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Abstract: Rapid urbanization and intensification of human activities increases the risk of disturbance
of ecological systems via multiple sources, with consequences for regional ecological security and
health. Landscape ecological risk assessment (LERA) is an effective way to identify and allocate
risk to resources. We used the north and south Qinling Mountain area as a case study to analyze
the spatial heterogeneity of landscape ecological risk using a potential- connectedness-resilience
three-dimensional (PCR 3D) framework based on an integrated and dynamic risk assessment concept
from adaptive cycle theory. We explored factors driving the risks with a spatial model GeoDetector.
The results show that the comprehensive landscape ecological risk was north–south polarized and
dominated by low and moderate risk levels (90.13% of total risk) across the whole study area. The
high-risk area was centered on the Weihe plain north of the Qinling Mountains (NQL), while low-
risk areas accounted for 86.87% of the total area and were prevalent across the south of the study
area. The areas with high potential and connectedness risks were centered in the Xi’an–Xianyang
urban agglomeration and those with high-resilience risk were in the upper reaches of the Hanjiang
River. The vast majority of the area to the south of the Qinling Mountains (SQL) is at low risk. In
terms of driving forces, population density and vegetation coverage (NDVI) are the primary factors
affecting landscape ecological risk. Our findings suggest that anthropogenic activity is the primary
cause of landscape ecological risks in the study area and regional socioeconomic exploitation and
environmental conservation need to be rebalanced to achieve sustainability for the social ecosystem.
The PCR 3D LERA framework employed in this study can be used to inform landscape ecological
health and security and to optimize socioeconomic progress at regional scales.

Keywords: urbanization; LERA; PCR 3D; GeoDetector; spatial heterogeneity; the north and south of
Qinling Mountains

1. Introduction

Landscape ecological risk is a negative consequence of the interaction between land-
scape characteristics and external threats when a landscape is exposed to one or more
risk sources [1,2]. With rapid urbanization, the expansion of artificial (developed) land
comes at the expense of ecological land and can intensify landscape fragmentation and
vulnerability [3,4]. Extreme weather events such as heat waves, droughts and floods
have altered hydrological cycles and the carbon sequestration of ecosystems in modified
landscapes [5–7]. Landscape ecological risk can increase in complexity and risk receptors
can diversify from the ecosystem to the coupling of human and natural systems. Conse-
quently, increasing effort has been recently devoted to improving landscape ecological risk
assessment [8,9]

Landscape ecological risk assessment (LERA) has been employed to capture risk effects
and inform decision-making for environmental maintenance [10,11]. LERA emphasizes
the coupled landscape spatial pattern and landscape ecological processes [12,13] with
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the intrinsic attributes of the landscape and external disturbances from multiple risk
sources [8]. Recently, a landscape ecological pattern index algorithm based on landscape
disturbance and vulnerability [14,15], a source-sink theory created from landscape impacts
on ecological processes [16–18], and an ecosystem service value-based method [4,19] have
allowed the spatial characteristics of landscape ecological risk to be examined in a static
view. However, this ignores the impact-response dynamics and changes in landscapes, and
the risk adaptation under external drivers which can follow highly complex evolutionary
processes depending on the social-ecological system examined [12,20].

In this setting, adaptive dynamic cycle theory was introduced to meet the needs of
research to parse the spatiotemporal dynamic relationship between landscapes and the
risks that may arise in them [21,22]. The adaptive cycle has been developed within a four
stage framework of social-ecological system development: (1) exploitation, (2) release,
(3) conservation, and (4) reorganization, with three dimensions of potential, connectedness,
and resilience (PCR 3D) [22,23]. Potential and connectedness demonstrate the overlay
properties of the landscape and the interaction between the adjacent components of the
ecosystem; representing the landscape’s pattern of static attributes and the degree of
connectivity, respectively. Resilience refers to the adaptive and recovery abilities of the
ecosystem under risk uncertainty, reflecting the dynamic trends in the landscape and the
external risks from multiple sources [21,24]. Resilience describes the complex development
process of ecosystems to resist and absorb disturbances and their dynamic rebounding to a
stable state; which is a crucial element of LERA research [25,26]. Given this, the PCR 3D
LERA framework is an effective way of assessing comprehensive landscape ecological risk
and revealing the complex and dynamic evolution of the socio-ecosystem [8].

As the north–south geographical demarcation line for China’s subtropical and warm
temperate climatic regimes, the Qinling Mountains are an ecologically and climatically [27]
sensitive zone [28]. This area is critical for maintenance of ecological security and function
in China [29]. Climatic drivers have changed greatly and climate warming has altered the
phenological cycle of the vegetation in this region [27]. Local anthropogenic interference
has generated large changes in landscape patterns and ecological structure, aggravating
the contradiction between economic and ecological development. This has led to a diversi-
fication and increase in uncertainty from landscape ecological risks [30]. We have therefore
chosen the area north and south of the Qinling Mountains as a study area to apply the PCR
3D framework based on adaptive cycle theory to: (1) assess the landscape ecological risk
in an integrated and dynamic approach based on adaptive cycle theory, (2) explore the
spatio-temporal heterogeneity of the landscape ecological risk and identify the high-risk
units; and (3) investigate the dominant factors driving landscape ecological risk. This study
aims to demonstrate the use of LERA in a situation where landscape pattern and process
are coupled to examine dynamic responses and to inform the regulation and mitigation
of risks.

2. Materials and Methods
2.1. Study Area and Data Sources

The areas north and south of the Qinling Mountains are located in north-central
China (31◦ N–36◦ N, 105◦ E–112◦ E) (Figure 1), and are divided into the three physical
geographical units of the Guanzhong Plain, the Qinling Mountains and the Hanjiang Valley.
The Qinling Mountains form the boundary between the subtropical humid and warm
temperate humid climate zones in China, being crossed by the 0-degree isotherm and the
800-mm-year isohyet [28].

The Qinling Mountains feature hills and mountains [31] and are predominantly cov-
ered by woodland and grassland landscape types [32]. The altitude difference between
the north and south is about 195–3771.2 m a.s.l. and the hydro-geomorphological features
present a significant north–south gradient due to the orographic variation [33]. The average
annual temperature is about 10 ◦C and 14 ◦C, while the annual precipitation is 570 mm and
850 mm in the north and south, respectively. The study area is a climate-sensitive and bio-
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logically diverse region [29,34] and has been disturbed by various extreme climate events
and geological hazards such as drought, floods and landslides [35]. Urban expansion and
the influx of people from talent-acquisition programs have further altered the pattern and
the function of the ecological landscape, curbing the benign maintenance of the ecological
environment and increasing the diversity and uncertainty of landscape ecological risks [8].
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Figure 1. Overview and land use/land coverage types of the north and south of Qinling Mountains.
NQL is short for the north of Qinling Mountains, SQL is for the south of Qinling Mountains.

The data used to assess landscape ecological risk in this study includes slope-terrain,
land use/land coverage, vegetation coverage, precipitation, temperature, surface tempera-
ture and nighttime light data. The data sources are listed in Table 1. All the grid data were
interpolated into 1 km × 1 km cells by spatial resampling.

Table 1. Data and materials.

Datasets Date Source Resolution

DEM Global Digital Elevation Model
http://www.gdem.aster.ersdac.or.jp/, accessed on 20 September 2019 30 m

Vegetation coverage Vegetation Indices 16-days L3 Global 250 m product (MOD13Q1)
https://ladsweb.modaps.eosdis.nasa.gov, accessed on 15 December 2019 250 m

Surface temperature Land Surface Temperature/Emissivity 8-days L3 Global 1 km product (MOD11A2)
https://ladsweb.modaps.eosdis.nasa.gov, accessed on 25 December 2019 1 km

Land use cover
Land Cover Type Yearly L3 Global 500 m product (MCD12Q1)

https://ladsweb.modaps.eosdis.nasa.gov,
accessed on 10 September 2019

500 m

Precipitation China National Meteorological Center http://data.cma.cn,
accessed on 20 September 2019 Vector

Temperature China National Meteorological Center http://data.cma.cn,
accessed on 20 September 2019 Vector

NPP-VIIRS Nighttime light National Centers for Environmental Information
https://www.ngdc.noaa.gov, accessed on 25 December 2019 750 m

2.2. PCR 3D LERA Framework
2.2.1. PCR 3D Model

The two stages of exploitation and conservation comprise traditional ecosystem suc-
cession and have evolved into a three-dimensional dynamic cycle with the addition of
temporal processes of reorganization and release [23]. The dynamic development concept

http://www.gdem.aster.ersdac.or.jp/
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
http://data.cma.cn
http://data.cma.cn
https://www.ngdc.noaa.gov
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forms an adaptive cycle for the socio-ecosystem [8,21]. The adaptive dynamic cycle is
driven by the interaction of the three attributes of potential, connectedness and resilience
(PCR 3D) (Figure 2).
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framework of the study.

Specifically, potential criteria represent the multiple static attributes of the landscape,
reflecting the inherent characteristics of landscape units. Connectedness criteria refers to the
interaction between the adjacent patches within the landscape structure. As a crucial part
of the adaptive cycle, resilience indicates the resistance and maintenance ability of the socio-
ecological system’s functions when disturbed [8], and the capacity to tolerate and mitigate
the disturbance and recover stability. These can be used to predict the possible landscape
risk in the future [25]. Landscape ecological risk in potential and connectedness criteria
characterize the risk effects of the landscape in a spatial dimension related to landscape
structure and pattern, while resilience risk acts in a temporal dimension, trending with the
dynamic response of the landscape [26].

Human environment development promotes the evolution of social ecological systems
in four different stages, in which risk exists at all stages due to the system complexity
and diversity of risk sources [8]. The 3D model framework depicts the interaction of
the integrated human and natural ecosystems’ landscape pattern, ecological processes
and external disturbance, focusing on the reciprocal feedbacks inside this comprehensive
system [12]. Integrating adaptive cycle theory into LERA captures the dynamic process of
the socio-ecosystem adaptation to deal with the risk within an integrated view [26].

The PCR 3D model was applied via a LERA index system, building in terms for
the exposure and disturbance risk (Figure 2). Exposure risk means the possible risk the
landscape may face when exposed to external interference, while disturbance risk refers to
the risk the landscape faces when affected by interference.

2.2.2. LERA Index System

The index system of the PCR 3D model in this study consists of 14 factors, which are
divided into 3 categories covering the two aspects of exposure and disturbance (Table 2). In
detail, three indices of drought, drought trend, and a landscape contagion index (CONTAG)
are introduced to characterize the special geographical features of the study area in the
assessment index system.
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Table 2. LERA index system.

Criteria Risk Index Weight Normalization

Potential risk
(0.41)

Exposure
Slope 0.15 +

Land use type 0.21 +
Vegetation coverage 0.22 −

Disturbance

precipitation erosion 0.05 +
Drought 0.08 +

Surface temperature 0.14 +
Nighttime light intensity 0.15 +

Connectedness
risk

(0.33)

Exposure Shannon diversity index 0.12 −
Landscape contagion index 0.32 −

Disturbance
Distance to construction land 0.21 −

Landscape affinity 0.35 +

Resilience risk
(0.26)

Exposure Vegetation coverage trends 0.50 −

Disturbance
Nighttime light intensity trends 0.25 +

Drought trends 0.25 +
Note: “+” means positive factor and “−” means negative factor.

Drought and drought trend are increasing in the north and SQL in a time of climate
warming [36]. The Standardized Precipitation Evapotranspiration Index (SPEI) is an
international meteorological statistical method to investigate drought conditions [37,38],
with the ANUSPLIN (the Australian National University, Canberra, Australia) [39,40]
algorithm employed on specialized meteorological factors from 2008 to 2017. Drought
trend, depicted by the MK test, represents the degree of disturbance of extreme climate
events in the landscape ecosystems. The lower the MK value, the stronger the drought
trend, and in turn the greater the increase in landscape ecological risk, and vice versa.

Index CONTAG refers to the agglomeration and contagion of different landscape
types. The lower the degree of contagion, the more dispersed the landscape mosaic. The
greater the spatial heterogeneity of the landscape ecosystems, the higher the likelihood that
the central landscape risk is disturbed by the surrounding landscape types [12,41,42]. In the
calculation, the CONTAG simulation was performed using the moving window technique
in Fragstats 4.2 software (the University of Massachusetts, Amherst, MA, USA) [41] with a
500 m window radius, the value of which is normalized before spatialization. The details
of other indicators can be found in [8].

The weight of the indicators in the assessment index system of this research were
scored by expert grading methods and an analytic hierarchy process (AHP) based on
mathematical weights, which enhances humans’ perception of ecological function in an
empirical way [42]. The AHP reflects the importance level difference in indices in the
assessment indicator system in terms of preference effect, with the reliability established
through use [43–45].

2.3. GeoDetector

The risk sources that trigger the landscape ecological risk have diversified due to
drastic anthropogenic exploitation and worldwide environment change [46]. In order
to reveal the driving factors of landscape ecological risk, the spatial model GeoDetector
was employed to determine the degree of effect of influencing factors on the risk. The
GeoDetector model is a group of spatial statistical methods proposed to detect spatial
variability and interrelations between variables [47], and is comprised of a factor detector,
a risk detector, an interaction detector, and an ecological detector [47,48].

We use the factor detector and interaction detector of this model in this study to reveal
the spatial consistency of landscape ecological risk and the dominant factors driving the
spatial heterogeneity of the risk. In the evaluation, landscape ecological risk is taken as a
dependent variable, and a total of 15 normalized indices are taken as independent variables.

In the factor detector, the factors of the assessment index system are independent.
The spatial heterogeneity of attribute Y in the hierarchy of factor X was explored, and the
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q-statistic value, reflecting the explanatory degree of factor X to the spatial heterogeneity of
Y, was measured in the detector. The mathematical formulation is as follows:

q = 1− ∑l
h=1 Nhσh

2

Nσ2 (1)

where q refers to the explanatory power of each evaluation factor on the landscape ecologi-
cal risk Y, the value of which suggests the significance level of the contribution of factor X to
Y [49]. h is the number of classes of dependent variable Y or factor X; Nh and N are the unit
number of stratum h and the total categories, respectively; σh

2 and σ2 means the variance
of Y in class h and all the categories of the study region, respectively. The q-statistic ranges
from 0 to 1, which indicates that the larger the q value is, the stronger the explanatory
power of factor X on the dependent variable Y, and vice versa.

The interaction detector is used to detect whether the explanatory power of two factors
working together is strengthened, weakened, or still independent compared to a single
factor. It aims to reflect the interaction type and effect between two factors, X1 and X2,
on the spatial heterogeneity of the landscape ecological risk by comparing the q (X1∩X2)
value of the interaction and q(X1) and q(X2) where the interaction q (X1∩X2) is a new layer
generated by the tangent of the overlay of two variables, variable X1 and variable X2, the
comparison of which with q(X1) and q(X2) indicates the interaction type between two
variables. The types of interaction between two variables are shown in Table 3.

Table 3. Types of interaction between two variables.

Graphic Visualization Discrimination Interaction Type
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2.4. Risk Factors Selection

Landscape ecological risk is affected by a variety of factors due to the diversity of risk
sources. Based on existing efforts, population carrying capacity, economic intensity, natural
condition, ecological background, and ecological response were selected as the driving
factors of landscape ecological risk in the NQL and SQL.

Specifically, population carrying capacity consists of population density, natural pop-
ulation growth rate, and urbanization level. Economic intensity is formed by GDP growth
rate, GDP, and proportion of tertiary industry. Natural condition comprises annual mean
temperature and altitude. Ecological background is made up of NDVI (Normalized Differ-
ence Vegetation Index), aggregation index (AI), splitting index (SPLIT), patch density (PD)
and landscape division index (DIVISION) [50]. Ecological response involves the proportion
of environmental protection and technological education in fiscal expenditure (PEPE and
PTEE), respectively.

3. Results
3.1. Spatial Pattern of Indicators in LERA Index System

Fourteen indicators in the LERA index system were visualized spatially to depict
the embodiment of the landscape ecological risk on the landscape pattern and ecological
processes (Figure S1).

The high-risk area of the slope index was located in the high-altitude areas and the
low-value area was centered on the Weihe River plain in the NQL and the Hanjiang River
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valley in the SQL, driven by topographic and climatic conditions. The high-risk areas of
the indicators including land use, surface temperature, distance to construction land, and
landscape affinity and nighttime light intensity were centered in the NQL, especially in
the Xi’an–Xianyang urban agglomeration. The low-value areas were widely distributed in
the SQL. The vegetation coverage risk in the whole region is at a low level, accounting for
84.28% of the total area.

The spatial pattern of the precipitation erosion indicator showed that the SQL was
covered by moderate and high-risk values, especially in the upper reaches of the Hanjiang
River, while the risk pattern of the drought indicator was contrary to that of precipitation-
erosion. For the Shannon diversity index (SHDI) and CONTAG indicator, high-risk regions
were centered on the Weihe plain in the NQL and a small fraction distributed in the east of
the study area, where there was a mosaic of a single type of impervious land, cultivated
land, and forest land. The low and moderate-risk areas for vegetation coverage change
occupied almost the whole study area. The risk of drought index pattern had high spatial
heterogeneity with high risk in the west and low risk in the southeast of the study area.

3.2. Spatial Pattern of Landscape Ecological Risk in Different Criteria

The landscape ecological potential, connectedness, and resilience risk assessment was
simulated by weighting the corresponding risk indicators of the LERA index system. The
spatial patterns of landscape ecological risk in different criteria were spatially visualized in
this study (Figure 3).
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Figure 3. Spatial pattern of landscape ecological risk for different criteria in the north and south of
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WN is for Weinan city, SL is for Shangluo city, HZ is for Hanzhong city, AK is for Ankang city, SY is
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The potential risk is at a low and moderate level across most of the study area
(Figure 3a). High risk is centered on the Xi’an–Xianyang area in the NQL, while the
low and moderate risk is widely distributed in the SQL. A similar spatial distribution can
be found for the land use, surface temperature, and nighttime light intensity indicators
of the potential index system (Figure S1). The connectedness risk enjoyed a consistent
spatial pattern of potential risk (Figure 3b); the difference was the high-risk areas extending
from Xi’an–Xianyang eastwards and westwards to the urban agglomeration in almost the
whole NQL, which can also be found in the distance to construction land and land use
affinity indicators of the connectedness index system (Figure S1). The area of high-risk
connectedness in the Weihe plain is larger than that of the potential risk, due to the weak-
ened landscape unit connectivity constrained by large areas of arable or construction land
coverage. Contrary to the potential and connectedness risk, the resilience risk distribution
was shown to have a pattern of high in the west and low in the south of the study area.

The spatial pattern of the ecological resilience risk shows that Xi’an–Xianyang was in
a relatively low-risk area (Figure 3c), while the upper reach of the Hanjiang River basin,
Hanzhong, and Ankang city were in high-risk areas, which was inconsistent with the
potential and connectedness risk outcome. In terms of the exposure and disturbance risk
(Figure 3d,e), the proportional area of the former is significantly larger than the latter at the
high-risk level, especially in the upstream regions of the Hanjiang River.

Compared to the index assessment results (Figure S1), potential, connectedness, and
resilience risk results are not determined by one or more risk indices. For instance, the
potential risk pattern is generally correlated with the risk of the land use and vegetation
coverage index, but inconsistent with the water erosion and drought index risk. Similarly,
connectedness ecological risk has the same pattern as surface temperature and the Shannon
index but a different pattern to landscape affinity. The resilience risk pattern was almost
the same as the integration of the vegetation coverage and nighttime light intensity but
inconsistent with the drought trends index risk results.

3.3. Spatial Pattern of Comprehensive Landscape Ecological Risk

Spatially explicit comprehensive LERA outcomes were obtained for the potential,
connectedness, and resilience criteria weighting and superimposition (Figure 4). The risk
values vary in different regions, reflecting the variety of risk characteristics and social
development at different levels.

The overall comprehensive risk level in the north and south of the Qinling Mountains
was low and moderate, accounting for 90.13% of the total area. The comprehensive
landscape ecological risk distribution shows a pattern of local homogeneity and north–
south polarization (Figure 4a). The high-risk area is mainly concentrated in the Weihe River
plain in the NQL and a small fraction of high-risk area is on the Hanjiang River coast, while
the low-risk areas are distributed in the SQL and add up to 86.87% of the total area. The
expansion of impervious land uses driven by rapid urbanization intensifies the landscape
connectivity decline and ecological vulnerability increase in areas of high ecological risk,
while the hybrid distribution of forestland, grassland, water, and other ecological land
types result in relatively fine ecological conditions in the low and moderate-risk areas.

The risk source number of each pixel was calculated in the study (Figure 4b). The
high values are in the Weihe plain and Hanjiang River coast, characterized by large flat
areas and high population density. The ecological systems there are mainly disturbed by
anthropogenic activities and the risk sources are diverse. The result of landscape ecological
risk assessment shows the risk value in the northern cities is significantly larger than in the
southern ones (Figure 4c), and the maximum risk value 0.72 appears in Xi’an, which has
almost twice the value of the area in the south.
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Figure 4. (a) Spatial pattern of the comprehensive landscape ecological risk in the north and south of Qinling Mountains.
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ecological risk difference in different cities of the north and south of the Qinling Mountains.

3.4. Driving Factors Affecting the Landscape Ecological Risk

The 15 driving indicators of the comprehensive landscape ecological risk were pro-
cessed to identify influence factors in the study area by factor detection with GeoDetector
(Figure 5a). The factors with a level of significance higher than 0.05 were kept as the driving
forces of landscape ecological risk, including population density, PEPE, and all ecological
background indicators (Table 4).

Table 4. Result of interaction detector for landscape ecological risk.

Population Density PEPE Altitude AI SPLIT PD DIVISION

PEPE 0.829
Altitude 0.839 0.669

AI 0.887 0.626 0.756
SPLIT 0.914 0.671 0.777 0.92

PD 0.908 0.661 0.764 0.484 0.423
DIVISION 0.914 0.665 0.767 0.688 0.613 0.609

NDVI 0.890 0.695 0.650 0.744 0.773 0.751 0.764
Note: Number with “_” presents nonlinear enhancement, and the others were bi-factor enhancement.
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The capacity q value of the factors was quantified and sorted as population density
(0.797) > NDVI (0.617) > DIVISION (0.559) > SPLIT (0.412) > PD (0.402) > PEPE (0.366)
> altitude (0.362) > AI (0.271). Of all the above, the population density and vegetation
coverage (NDVI) were the two dominant driving indicators for the landscape ecological
risk in the study area.

To make the heterogeneity of the driving forces on landscape ecological risk spatially
explicit, the influence of factors driving the index of ecological risk was divided into low,
medium, and high levels according to the normalized value of the indicators, aiming
to provide theoretical reference for regional risk management and landscape pattern
optimization (Figure S2). The index of population intensity reflecting the external pressure
of social development on the environment maintenance, SPLIT, PD, and DIVISION index,
referring to the landscape fragmentation, were classified as positive forces driving the
landscape ecological risk in the study area. While altitude, NDVI, AI, and PEPE index
contribute to ecological development to a large degree, they are taken as negative forces
driving the landscape ecological risk of the study area.

The explanatory power of the interaction of two factors is greater than that of a single
one (Table 4). Apart from the interaction of altitude and AI, the interactive explanatory
power of any two factors is characterized as a synchronous enhancement feature, reflecting
the synergistic effect between various factors as influencing the spatial heterogeneity of
risk. In terms of the explanatory power, approximately 53.57% of the interaction pairs
exceeded 0.7. The interaction for population density and SPLIT, population density, and
DIVISION reached 0.914. The contribution of population density and NDVI to landscape
ecological risk is about 39.28%. The q-value of the interaction of population density and
NDVI was distinctly high relative to other factors (Figure 5b), which further indicates that
population density and vegetation coverage (NDVI) are the pivotal dynamic indicators of
landscape ecological risk, consistent with the findings of the factor detector.

4. Discussion
4.1. PCR 3D Model Framework Feasibility

Existing efforts have effectively promoted the development of landscape ecological
risk assessment. Recently, a landscape ecological risk index method has emerged as a repre-
sentative assessment method for directly or indirectly expressing landscape ecological risk
by quantifying landscape pattern [51], which is mainly based on a landscape disturbance
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index and a landscape vulnerability index. Due to the north–south polarization and local
homogeneity of landscape types in the area of this study, the potential risk in woodland
areas may be higher than that in artificial land areas under the same landscape ecological
index. Consequently, this traditional method cannot be used to accurately simulate the
landscape ecological risk of the study area.

LERA has been developed by combining the landscape pattern and ecological pro-
cesses with the external threats, a concept derived from traditional landscape ecological risk
assessment which emphasizes the comprehensive impact of multiple risk sources on the
socio-ecological system, but with disregard for the dynamic change in coupled ecosystems
and ecological risks.

The socio-ecological system has evolved through a succession of exploitation, con-
servation, release, and reorganization, with these four stages developing alternately, pro-
moting the development of the ecosystem towards a dynamic and stable state. This
development concept creates an adaptive dynamic cycle. [8,23]. With intensive human
interference and a changing environment, the uncertainty and diversity of landscape eco-
logical risk has been increasingly enhanced. The dynamic interactive relationship between
the landscape and risk effects is still not well understood with respect to the complexity of
development and the alternate pathways for system development. The PCR 3D framework
based on an adaptive cycle integrating resilience theory has been put forward to make
up for the deficiency [52]. The framework focuses on depicting the dynamic process by
spatializing trends in the index, aiming to represent the change of landscape patterns and
possible landscape ecological risks across a time series [22,53].

Our findings show that the Xi’an and Xianyang areas have high ecological potential,
connectedness, and exposure risk but relatively low ecological resilience risk. This indicates
that highly developed areas still have the ability to adapt to risk, allowing social ecosystems
to develop in a balanced way even under great risk pressure. The upper reaches of the
Hanjiang River basin were found to have relatively low potential and connectedness risk,
but a high resilience risk, suggesting poor capacity of the system to absorb and resist
external threats in this region. LERA research cannot be only undertaken with a spatial
and static view, because the outcome would ignore the adaptability of the landscape under
risk or underestimate the risk probability. Our findings show that the comprehensive risk
assessment result not only depends on the criteria of potential, connectedness, and the
resilience risk outcome, but also on the spatial distribution characteristics of ecological
landscape risk for each criterion, and is not completely consistent with that of risk of the
constituent index systems. This illustrates the complex nature of landscape ecological risk
and the diversity of risk sources. The LERA cannot be formulated from limited criteria or
indicators but only in an integrated and comprehensive way.

We have shown that the impact of human activities and a changing climate on land-
scape ecological risk varies with the change of climate elements and characteristics of the
study area. The PCR 3D LERA framework adopted in this study reflects the spatial and
temporal heterogeneity of landscape ecological risk and the trend in dynamic response
of ecosystem risk pressures, contributing to the formulation of an ecological construc-
tion scheme. However, a variety of factors including different perspectives of the LERA,
such as the main functional features of the region and different exploitation goals such as
economy-oriented or environment-oriented development, affect the ultimate evaluation
result of landscape ecological risk [12]. Therefore, the theoretical framework employed in
this study can be applied to assess landscape ecological risk in other regions influenced
by human behaviors and changing climates. The index system and approaches used in
this study are also feasible for examination of ecological security, ecosystem health, and
socio-ecosystem sustainability.
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4.2. Landscape Ecological Risk Implication

The LERA was conducted from an integral and dynamic perspective based on thinking
from landscape ecology, where the risk assessment outcome represents geographical and
ecological, as well as social development implications.

The topography and high altitude of the Qinling Mountains impedes the movement
of vapor over the southwest path to the Bengal Bay [54], significantly influencing the risk
pattern of slope, precipitation, erosion, and drought indicators in the LERA index system.
The results show that the high risk of water erosion is concentrated in the upper reaches of
the Hanjiang River in the SQL, and is affected by abundant precipitation in this subtropical
monsoon climate. In addition, a few areas in the west of the study area were found to be
prone to high incidence of drought, indicating a potentially heterogeneous impact from
global warming in the study area.

The Xi’an and Xianyang urban agglomeration plays a prominent role as a social and
economic center. The acceleration of the urbanization process speeds up the transfer of
ecological land to cultivated and construction land, increasing landscape fragmentation
and weakening the degree of landscape connectivity. The Xi’an and Xianyang area has a
high ecological potential and connectedness risk. However, resilience risk is relatively low
in this area, suggesting that Xi’an and Xianyang still have the capacity to absorb and resist
external disturbance and control high exposure and disturbance risk.

In contrast, the SQL follows an ecological-oriented development pathway where
exploitation is restricted because the areas have a critical role as water resources reserves
for the south–north water diversion project. In this location, the land use-land coverage
type is dominant and the mixed natural land types of woodland and grassland help to
decrease the external interference risk and the trend towards ecological loss. However,
it is noted that the resilience and exposure risk was relatively high in the upper reach
of the Hanjiang River basin owing to the conversion of ecological land for the facilities
constructed for the water transfer project, increasing landscape fragmentation and resulting
in greatly reduced ability for the ecosystem to self-regulate and resist external disturbance.

The comprehensive risk results show that the vast region of the study area is at low
and moderate risk (90.13% of the total area), suggesting that generally, socio-ecosystem
development is somewhat balanced in the north and south of the Qinling Mountains with
high ability to resist external disturbance. The larger landscape ecological risk values and
risk sources are found at the location of the most urbanized cities of the northern part of
the study region. This is the result of large areas of cultivated land and artificial surface
coverage, as a result of high population density and mass urbanization projects. These
effects intensify the landscape fragmentation and vulnerability and urban heat island effect,
leading to a succession of environmental problems.

4.3. Regional Risk Management Implementation

Our findings show that population density and vegetation coverage (NDVI) are the
primary forces driving landscape ecological risk in the study area. This suggests that anthro-
pogenic activity has a greater impact on the coupling of the human and natural system than
other factors. Generally, Xi’an–Xianyang are the areas with highest landscape ecological
risk. These regions enjoy a higher population density and AI, with lower NDVI and PEPE
in terms of the forces driving the landscape ecological risk. Therefore, risk management in
these places should focus on the positive impact of human regulation on landscape pattern
and ecological investment, such as reducing artificial impervious construction areas and
increasing green space to realize the effective reduction of ecological risks.

Altitude and slope are two crucial topographical threats affecting vegetation coverage
(NDVI) and the landscape ecological risk pattern [31]. Vegetation coverage in low-altitude
and gently sloped areas is highly likely to be disturbed by human beings. For instance,
the low-altitude areas in the SQL are concentrated in the cities of Hanzhong, Ankang,
and Shiyan, where there is presently a low level of economic development but a high
growth rate. These areas have a high DIVISION, SPLIT, and PD and low NDVI, AI, and
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PEPE, reflecting the low vegetation coverage and high landscape fragmentation following
land exploitation in the given period. The underlying cause is that ecological land has
been continuously appropriated for conversion to arable land and constructed land due
to the economic benefits derived. Given this, regional planning should be centered on
controlling the disorderly expansion of urban buildup areas and increasing the construction
of ecological land. In regions with low landscape ecological risk, especially where NDVI
and woodland and grassland coverage is high, management planning for sources of
landscape risk should avoid human disturbance and the ecological risks caused by natural
disasters such as drought and landslides.

The coupled natural and social systems are continuously rebalanced through the rapid
release and slow reorganization of ecosystems following socioeconomic exploitation and
environmental conservation, achieving coordinated development of new natural and social
ecosystem equilibria [8]. Landscapes in different regions respond to risk impacts differently
due to differences in socio-ecological systems. Considering the slow change in ecosystem
structure, function, and process through the adaptive cycle under external disturbance, a
resilient management planning perspective should be implemented in regional and urban
development strategies [25].

4.4. Limitations of the Study

The PCR 3D model framework adopted in this study reflects the spatial and temporal
heterogeneity of landscape ecological risk and the ecosystem risk pressure and dynamic
response trends; however, there are some shortcomings in this method. To spatially
explicitly evaluate landscape ecological risks, the study area can be divided into risk
sampling units, such as equidistant sampling grids (Mo et al., 2017) with basically the
same environmental conditions and external interference sources. Then a risk assessment
framework for targeted risk receptors and policy making can be formed combining the
risk index system identified in this study. Besides, the weight set in the risk assessment
index system is limited by subjective cognition and decision preferences, bringing a lot of
uncertainty to the evaluation results. Therefore, reducing the effects of subjective decisions
and the uncertainty of risk assessment should be the focus of further work.

5. Conclusions

The dynamic response and the likelihood risk trend of the landscape ecosystem
to anthropogenic threats and a warming climate were assessed using a PCR 3D model
adaptive cycle algorithm in this study between 2008 and 2017. The outcome shows that the
overall landscape ecological risk is at a low and moderate level across the whole study area,
indicating that ecosystems in this area enjoy a strong ability to resist external disturbance.

Local homogeneity and north–south polarization are the main patterns of integrated
landscape ecological risk in the study area. The high-risk area was located on the Weihe
River plain in the NQL, while the low-risk area was spread across the SQL. The research
shows that the Xi’an–Xianyang area has a high potential and connectedness risk but a
relatively low resilience risk, indicating that this area has regulation adaptability to reduce
risks in the future. The findings show that the upper reaches of the Hanjiang River, the water
source of the middle route of the South-to-North Water Transfer Project, has high resilience
risk and exposure risk due to reduction in the area of ecological landscapes and increased
impervious area as a result of the construction of water transfer facilities. The consequence
will be the deterioration of the ecological environment of the water source in the future. The
results indicate that population density and vegetation coverage NDVI were the dominant
driving forces for landscape ecological risk, showing that anthropogenic activity is the
primary cause of landscape ecological risks in the study area. The PCR 3D LERA conducted
in this study can inform the healthy development of regional economies and ecology in an
evidence-based way. Combining PCR 3D adaptive research with ecological optimization
in further work could identify landscape ecological control zoning more accurately in the
study area and beyond.
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