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Abstract: The rhizosphere is a hot spot of soil microbial activity and is largely fed by root exudation.
The carbon (C) exudation flux, coupled with plant growth, is considered a strategy of plants to
facilitate nutrient uptake. C exudation is accompanied by a release of nutrients. Nitrogen (N)
and phosphorus (P) co-limit the productivity of the plant-microbial system. Therefore, the C:N:P
stoichiometry of exudates should be linked to plant nutrient economies, plant functional traits (PFT)
and soil nutrient availability. We aimed to identify the strongest links in C:N:P stoichiometry among
all rhizosphere components. A total of eight grass species (from conservative to exploitative) were
grown in pots under two different soil C:nutrient conditions for a month. As a result, a wide gradient
of plant–microbial–soil interactions were created. A total of 43 variables of plants, exudates, microbial
and soil C:N:P stoichiometry, and PFTs were evaluated. The variables were merged into four groups
in a network analysis, allowing us to identify the strongest connections among the variables and the
biological meaning of these groups. The plant–soil interactions were shaped by soil N availability.
Faster-growing plants were associated with lower amounts of mineral N (and P) in the soil solution,
inducing a stronger competition for N with microorganisms in the rhizosphere compared to slower-
growing plants. The plants responded by enhancing their N use efficiency and root:shoot ratio, and
they reduced N losses via exudation. Root growth was supported either by reallocated foliar reserves
or by enhanced ammonium uptake, which connected the specific leaf area (SLA) to the mineral N
availability in the soil. Rapid plant growth enhanced the exudation flux. The exudates were rich in
C and P relative to N compounds and served to release surplus metabolic products. The exudate
C:N:P stoichiometry and soil N availability combined to shape the microbial stoichiometry, and
N and P mining. In conclusion, the exudate flux and its C:N:P stoichiometry reflected the plant
growth rate and nutrient constraints with a high degree of reliability. Furthermore, it mediated the
plant–microbial interactions in the rhizosphere.

Keywords: rhizosphere; C:N:P ratios; plant growth; mineral N; soil enzymatic activity; micro-
bial growth

1. Introduction

The rhizosphere, i.e., the soil directly impacted by the activity of roots [1,2], is one of
the most important zones for biogeochemical cycles in terrestrial ecosystems. It closely
connects the following two main actors: plants and soil microorganisms. Plant-microbial
interactions in the rhizosphere involve multiple components and factors [3]. The root
exudation of organic compounds alleviates the C limitation that microbes commonly
encounter in bulk soils, and stimulates rhizosphere microbial activity [4–6]. Enhanced
microbial activity feeds back to plants through changes in nutrient availability [7] and plant
development [8,9]. This complexity represents a major challenge for the understanding of
ecological processes.

Land 2021, 10, 840. https://doi.org/10.3390/land10080840 https://www.mdpi.com/journal/land

https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0003-0591-3151
https://orcid.org/0000-0001-6309-2908
https://doi.org/10.3390/land10080840
https://doi.org/10.3390/land10080840
https://doi.org/10.3390/land10080840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/land10080840
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land10080840?type=check_update&version=2


Land 2021, 10, 840 2 of 16

The application of stoichiometric and functional ecology to soil research has enabled a
synthesis of the complexity of soil and plants components, both of which are needed to
understand rhizosphere processes. The availability of nutrients determines plant growth
as well as the stoichiometric restrictions controlling microbial growth, activity, and organic
matter decomposition. It also shapes plant–microbe interactions [10–16]. The rhizosphere is
generally a C-surplus and nutrient-limited environment due to the exudation flux of organic
compounds and the increased needs of plants and microbes for nutrients. Exudation
stimulates microbial growth and the synthesis of exoenzymes that mine nutrients from
the soil organic matter (SOM) to fulfil their requirements [17]. Root exudation increases
with plant growth rate and nutrient uptake. Consequently, it has been recognised as
an important plant strategy for controlling soil nutrient cycling [16,18]. Faster-growing
plants are associated with greater microbial activity, faster SOM dynamics, lower N in the
microbial biomass, and a different functional community composition than slower-growing
plants [15,16,19–23]. Those results are a part of the growing knowledge that link plant
functional traits (PFTs) with soil nutrient availability, soil microbial activity-stoichiometry,
and SOM decomposition. The current data on PFTs are, however, largely independent of
ecological stoichiometry, which limits the capacity of PFT to be a useful indicator [24].

Living roots release not only C compounds but also nutrients in organic and mineral
forms, even under nutrient limiting conditions for plants [25]. Such nutrient limiting
conditions restrict plant metabolism and generate an excess of some compounds/elements
that the plant needs to release. The root exudation flux, thus, partly consists of compounds
in excess of the actual plant metabolic requirements [26,27], which should be associated
with the variability in both PFT and tissue C:N:P stoichiometry. However, besides the
well-established dependence of C exudation fluxes on plant biomass and their stimulation
of microbial activity [15,28,29], associations of PFTs with nutrients exuded by roots and
their roles in rhizosphere ecology are unknown. The fluxes and stoichiometry of exudates
have been suggested as drivers of microbial activity in the rhizosphere [20,30,31], but
this is difficult to measure [32]. Identifying PFTs that can predict relevant information
about C and nutrient exudation would enable their integration into C cycling models and
budgets [33].

In this study, we explored the connections among rhizosphere components, stoichiom-
etry, and PFTs, focusing on the role of exudation stoichiometry in plant–soil interactions.
We hypothesised that (H1) faster-growing plants take up more nutrients, which results in
greater depletion from the soil solution compared to slower-growing plants. (H2) Plants
adapt to decreasing soil nutrient availability by altering the PFT and stoichiometry of
tissues and exudates to optimise the uptake and use of nutrients, and (H3) changes in the
soil solution and exudation stoichiometry related to plant growth lead to adjustments of
the biomass stoichiometry and enzymatic activity of rhizosphere microorganisms. We set
up a greenhouse experiment in which we planted eight grass species ranging in nutritional
strategy, from conservative to exploitative, in pots with soils adjusted to two different
C:nutrient ratios. We changed soil stoichiometry by adding complex C, which intensifies
microbial activity and nutrient demands. This is in contrast to most other studies, which
have changed soil stoichiometry by adding nutrients (fertiliser) and, thus, alleviating the
nutrient limitations of plant production. Diverse plant strategies ensured a gradient in the
PFTs and the stoichiometric ratios linked to different soil C:nutrient ratios. We measured
and calculated 43 variables defining PFTs, microbial activity, and plant-exudate-microbe-
enzyme-soil C:N:P stoichiometry. We performed a network analysis to sort the tightly
connected variables into groups with biological (functional) meaning, as demonstrated in
previous applications of network analysis [34].

2. Materials and Methods

We used a set of 8 grass species common in European grasslands. The selected
species varied along a gradient of increasing specific leaf area (SLA) [35] and ecological
strategies [22]; conservative: Festuca rubra, Poa pratensis, and Bromus erectus; intermediate:
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Dactylis glomerata and Lolium perenne; and exploitative: Holcus lanatus, Phleum pratense, and
Poa trivialis.

The soil was classified as cambisol (IUSS Working Group WBR 2015, FAO), collected
in an annually mown grassland site (Ceske Budejovice, Czech Republic, 48.9◦ N, 14.3◦ E,
450 m a.s.l.). The main soil properties were soil organic C of 12.8 ± 0.3 g kg−1, total N
of 1.3 ± 0.03 g kg−1, total P of 0.21 ± 0.04 g kg−1, a C:N ratio of 11.76 ± 0.19 (n = 5)
and pH of 5.74 (soil:water mixture, 1:5, w/v); texture loam (55% of sand, 15% of clay).
After sieving (2 mm) and removing roots, the soil was split into two parts; one was kept
without any treatment, and the other was amended with an agar powder (Fluka agar for
microbiology, Millipore Sigma, containing 47% of C) in the final amount of 6.8 g kg−1

(3.2 g C kg−1) [36,37]. The addition enhanced the total C of the soil to 16.0 ± 0.1 g kg−1

and soil C:N to 14.2 ± 0.6 (n = 5). The polysaccharide addition aimed to ensure a long-term
supply of C to the soil microbial community, promoting its growth [36,37] and related N
requirements, thus strengthening the plant–microbial competition for the available N. Agar
was chosen to represent mucilage polysaccharides rich in galactose, which are secreted from
plant roots [38–41], suggesting that agar-like polymers are present in the rhizosphere. In
support, agar-degrading bacteria are commonly found in roots and the rhizosphere [42–45].
The soil, either non-amended or amended, was put in pots (8 cm × 8 cm × 13 cm; 800 g)
and planted with seeds of one grass species (15 seeds per pot, 4 replications per soil
treatment, 5 unplanted pots per non-amended or amended soil as controls). Plants grew
from seed in a greenhouse (exposed to natural light, temperature conditions of 25 ◦C for
18 h of daytime; 16 ◦C for 6 h of night-time). Soil water content was adjusted to field
capacity at the beginning of the experiment. Pots were irrigated with tap water twice per
week to keep the soil moisture at the field water capacity, which was checked by weighing
the pots. The experiment lasted one month, from May until June. Then, the plant and
soil characteristics were evaluated for each pot (soil parameters only in unplanted pots)
as follows.

2.1. Exudates

Intact plants were used for measuring exudation flux. The plants were removed
from the pot together with the block of soil. The soil was carefully separated from roots
by hand, starting from the outside of the block towards the core with the highest root
density. About 30 g of the (core) soil that remained attached to the roots (defined here
as the rhizosphere soil) was carefully cleaned from the roots by hand and tweezers in an
effort to minimise root disturbance. This rhizosphere soil was used for posterior analyses.
The complete removal of soil particles and of metabolites lost from potentially damaged
roots was completed by gentle washing and pre-soaking of the roots in 500 mL of distilled
water [32]. We tried to reduce root damage effects during the whole procedure, but we are
aware that it cannot be totally eliminated. Despite the limitations, the described method of
exudate sampling is considered to give results closest to real conditions and is widely used
(e.g., [25,46]). All plants from the pot were placed in a beaker with roots submerged in
500 mL of redistilled water and left in daylight in the conditioned greenhouse at 25 ◦C. After
4 h, the plants were removed and the root exudate solution was vacuum-filtered through a
0.2-micrometre express plus PES (polyethersulfone) membrane filter (GPWP14250, Merck
Milipore Ltd., Carrigtwohill, Ireland) to remove microbial cells and root debris if present,
and immediately analysed. The soluble exuded C and N (C.exu, N.exu) were determined
with a TOC-L analyser equipped with the total N measuring unit TNM-L (Shimadzu,
Tokyo, Japan). The concentrations of N-NH4

+ (NH4.exu), N-NO3
– (NO3.exu) and soluble

reactive P in exudates (P.exu) were measured with a Flow Injection Analyzer (FIA Lachat
QC8500, Lachat Instruments, Milwaukee, WI, USA). The principal colorimetric methods
used in FIA were the ascorbic acid reduction of phosphomolybdic acid for analysis of
soluble reactive phosphates, a phenol-hypochlorite assay with the sodium nitroprussite as
the catalyst (Berthelot reaction) for ammonium-N measurement, and the diazotisation of
sulfanilic acid and subsequent coupling with N-(1-naphthyl)-ethylenediamine in strongly
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acid solution for nitrate-N analysis. All exudation characteristics are expressed per pot
(total plant biomass) and hour.

2.2. Plant Properties and Functional Traits (PFTs)

After exudation measurements, 10 fresh leaves per pot were immersed in tap wa-
ter overnight, then wiped, scanned using WinRhizo (Regent Instruments, Québec, QC,
Canada), then dried at 70 ◦C for 48 h and weighed. The remaining plant biomass was
separated into shoot and root biomass, also dried at 70 ◦C for 48 h and weighed. Dry
tissues were milled and analysed for C and N contents (C.plant, N.plant) after combustion
of approximately 3–4 mg of a sample weighted in the tin capsule at 980 ◦C in the elemental
analyser (vario MICRO cube, Elementar, Germany) and for P content (P.plant) after acid
digestion [47] using FIA.

The following set of PFTs were evaluated: the plant biomass (Plant.BMS) calculated
as the sum of dry shoot and root biomass per pot; and biomass elemental compositions
(C.plant, N.plant, P.plant) and appropriate molar stoichiometric ratios. These are all aspects
of growth, which are related to the ecological strategy of a species and the soil nutrient
availability in a particular pot system. The specific leaf area (SLA), calculated by dividing
the fresh leaf area by the dry mass of scanned leaves (10 leaves), is related to the ability of the
canopy to capture light per the mass invested in leaf growth, linked to leaf photosynthetic
capacity. The root:shoot ratio (RS), the ratio of root over shoot dry biomass of each pot, is an
indicator of resource allocation strategy to capture nutrient/water versus light in a given
condition. The exudation flux (per pot; C.exu, N.exu, P.exu, NH4.exu, NO3.exu) shows
the release of compounds from the roots, which should partially reflect the metabolic C
surplus and imbalance in nutrient availability according to actual plant needs [27]. This is
considered to be a component of a species ecological strategy [16]. The specific exudation
(spc.C.exu, spc.N.exu, spc.P.exu), calculated by dividing the exudation flux of C, N, and P
over the root biomass, then shows the “losses” of the compounds containing the respective
elements per root mass.

2.3. Physico-Chemical Properties of Soil and Soil Solution

After harvesting, a part of the rhizosphere soil was air-dried, milled, and analysed
for the total C and N contents, as was performed for plant tissues. The total soil P was
analysed according to [47]. Part of the soil was frozen at −18 ◦C and the rest of the
fresh soil was stored at 4 ◦C and analysed for soluble organic C and N (DOC and DON),
ammonium-N (NH4.ss) and nitrate-N (NO3.ss) within a week. Fresh soils were extracted
with 0.5 M of K2SO4 (1:4, w/v) and analysed as performed for exudates. Extractable P
(PO4.ss) was determined in 0.5 M of NaHCO3 (1:15, w/v, pH = 8.5) and measured with a
spectrophotometer at a wavelength of 890 nm (Genesys 10 S, UV–Vis, Thermo Scientific,
Waltham, MA, USA) after reacting with molybdenum blue. The pH was determined in a
soil:water mixture (1:5, w/v) using a glass electrode.

2.4. Soil Microbial Biomass and Soil Activities

Microbial C (Cmic), N (Nmic), and P (Pmic) were determined using chloroform
fumigation–extraction [48–50]. The extraction before and after the fumigation of the soil
with amylene-stabilised chloroform for 24 h was performed with 0.5 M of K2SO4 (1:4,
w/v) for C and N, and with 0.5 M of NaHCO3 (1:15, w/v, pH = 8.5) for P. The Cmic,
Nmic, and Pmic were calculated as differences in the concentrations of organic C, total
N (measured on TOC-L analyser) and extractable P (measured after the molybdenum
blue reaction on a spectrophotometer at a wavelength of 890 nm [50]) in soil extracts
before and after fumigation. The values were corrected for extraction efficiencies using
kEC = 0.41 [51], kEN = 0.45 [52], and kEP = 0.4 [50]. Total microbial DNA was extracted
from 0.25 g of defrosted soil using a PowerSoil Isolation Kit (MO BIO laboratories, Inc.
Carlsbad, CA, USA) according to the suggested protocol, using PowerBeat tubes and tube
mixer 693TC5. The extracted DNA was quantified using QuantiFluor® dsDNA Dye in a



Land 2021, 10, 840 5 of 16

Quantus Flourometr (Promega, Madison, WI, USA) following the manufacturer’s protocol.
Cmic, Nmic, and Pmic were considered to be measures of the total microbial biomass
and its molar stoichiometric ratios, whereas microbial DNA served as an indicator of
microbial growth and the biomass responsive (activated) to soil C inputs from plants and
the added substrate.

Respiration of the rhizosphere soil was measured to characterise microbial activity
as the cumulative CO2 production after a 3-day incubation of 10 g of soil in airtight-
sealed 100-millilitre flasks at 20 ◦C, determined using an Agilent 6850 GC system (Agilent
Technologies, Santa Clara, CA, USA). Potential activities of five hydrolytic enzymes in
the rhizosphere characterised the microbial potential to release C, N, and P from organic
substrates. The activity of C-mining (β-glucosidase and cellobiosidase), N-mining (Ala-
aminopeptidase and chitinase), and P-mining enzymes (phosphatase) [53] were determined
using a microplate fluorometric assay [54]. Defrosted soil samples (1 g) were homogenised
in distilled water (100 mL) and sonicated for 4 min; 200 µL of soil suspension was added
to 50 µL of methylumbelliferyl solution for β-glucosidase, cellobiosidase, phosphatase,
and chitinase (NAG) determination, or to 50 µL of 7-aminomethyl-4-coumarin substrate
solution for measurement of Ala-aminopeptidase. From three pre-tested concentrations
of each fluorogenic substrate (50, 100, and 300 µM), the one with the highest enzymatic
activity was chosen [55,56]. Plates were incubated at 20 ◦C for 2 h. The fluorescence was
measured with an INFINITE F200 microplate reader (TECAN, Crailsheim, Germany) at an
excitation wavelength of 365 nm and an emission wavelength of 450 nm.

2.5. Statistical Analyses

A factorial combination of two soil C treatments with eight plant species classified into
3 different ecological strategies (3 conservatives, 2 intermediates, and 3 exploitatives) was
performed in order to find a controlled gradient of soil conditions, visible in the distinctive
C:N ratio of total soil, as well as a non-controlled gradient of PFTs. After comparing
correlation matrices of variables using three different analyses, Pearson, Kendall, and
Spearman, the Pearson method was chosen because it showed the best matrix determinant
reflected in most links. The Pearson correlation analysis requires numerical variables, for
which we had to replace the categorical “plant ecological strategy” with another numerical
variable from the measured PFTs. A hierarchical clustering of PFTs (plant biomass, SLA, RS,
specific exudation of C, N, and P) using the package clustofvar [57] identified plant biomass
as the best representative of a plant ecological strategy. The algorithm uses the Spearman
correlation when non-continuous variables are present. Figure S1 shows how we chose
the PFT. Plant biomass (g per pot) expressed the species-specific growth rate (the increase
in biomass of 15 seedlings per pot and month). All three conservative species had low
biomass, whereas plants of the intermediate and exploitative categories had more variable
biomass, including the largest biomass values (Figure S1). After selecting only countable
variables, we applied the Box–Cox transformation to the 43 numerical variables to reduce
the effect of skewed distributions [58], and performed a network analysis that included the
relationships with correlation coefficients higher than 0.3 or lower than −0.3 (|r| > 0.3)
and an adjusted p-value < 0.05 (Pearson, London, UK). The variables were then distributed
into groups according to the maximal modularity using the cluster_optimal function of
the library qgraph(v. 1.2.6) [34,59]. All the analyses including the additional correlations
(Figures 1–4 and the supplementary matrices) were performed in R software.

3. Results
3.1. C, N, and P Content and Stoichiometry in All Pools

The C:N:P stoichiometry of plant–microbial–soil pools for all species and both soil C:N
treatments (64 experimental units) are summarised in Table 1. The coefficients of variance
(in %), which represent the flexibility of the respective pools, show that the characteristics of
the total soil were the most stable, whereas those of exudates were the most variable. The N
concentration and respective stoichiometric ratios were most variable in the plant biomass
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and soil solution, whereas the P concentration and related elemental ratios were most
variable in root exudates and microbial biomass. Microbial respiration was, on average,
20.5 µg C g−1 (±38%), and the total microbial DNA in soil was 7.5 µg g−1 (±18%). Table S1.

Table 1. C, N, P contents and their molar ratios in plant, microbial, and soil pools calculated over all planted treatments
(mean and coefficient of variance in %, n = 64).

Mean Coefficient of Variance (%)

POOL Unit C N P C:N C:P N:P C N P C:N C:P N:P

Plant biomass mg·g−1 414.6 19.6 4.0 24.7 266.5 10.8 2.1 31.9 18.3 30.9 21.9 29.2
Root exudates µg·plant−1·h−1 793.6 40.2 29.6 22.6 88.0 4.2 61.1 56.3 74.7 31.4 63.7 57.6

Spec. Exudation µg·g−1 root·h−1 1073.9 59.2 41.6 42.0 46.3 60.1
Soil solution µg·g−1 22.0 2.9 1.1 9.2 53.4 6.0 22.0 26.7 17.9 30.6 30.9 24.5
Soil microbes µg·g−1 200.4 29.6 77.9 7.9 6.6 0.8 20.6 28.4 42.6 20.6 40.5 51.4

Enzym. activity nM·g−1·h−1 48.5 16.1 29.5 3.0 1.7 0.6 18.2 15.5 16.7 16.7 12.9 11.8
Total soil mg·g−1 14.2 1.3 0.2 12.9 173.4 13.6 9.4 7.4 19.0 6.5 12.2 13.5

3.2. Variable Clustering and Correlation
3.2.1. Central Group: Close Link to Plant Biomass

The 43 variables characterising interactions in the plant–soil system were sorted into
four groups in the network analysis (Figure 1). Details of the correlations (r and p-value)
between variables within each group and variables connecting the groups are given in
correlation matrices in the supplementary information (Figures S2–S6). Group 1 was in the
centre to the network and contained most of the strongest linked variables. It consists of
plant biomass (representing plant growth rate) and variables expressing plant C excess and
N economy (Figure 1). Faster-growing plants decreased the N content in tissues (N.plant)
and enhanced the N use efficiency, which was evidenced by reduced N:P and enhanced C:N
ratios of their tissues (Figures S2 and S6). They were also associated with a larger exudation
flux of C, P, and organic N, and with higher microbial DNA contents in the rhizosphere soil.
The higher C:N (CN.exu) and lower N:P ratio (NP.exu) of exudates correlated with plant
C:N:P stoichiometry (Figures S1 and S4). It also reflected the higher N use efficiency and
regulation of N losses of the faster-growing plants. This group also includes the variables
characterising nutrient availability in the soil (NO3.ss, NH4.ss, PO4.ss). Faster plant growth
caused a stronger depletion of mineral nutrients from the soil, which resulted in increased
C:N and C:P ratios of the soil solution (CN.ss, CP.ss) (Figure S2).

3.2.2. Upper Group: DOC, Microbial Respiration, and Enzymatic Activity

The second, upper group of variables was connected to the central group. It was
strongly influenced by the C:N ratio of total soil. The group consisted mainly of the organic
compounds in the soil solution, microbial respiration, and exoenzymatic activity (Figure 1).
The correlation matrix showed the following relations among the variables (Figure S3).
The soils with higher C:N ratios contained more dissolved organic matter (DOC and DON)
than soils of lower C:N ratios. The plants growing in soils with a high DOC concentration,
originating from both added soil C and the large exudation flux, released root exudates
poor in nitrates (NO3.exu). Under high DOC, the microbial communities had higher
respiration (Resp.mic) and invested more into N-mining enzyme activity (AlaAPasa). The
increase in N-mining was further accompanied by enhanced phosphatase activity, which
resulted in a lower C:N and C:P but a higher N:P of enzymatic activities under a high soil
C:N (Figure S3). All these relations indicate a deepening nutrient limitation in plant–soil
systems under high DOC concentrations.
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3.2.3. Lower Group: Plant and Exudates Stoichiometry

The third, lower group includes variables that were linked to plant growth less than
those in the central group (Figure 1). The strongest variable of the group was the CN.plant,
which increased with plant growth and with the soil CN (Figure S6). The plants with
enhanced tissue C:N were also poor in P (having a higher biomass C:P). The C.plant
and P.plant were negatively correlated and together formed the CP.plant. The plants
with increasing CP.plant exuded compounds enriched in P (decreasing CP.exu, Figure S4).
Another important PFT in the group was the RS, which was controlled by plant growth
after a certain threshold. Small slower-growing plants/species had comparable RSs, but
they started to increase, when the plant biomass exceeded 3 g (Figure 2). Faster-growing
plants, which invested more in root growth (increasing RS), released less exudates per
root-mass (C.spc.exu, N.spc.exu, and P.spc.exu). Decreasing C.spc.exu was associated with



Land 2021, 10, 840 8 of 16

a larger SLA (Figure 1 and Figure S4) and with ammonium availability in the soil solution
(Figure S6).
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Figure 2. Pearson correlation between plant biomass and root:shoot ratio. The complete data
(64 units) had r = 0.54, p = 2.9 × 10−6. Small plants with biomass lower than 3 g (42 units) had
r = −0.32, p = 0.02. Large plants with biomass exceeding 3 g (22 units) had r = 0.79, p = 2.1 × 10−5.

3.2.4. Isolated Group: Microbial Biomass and Stoichiometry

The fourth, most isolated group includes all the variables of microbial biomass and
C:N:P stoichiometry (Figure 1). All microbially bound elements, C, N, and P, were cor-
related (Figure S5). However, microbial C and P (C.mic, P.mic) were decoupled from
non-microbial variables in other groups. Microbial and exudate C:P ratios were posi-
tively correlated (Figure 3a), which points to a close link between plant and rhizosphere
microorganisms mediated via exudation. Microbial and enzymatic N:P ratios were neg-
atively correlated (Figure 1, Figure S6), and phosphatase activity was linked to the N:P
ratio of the soil solution (Figure 3b), in support of the microbial adaptation to the actual
nutrient availability by shifts in exoenyzmatic activity. The strongest variables of this
group were related to microbial N (N.mic), which connects the microbial biomass and
stoichiometry with N.plant, mineral forms of N in the soil solution and enzymatic activity
(Figure 4). An increasing microbial N was linked to decreasing N concentrations in the
plant (Figure 4a) and decreasing NH4

+ concentrations in the soil solution (Figure 4b). The
lower C:N of the microbial biomass was related to NO3

− depletion (Figure 4c) and lower
Ala-aminopeptidase activity (Figure 4d).
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Figure 3. Correlation between C:P ratio of exudates and microbial biomass (a) and between soil
solution N:P ratio and phosphatase potential activity (b).
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Figure 4. Correlation of microbial N with plant N (a) and with N-NH4
+ amount in soil solution (b), and of microbial C:N

ratio with N-NO3
− in soil solution (c) and with alanine-aminopeptidase potential activity in soil (d).

4. Discussion
4.1. Larger Plants Optimised Their Utilisation of N, the Most Limiting Element

The central group was composed of variables characterising plant growth and related
nutrient economics. The size of the plants was proportional to the depletion of mineral
nutrients from the soil solution, with the strongest decline for nitrate availability, followed
by ammonia and phosphates (Figure 1, central group), in support of H1. The reductions
in nitrate and ammonium availability due to plant size are in line with the widespread
evidence that plants preferentially take up N in its mineral forms [60–63] and rapidly
deplete the highly mobile NO3

− [64]. Plant biomass was further strongly negatively
linked with the N content in tissues and exudates. Larger plants, associated with lower
mineral N concentrations in the soil solution, were forced to optimise their N use. They
reduced N contents in the tissues (demonstrated by a lowering of N.plant and NP.plant)
and in exudates, which had higher C:N and lower N:P ratios. These N savings resulted in
the higher efficiency in the N use of the larger plants. The close connections among the
C:N stoichiometry of the soil solution, plant biomass, and exudates suggests that the N
availability in the plant–soil system played a key role in controlling the plant production
and N economy, supporting H2. The soluble phosphate pool was more strongly linked to
the plant N:P ratio than to plant biomass (Figure 1, central group, Figure S2), in support
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of a stronger control of plant production by N than P availability in our experiment. The
change in tissue stoichiometry (shown by both the absolute and relative lowering of the N
content) was accompanied by differential biomass allocation. The large plants in which the
biomass exceeded a certain threshold (3 g in our case) enhanced their RS ratio (Figure 2).
Such a response has been observed in plants under conditions of N deficiency [65,66]. We,
thus, suggest that larger (faster-growing) plants induced a strong N limitation in the soils
due to their high N demands, supporting H2.

4.2. Root Exudation Served to Get Rid of Surplus Elements

Plant biomass was associated with a larger C exudation flux (Figure 1, central group),
which has been previously observed [15,16,28,67,68]. Notably, we report here for the first
time that the larger exudation of C compounds was accompanied by a larger release of
organic N and total P from the roots. This increased net exudation of nutrients. However, it
contradicts the assumption that root exudation serves as a plant investment of C aimed at
stimulating nutrient mining from the soil organic matter by microorganisms. Instead, we
observed that the exudation of larger plants was mostly composed of products that plants
could not immobilise due to their actual N limitation. Larger plants that faced lower soil
N availability had an excess of C and P compounds in relation to their needs. Therefore,
they released C and P compounds via exudation, which had higher C:N and lower N:P
ratios than smaller plants, reflecting the plant tissue stoichiometry (H2) (Figure 1, central
group). Additionally, the fast-growing plants also reduced their mass-specific exudation
of N but not that of C and P, in accordance with their “N saving” economy and higher N
use efficiency compared to the smaller plants. In summary, our results well support the
concept that exudation is more a release of surplus products than a targeted investment of
plants [27].

4.3. Fast Growth Implied an Adjustment of PFT to Depletion of Mineral N

Fast growing plants, with their large root systems and, thus, high RS, released fewer
exudates per root-mass (Figure 1, lowest group). The C that is fixed aboveground in
excess to other limiting biogenic nutrients is exported from leaves to prevent damage to
photosynthetic structures caused by sugar accumulation [27]. The flow goes belowground,
where transported sucrose serves as a signal for root growth. The N required for building
root tissues [69] can be obtained either from remobilised shoot reserves, which alters PFT
(e.g., SLA, plant N content) or from the soil solution, which affects the concentration
of N-forms in the soil solution. Graminoids growing under low N availability increase
their phloem load with C and amino acids to support root growth [69–71]. The active
remobilisation of leaf reserves may reduce leaf thickness and result in an increase in SLA.
Therefore, SLA can be used as an indicator of leaf storage. In our experiment, an increasing
SLA was connected to a higher NH4

+ availability in the soil solution. We, thus, speculate
that those species having a higher SLA remobilised their N reserves from leaves to supply
root growth, and did not take up extra amounts of NH4

+ from the soil. In contrast, those
plants with a lower SLA kept their reserves in leaves and supplemented their N-needs for
root growth via increased NH4

+ uptake from the soil solution. They were, thus, associated
with lower available NH4

+. This agrees with findings that plants tend to take up more
NH4

+ from the soil when they have high concentrations of carbohydrates in roots to
support amino acids’ synthesis [72,73]. Though our suggestions are highly speculative
and include processes and variables that are rarely linked in the existing literature, it is
worth noting them, since these links should be relevant in plant soil interactions. Our pot
experiment with species monocultures excluded potential competition between species
with different economic traits for aboveground resources (namely light). This explains why
SLA was linked to soil conditions but not to plant growth, as has been found in some field
experiments [74,75].
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4.4. Plant Microbe Links Were Mediated through the Competition for N and
Exudation Stoichiometry

The grouping of enzymatic activity and microbial respiration with DOM availability that
we observed in the second (upper) group is well supported by the literature [15,16,76–79].
Microbial growth (indicated by microbial DNA amounts) and respiration, though also
closely connected, belonged to different groups (Figure 1, central and upper groups). Mi-
crobial DNA was tightly linked with variables of plant growth, in support of the key role of
easy-available exudation stimulating growth and turnover in rhizospheric microorganisms
(Henneron et al., 2020b).

Variables of microbial C:N:P stoichiometry were located in a separate group from
the rest of the variables, which could reflect the relatively strict homeostasis of this
pool [10,80–82]. The network analysis further revealed that the microbial N and P sto-
ichiometry was influenced by different plant and soil characteristics. Microbial P and
related ratios were the most variable within the microbial stoichiometry (Table 1), which
agrees with Chen et al. [83]. The variation in P ratios reflects microbial growth activity and
the ability of microbes to store it [84,85]. Microbial and exudate C:P ratios were coupled
(Figure 3a), suggesting that exuded P was an important source for the P-demanding rhizo-
spheric microbial community. The P exudation and, thus, the P supply of root-associated
microbes increased with deepening plant N starvation, occurring proportional to plant
size, as discussed above. The enzymatic P-mining from SOM via phosphatase activity was
negatively linked to the N:P stoichiometry of the soil solution and of the microbial biomass
(Figures 1 and 3b). Microbes, thus, invested in exoenzyme P mining when P availability
started to be limited in relation to N, supporting the theory of ecological stoichiometry [53].
We, thus, suggest that microorganisms associated with fast-growing N-limited plants are
efficiently supplied by P-rich exudates, while those associated with slower-growing plants
facing higher N availability (higher N:P of the soil solution and higher concentrations of
mineral N forms) are forced to mine P from SOM more via enhanced phosphatase activity,
in support of H3. This agrees with Drake et al. [31], who suggested that root exudate
stoichiometry determines microbial activity in the rhizosphere.

Fast-growing plants extracted more N from the soil, which almost certainly resulted
from accelerated N mineralisation compared to small plants, as already demonstrated [16].
They further observed that fast-growing plants were accompanied by a soil microbial
biomass with a higher C:N ratio than slow-growing species. However, we found the
opposite trend, with a depletion of mineral N forms in soil under fast-growing plants,
stimulating N immobilisation in microorganisms and resulting in a low C:N microbial
biomass (Figure 4). We attribute this contradiction to the difference in soil fertility between
the experiments. The soil C and N contents were eight times lower in our case (Table 1),
representing a stronger microbial C and N co-limitation, expressed also in a much lower
microbial biomass in our experiment (Table 1) [15]. In the short term, microorganisms are
superior competitors to plants for organic N and also better competitors for mineral N,
especially under very low concentrations [86]. Of the mineral forms, they preferentially
consume available NH4

+ over NO3
− [86–88], while plants preferentially take up mobile

nitrates, which alleviates their competition for N through chemical niche separation [89].
However, we observed a strong depletion of both mineral N forms from the soil solution
under fast-growing plants, indicating conditions of strong competition for N and high
energy expenses in N incorporation into the microbial biomass [90]. The microbial biomass
built under such conditions had a low C:N ratio. It was associated with low alanine
aminopeptidase activity (H3) (Figure 4c,d). This supports the suggestion that very low
mineral N availability limits microbial investments into the highly N-demanding produc-
tion of exoenzymes [31,91–94]. In our case, microorganisms reduced only N mining but
not the activity of other hydrolytic enzymes. This suggests that the repression of N mining
is a coordinated microbial strategy for the efficient N use and competition for N uptake by
fast-growing plants under very low N availability, supporting H3. Such conditions push
plants to adapt their metabolism and PFTs to increase N use efficiency (CN.plant) and N
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uptake (RS) by the optional re-translocation of leaf reserves (SLA) and decreased specific
N exudation.

5. Conclusions

The plant growth-related uptake of nutrients from the soil reduced the availability
of both mineral N and P in the soil. The nutrient uptake was proportional to the plant
biomass. The depletion of nutrients from the soil solution caused by fast plant growth
forced large plants to reduce N concentrations in tissues and losses via exudation, and to
relocate biomass to intensify soil exploration by increasing SLA and RS. The exudation of
plants facing low N availability was relatively richer in C and P against N, which indicates
that exudation served to release surplus elements from plants. The exudation C:P ratio
correlated with the C:P of the microbial biomass, suggesting that root exudation serves as an
important source of C and P for soil microbes. Therefore, exudation mediates the coupling
of plant and microbe nutrient requirements. Microorganisms responded to deepening N
limitation by enhancing N immobilisation over N mining, which strengthened the plant-
microbe competition for N and resulted in tightly closed N recycling. Our data showed that
soil nutrient availability and soil solution stoichiometry control plant–microbe interactions.

Our results cast light over the use of plant stoichiometry and PFT as indicators of
exudation and microbial stoichiometry. There is a need for similar studies, which would
focus on plant–exudates–microbial links under a strong P limitation to complement the
knowledge. We propose field studies evaluating these links as the next step for their
validation under complex natural rconditions.
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correlation analysis between plant category and biomass (b), SLA (c), and RS (d), Figure S2: Pearson
correlation matrix of variables included in the central group. Under the diagonal are writen the
correlation coeffients proportional to the colour of each cell, Figure S3: Pearson correlation matrix
of variables included in the upper group. Under the diagonal are writen the correlation coeffients
proportional to the colour of each cell, Figure S4: Pearson correlation matrix of variables included
in the lower group. Under the diagonal are writen the correlation coeffients proportional to the
colour of each cell, Figure S5: Pearson correlation matrix of variables included in the microbial
biomass stoichiometry group. Under the diagonal are writen the correlation coeffients proportional
to the colour of each cell, Figure S6: Pearson correlation matrix of variables from different groups.
Under the diagonal are writen the correlation coeffients proportional to the colour of each cell,
Supplementary Table S1: Strenght of the variables by groups in Figure 1. Strength means the numeber
of linkns of each variable.
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