, C.S. Study of Stratigraphic Paleontology in Henan Province; The Yellow River Water Conservancy Press: Zhengzhou, China, 2008; Volume 7. (In Chinese) [Google Scholar]
- Wang, L.S.; Hu, S.Y.; Yu, G.; Wang, X.H.; Wang, Q.; Zhang, Z.H.; Ma, M.M.; Cui, B.L.; Liu, X.B. Multiproxy studies of lake sediments during mid-Holocene in Zhengzhou region of the Henan Province, central China, and the implications for reconstructing the paleoenvironments. Quat. Int. 2019, 521, 104–110. [Google Scholar] [CrossRef]
- Wang, S.W.; Li, W.J. Climate of China; China Meteorological Press: Beijing, China, 2007. [Google Scholar]
- Ran, Q.H.; Zong, X.Y.; Ye, S.; Gao, J.H.; Hong, Y.Y. Dominant mechanism for annual maximum flood and sediment events generation in the Yellow River basin. Catena 2020, 187, 104376. [Google Scholar] [CrossRef]
- Zhang, C.L.; Duan, H.Z. The Cultural Corridor Between the Central Plains and Northern Area in China; Cultural Relics Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Xu, F. A Transitional Region: A Research on the Early Social Process of Lianghuai Region; Shanghai Classics Publishing House: Shanghai, China, 2020. (In Chinese) [Google Scholar]
- Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics–Hebei Volume; Cultural Relics Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics–Shandong Volume; SinoMaps Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics–Anhui Volume; SinoMaps Press: Beijing, China, 2014. (In Chinese) [Google Scholar]
- Henan Provincial Adiministration of Cultural Heritage. Cultural Relics of Henan Province; Wenxin Press: Zhengzhou, China, 2008. (In Chinese) [Google Scholar]
- Zhengzhou Municipal Institute of Archaeology, School of Archaeology and Museology in Peking University. Archaeological survey report of Suo-Xu-Ku River basins in Zhengzhou Region, Henan Province. Anc. Civiliz. 2016, 10, 301–375. (In Chinese) [Google Scholar]
- Institute of Archaeology in Chinese Academy of Social Sciences, Sino-Australian-American Collaborative Archaeological Team of the Yiluo River Valley. Pre-Qin period Sites in the East. and Central Luoyang Basin: The Systematic Regional Archaeological Survey Report (1997–-2007); Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Field Archaeology Research Center in National Museum of China, Department of Archaeology in Shandong University. The Systematic Archaeological Survey Report of Xue River Basin in Shandong Province; Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Wu, L.; Sun, X.L.; Sun, W.; Zhu, C.; Zhu, T.X.; Lu, S.G.; Zhou, H.; Guo, Q.C.; Guan, H.C.; Xie, W.; et al. Evolution of Neolithic site distribution (9.0–4.0 ka BP) in Anhui, East China. J. Geogr. Sci. 2020, 30, 1451–1466. [Google Scholar] [CrossRef]
- Chen, D.D.; Peng, S.Z.; Zhang, W.; Han, J.Q.; Ding, M. The response to Holocene climatic events of Shandong and their impacts on human activity. Prog. Geogr. 2011, 39, 846–852, (In Chinese with English Abstract). [Google Scholar]
- Baxter, M.J.; Beardah, C.C. Some archaeological applications of kernel density estimates. J. Archaeol. Sci. 1997, 24, 347–354. [Google Scholar] [CrossRef]
- Wang, L.; Cui, Y.F. The spatiotemporal pattern of cultural evolution response to agricultural development and climate change from Yangshao culture to Bronze age in the Yellow River Basin and surrounding regions, north China. Front. Earth Sci. 2021, 9, 657179. [Google Scholar] [CrossRef]
- Dong, G.H.; Wang, L.; Cui, Y.F.; Elston, R.; Chen, F.H. The spatiotemporal pattern of the Majiayao cultural evolution and its relation to climate change and variety of subsistence strategy during late Neolithic period in Gansu and Qinghai Provinces, northwest China. Quat. Int. 2013, 316, 155–161. [Google Scholar] [CrossRef]
- Brigand, R.; Weller, O. Neo-Eneolithic settlement pattern and salt exploitation in Romanian Moldavia. J. Archaeol. Sci. Rep. 2018, 17, 68–78. [Google Scholar] [CrossRef]
- Cao, W.; Xia, Z.K. Paleo-hydrological signification in mid-Holocene revealed by the analysis of soluble salts of Sihenan profile in Menjin, Henan Province. Acta Sci. Nat. Univ. Pekin. 2008, 44, 933–937, (In Chinese with English Abstract). [Google Scholar]
- Li, K.F.; Ma, C.M.; Gao, W.H.; Li, S.Y.; Li, Z.X.; Pan, Y.F. Progress and trend of Holocene environmental archaeology in Henan Province. Prog. Geogr. 2015, 34, 883–897, (In Chinese with English Abstract). [Google Scholar]
- He, L.; Xue, C.T.; Ye, S.Y.; Amorosi, A.; Yuan, H.M.; Yang, S.X.; Laws, E.A. New evidence on the spatial-temporal distribution of superlobes in the Yellow River Delta Complex. Quat. Sci. Rev. 2019, 214, 117–138. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.H.; Zhou, A.F.; Yu, Z.C.; Zhang, K. Vegetation history, climate change and human activities over the last 6200 years on the Liupan Mountains in the southwestern Loess Plateau in central China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 293, 197–205. [Google Scholar] [CrossRef]
- Xu, Q.H.; Chen, F.H.; Zhang, S.R.; Cao, X.Y.; Li, J.Y.; Li, Y.C.; Li, M.Y.; Chen, J.H.; Liu, J.B.; Wang, Z.L. Vegetation succession and East Asian Summer Monsoon changes since the last deglaciation inferred from high-resolution pollen record in Gonghai Lake, Shanxi Province, China. Holocene 2017, 27, 835–846. [Google Scholar] [CrossRef]
- Sun, A.Z.; Guo, Z.T.; Wu, H.B.; Li, Q.; Yu, Y.Y.; Luo, Y.L.; Jiang, W.Y.; Li, X.Q. Reconstruction of the vegetation distribution of different topographic units of the Chinese Loess Plateau during the Holocene. Quat. Sci. Rev. 2017, 173, 236–247. [Google Scholar] [CrossRef]
- Li, X.Q.; Shang, X.; Dodson, J.; Zhou, X.Y. Holocene agriculture in the Guanzhong Basin in NW China indicated by pollen and charcoal evidence. Holocene 2009, 19, 1213–1220. [Google Scholar] [CrossRef]
- Hosner, D.; Wagner, M.; Tarasov, P.; Chen, X.C.; Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: An overview. Holocene 2016, 26, 1576–1593. [Google Scholar] [CrossRef]
- Shi, C.X.; Dian, Z.; You, L.Y. Changes in sediment yield of the Yellow River basin of China during the Holocene. Geomorphology 2002, 46, 267–283. [Google Scholar] [CrossRef]
- Xu, J.X. A study of depositional rate in the North China Plain during the past 40000 years, based on 14C dating data from a large wealth of samples. Quat. Sci. 2007, 27, 437–443, (In Chinese with English Abstract). [Google Scholar]
Henan Province [28,42] | Southern Hebei Province [42,84] | Southwestern Shandong Province [28,42] | Northern Anhui Province [42,85] | ||||
---|---|---|---|---|---|---|---|
Name | Duration (a BP) | Name | Duration (a BP) | Name | Duration (a BP) | Name | Duration (a BP) |
Lijiagou | 11000–9000 | Early Neolithic | 9000–7000 | Houli | 8500–7500 | Shishanzi | 8000–6500 |
Peiligang | 9000–7000 | Yangshao | 7000–5000 | Beixin | 7500–6500 | Dawenkou | 6500–4600 |
Yangshao | 7000–5000 | Miaodigou II | 5000–4500 | Dawenkou | 6500–4600 | Longshan | 4600–3900 |
Miaodigou II | 5000–4500 | Longshan | 4500–3900 | Longshan | 4600–3900 | ||
Longshan | 4500–3900 |
Elevation (m) | Pre-Longshan Period | Longshan Period | ||
---|---|---|---|---|
Number Percent (%) | Number Percent (%) | |||
<10 | 33 | 1.83 | 88 | 2.50 |
10–25 | 79 | 4.38 | 227 | 6.46 |
25–50 | 237 | 13.14 | 658 | 18.73 |
50–75 | 230 | 12.76 | 739 | 21.04 |
75–100 | 159 | 8.82 | 371 | 10.56 |
100–150 | 349 | 19.36 | 576 | 16.40 |
150–250 | 304 | 16.86 | 445 | 12.67 |
250–00 | 296 | 16.42 | 283 | 8.06 |
>500 | 116 | 6.43 | 126 | 3.59 |
Total | 1803 | 100 | 3513 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Gao, W.; Wu, L.; Hu, H.; Gong, P.; Li, S.; Jin, R.; Si, Y. Spatial Expansion of Human Settlement during the Longshan Period (~4.5–~3.9 ka BP) and Its Hydroclimatic Contexts in the Lower Yellow River Floodplain, Eastern China. Land 2021, 10, 712. https://doi.org/10.3390/land10070712
Li K, Gao W, Wu L, Hu H, Gong P, Li S, Jin R, Si Y. Spatial Expansion of Human Settlement during the Longshan Period (~4.5–~3.9 ka BP) and Its Hydroclimatic Contexts in the Lower Yellow River Floodplain, Eastern China. Land. 2021; 10(7):712. https://doi.org/10.3390/land10070712
Chicago/Turabian StyleLi, Kaifeng, Wenhua Gao, Li Wu, Hainan Hu, Panpan Gong, Suyuan Li, Rui Jin, and Yi Si. 2021. "Spatial Expansion of Human Settlement during the Longshan Period (~4.5–~3.9 ka BP) and Its Hydroclimatic Contexts in the Lower Yellow River Floodplain, Eastern China" Land 10, no. 7: 712. https://doi.org/10.3390/land10070712
APA StyleLi, K., Gao, W., Wu, L., Hu, H., Gong, P., Li, S., Jin, R., & Si, Y. (2021). Spatial Expansion of Human Settlement during the Longshan Period (~4.5–~3.9 ka BP) and Its Hydroclimatic Contexts in the Lower Yellow River Floodplain, Eastern China. Land, 10(7), 712. https://doi.org/10.3390/land10070712