Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations
Abstract
:1. Introduction
2. Data and Methodology
2.1. Research Area and Data
2.1.1. Research Area
2.1.2. Indicator Selection and Data Source
2.2. Methodology
2.2.1. Global Super-SBM Model
2.2.2. Global Malmquist Index
2.2.3. Convergence Model
σ Convergence
Absolute β Convergence
Conditional β Convergence
3. Results
3.1. Results of Urban Land Use Efficiency
3.2. Spatial Distribution of Urban Land Use Efficiency
3.3. Results of Global Malmquist Index
3.4. Convergence Analysis of Urban Land Use Efficiency
3.4.1. Results of σ Convergence
3.4.2. Results of Absolute β Convergence
3.4.3. Results of Condition β Convergence
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Dimensionless of the Indicator
Appendix A.2. Determination of Weight
- (1)
- Calculate the mean and standard deviation of the index. As shown in Equation (A2).
- (2)
- Calculate the coefficient of variation of the index. As shown in Equation (A3).
- (3)
- Normalize the coefficient of variation, to get the weight of each index. As shown in Equation (A4).
Appendix A.3. Calculation of the Composite Index
References
- Yu, J.; Zhou, K.; Yang, S. Land use efficiency and influencing factors of urban agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- The United Nations. China’s Urban. Population Will Increase by 255 Million in 2050; The United Nations: New York, NY, USA, 2018. [Google Scholar]
- Elmqvist, T.; Fragkias, M.; Goodness, J.; Guneralp, R.I.; Parnell, S.; Schewenius, M.; Sendstad, M.; Seto, K.C.; Wilkinson, C. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment; Springer Nature: Basingstoke, UK, 2013. [Google Scholar]
- Hak, T.; Janoušková, S.; Moldan, B. Sustainable Development Goals: A need for relevant indicators. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, L.; Sun, Z.; Wang, X. Spatiotemporal differentiation and the factors influencing urbanization and ecological environment synergistic effects within the Beijing-Tianjin-Hebei urban agglomeration. J. Environ. Manag. 2019, 243, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- NBS (National Bureau of Statistics). China Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Yu, Y.; Zhang, N.; Kim, J.D. Impact of urbanization on energy demand: An empirical study of the Yangtze River Economic Belt in China. Energy Policy 2020, 139, 111354. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Q.; Lu, F.; Wang, W.; Yao, G.; Yu, J. Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China. J. Clean. Prod. 2019, 207, 1047–1058. [Google Scholar] [CrossRef]
- Zhou, C.; Shi, C.; Wang, S.; Zhang, G. Estimation of eco-efficiency and its influencing factors in Guangdong province based on Super-SBM and panel regression models. Ecol. Indic. 2018, 86, 67–80. [Google Scholar] [CrossRef]
- An, Q.; Wu, Q.; Li, J.; Xiong, B.; Chen, X. Environmental efficiency evaluation for Xiangjiang River basin cities based on an improved SBM model and Global Malmquist index. Energy Econ. 2019, 81, 95–103. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W. Spatiotemporal differences and convergence of urban industrial land use efficiency for China’s major economic zones. J. Geogr. Sci. 2015, 25, 1183–1198. [Google Scholar] [CrossRef]
- Choy, L.; Lai, Y.; Lok, W. Economic performance of industrial development on collective land in the urbanization process in China: Empirical evidence from Shenzhen. Habitat Int. 2013, 40, 184–193. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, G.; Tian, Z. Built-up land efficiency in urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Huang, Z.; He, C.; Wei, Y.D. A comparative study of land efficiency of electronics firms located within and outside development zones in Shanghai. Habitat Int. 2016, 56, 63–73. [Google Scholar] [CrossRef]
- Yu, H.; Song, G.; Li, T.; Liu, Y. Spatial Pattern Characteristics and Influencing Factors of Green Use Efficiency of Urban Construction Land in Jilin Province. Complexity 2020, 2020, 5637530. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Xu, Y.; Zhou, P.; Yeh, C.-H. Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China. Land Use Policy 2020, 90, 104292. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Yao, M.; Zhang, Y. Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China. Sustainability 2021, 13, 1771. [Google Scholar] [CrossRef]
- Liang, L.; Yong, Y.; Yuan, C. Measurement of Urban Land Green Use Efficiency and Its Spatial Differentiation Characteristics: An Empirical Study based on 284 Cities. China Land Sci. 2019, 33, 80–87. [Google Scholar] [CrossRef]
- National Development and Reform Commission. Plan. for the Development of Urban. Agglomeration in the Yangtze River Delta; National Development and Reform Commission: Beijng, China, 2016. [Google Scholar]
- Du, H.; Wang, D.; Wang, Y.; Zhao, X.; Qin, F.; Jiang, H.; Cai, Y. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the Yangtze River Delta Urban Agglomeration. Sci. Total Environ. 2016, 571, 461–470. [Google Scholar] [CrossRef]
- Xue, Q.; Yang, X.; Wu, F. A three-stage hybrid model for the regional assessment, spatial pattern analysis and source apportionment of the land resources comprehensive supporting capacity in the Yangtze River Delta urban agglomeration. Sci. Total Environ. 2020, 711, 134428. [Google Scholar] [CrossRef]
- Jorgenson, D.; Gollop, F.; Fraumeni, B. Productivity and US Economic Growth; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Young, A. Gold into Base Metals: Productivity Growth in the People’s Republic of China during the Reform Period. J. Political Econ. 2003, 111, 1220–1261. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Pang, X. Research on green land use efficiency of Beijing Tianjin Hebei Urban Agglomeration. China Popul. Resour. Environ. 2019, 29, 68–76. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=ZGRZ201904008&v=Kov4cv3qGJYq8SLlcP%25mmd2FHYh0aqS7TLGmTrTJRecdOV6c1zvwbYUcuWdsPBxE460o1 (accessed on 5 July 2021).
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Klumpp, M. Do Forwarders Improve Sustainability Efficiency? Evidence from a European DEA Malmquist Index Calculation. Sustainability 2017, 9, 842. [Google Scholar] [CrossRef] [Green Version]
- Tone, K. Dealing with undesirable outputs in DEA: A Slacks-Based Measure (SBM) approach. Nippon Opereshonzu Risachi Gakkai Shunki Kenkyu Happyokai Abus 2004, 2004, 44–45. Available online: https://www.researchgate.net/publication/284047010_Dealing_with_undesirable_outputs_in_DEA_a_Slacks-Based_Measure_SBM_approach (accessed on 5 July 2021).
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W. Programming with linear fractional functionals. Nav. Res. Logist. Q. 1962, 9, 181–186. [Google Scholar] [CrossRef]
- Oh, D. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Norris, M.; Zhang, Z.Z. Productivity Growth, Technical Progress, and Efficiency Change in Industri-alized Countries. Am. Econ. Rev. 1994, 84, 66–83. Available online: https://www.jstor.org/stable/2117971 (accessed on 6 July 2021).
- Sala-i-Martin, X. The Classical Approach to Convergence Analysis. Econ. J. 1996, 106, 1019–1036. [Google Scholar] [CrossRef]
- Quah, D.T. Twin Peaks: Growth and Convergence in Models of Distribution Dynamics. Econ. J. 1996, 106, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.M.; Upadhyay, M.P. Total factor productivity and the convergence hypothesis. J. Macroecon. 2002, 24, 267–286. [Google Scholar] [CrossRef]
- Hu, B.; Li, J.; Kuang, B. Evolution Characteristics and Influencing Factors of Urban Land Use Efficiency Difference Under the Concept of Green Development. Econ. Geogr. 2018, 38, 183–189. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Liu, S.C.; Ye, Y.; Xiao, W. Spatial-Temporal Differentiation of Urban Land-Use Efficiency in China Based on Stochastic Frontier Analysis. China Land Sci. 2020, 34, 61–69. [Google Scholar] [CrossRef]
- Ji, X.; Wang, K.; Ji, T.; Zhang, Y.; Wang, K. Coupling Analysis of Urban Land Use Benefits: A Case Study of Xiamen City. Land 2020, 9, 155. [Google Scholar] [CrossRef]
City | Population (10,000 People) | Land Area (km2) | City | Population (10,000 People) | Land Area (km2) |
---|---|---|---|---|---|
Shanghai | 2425 | 6340 | Huzhou | 293 | 5824 |
Nanjing | 821 | 6587 | Shaoxing | 495 | 8279 |
Wuxi | 650 | 4627 | Jinhua | 543 | 10,942 |
Changzhou | 469 | 4372 | Zhoushan | 114 | 1455 |
Suzhou | 1060 | 8488 | Taizhou | 601 | 9411 |
Nantong | 729 | 8001 | Hefei | 770 | 11,445 |
Yancheng | 722 | 16,972 | Wuhu | 362 | 5988 |
Yangzhou | 447 | 6591 | Ma’anshan | 223 | 4049 |
Zhenjiang | 317 | 3847 | Tongling | 74 | 1201 |
Taizhou | 463 | 5787 | Anqing | 538 | 15,318 |
Hangzhou | 889 | 16,596 | Chuzhou | 399 | 13,516 |
Ningbo | 781 | 9816 | Chizhou | 143 | 8272 |
Jiaxing | 457 | 3915 | Xuancheng | 257 | 12,453 |
Variable Type | Index | |
---|---|---|
Input | Land | The area of urban construction land |
Capital | The Capital stock | |
Labor | The number of employees in the secondary and tertiary industries | |
Energy | The power supply of the whole society in the municipal district | |
Output | Economic | real GDP of secondary and tertiary industries in municipal districts |
Social | the total wages of employees on the job | |
the number of full-time teachers in municipal districts | ||
the number of doctors in municipal districts | ||
the actual urban road area and green area in municipal districts at the end of the year | ||
the green area covered in built-up areas | ||
Undesired | industrial smoke discharge | |
industrial sulfur dioxide discharge | ||
industrial wastewater discharge |
Urban Land Use Efficiency | Category |
---|---|
Low efficiency | |
Medium-low efficiency | |
Medium efficiency | |
High efficiency |
City | ML | PEC | SEC | TC | City | ML | PEC | SEC | TC |
---|---|---|---|---|---|---|---|---|---|
Shanghai | 1.051 | 0.995 | 1.008 | 1.047 | Shaoxing | 1.048 | 1.029 | 0.993 | 1.026 |
Nanjing | 1.042 | 0.996 | 1.006 | 1.040 | Jinhua | 1.060 | 0.999 | 1.001 | 1.061 |
Wuxi | 1.033 | 0.997 | 1.001 | 1.035 | Zhoushan | 1.046 | 1.001 | 0.986 | 0.983 |
Changzhou | 0.999 | 0.996 | 1.000 | 1.004 | Taizhou | 1.016 | 0.998 | 0.972 | 1.047 |
Suzhou | 1.034 | 1.001 | 1.019 | 1.014 | Hefei | 0.999 | 0.990 | 1.002 | 1.008 |
Nantong | 1.011 | 1.007 | 0.993 | 1.011 | Wuhu | 0.979 | 0.968 | 0.991 | 1.020 |
Yancheng | 1.013 | 1.025 | 0.988 | 1.000 | Ma’anshan | 0.991 | 1.001 | 0.987 | 1.003 |
Yangzhou | 1.002 | 1.000 | 1.000 | 1.001 | Tongling | 1.014 | 1.035 | 0.978 | 1.003 |
Zhenjiang | 1.016 | 1.030 | 1.000 | 0.986 | Anqing | 1.004 | 1.037 | 0.968 | 0.999 |
Taizhou | 0.994 | 0.976 | 1.008 | 1.010 | Chuzhou | 0.997 | 1.002 | 0.996 | 1.000 |
Hangzhou | 1.048 | 1.003 | 1.015 | 1.030 | Chizhou | 1.030 | 1.002 | 1.027 | 1.002 |
Ningbo | 1.030 | 0.996 | 1.000 | 1.035 | Xuancheng | 0.993 | 0.934 | 1.064 | 0.999 |
Jiaxing | 1.028 | 1.021 | 0.982 | 1.025 | Mean | 1.019 | 1.000 | 0.999 | 1.017 |
Huzhou | 1.005 | 0.968 | 0.982 | 1.057 |
Variable | All Regions | Jiangsu | Zhejiang | Anhui |
---|---|---|---|---|
−0.025 *** (−3.05) | −0.033 ** (−2.73) | −0.000 (−0.01) | −0.021 * (−2.22) | |
Constant | 0.005 (0.91) | 0.001 (0.29) | 0.034 ** (3.51) | −0.008 (−1.56) |
Observations | 26 | 9 | 8 | 8 |
R-squared | 0.204 | 0.316 | 0.000 | 0.422 |
Variable | All Regions | Jiangsu | Zhejiang | Anhui |
−0.6425 *** (−6.9485) | −0.7338 *** (−7.3074) | −0.9094 ** (−2.9831) | −0.5623 *** (−6.1966) | |
Constant | −0.3350 *** (−5.1470) | −0.2575 ** (−2.7820) | −0.6550 ** (−2.8635) | −0.2973 *** (−5.6882) |
Observations | 364 | 126 | 112 | 112 |
Regulation R2 | 0.382 | 0.507 | 0.539 | 0.373 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Wang, K.; Ji, X.; Xu, H.; Xiao, Y. Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations. Land 2021, 10, 715. https://doi.org/10.3390/land10070715
Tang Y, Wang K, Ji X, Xu H, Xiao Y. Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations. Land. 2021; 10(7):715. https://doi.org/10.3390/land10070715
Chicago/Turabian StyleTang, Yingkai, Kun Wang, Xuanming Ji, He Xu, and Yangqing Xiao. 2021. "Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations" Land 10, no. 7: 715. https://doi.org/10.3390/land10070715
APA StyleTang, Y., Wang, K., Ji, X., Xu, H., & Xiao, Y. (2021). Assessment and Spatial-Temporal Evolution Analysis of Urban Land Use Efficiency under Green Development Orientation: Case of the Yangtze River Delta Urban Agglomerations. Land, 10(7), 715. https://doi.org/10.3390/land10070715