Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. Output and Input Variables
2.1.2. Sales Channels
2.1.3. Control Variables
2.2. Production Function, Partial Output Elasticities, and Elasticity of Substitution
2.2.1. Stochastic Frontier Production Function
2.2.2. Translog Model
2.2.3. Partial Output Elasticities
2.2.4. Direct Elasticity of Substitution
2.3. Sales Channels and Partial Output Elasticities for Chemical and Organic Fertilizer
2.4. Sales Channels and Technical Inefficiency
3. Estimation Results and Discussion
3.1. Partial Output Elasticities
3.2. Elasticities of Substitution between Organic Fertilizer and Chemical Fertilizer
3.3. Sales Channels, Partial Output Elasticities for Organic Fertilizer and Technical Inefficiency
3.3.1. Partial Output Elasticities
3.3.2. Technical Inefficiency
4. Conclusions, Policy Implications and Way Forward
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Panel A1-1 | Panel A1-2 | |||
---|---|---|---|---|
(Yield is in kg/ha) | (Yield is in yuan/ha) | |||
Variables | Coeff. | z-Statistics | Coeff. | z-Statistics |
ln(Manure expense) | 0.039 | 0.78 | 0.033 | 0.49 |
ln(Organic fertilizer expense) | 0.064 | 0.92 | −0.021 | −0.22 |
ln(Chemical fertilizer expense) | 0.123 | 1.34 | 0.079 | 0.64 |
ln(Hired labor expense) | 0.023 | 0.56 | 0.010 | 0.18 |
ln(Family labor expense) | −0.390 | −1.05 | −0.333 | −0.67 |
ln(Machinery expense) | 0.096 | 1.05 | 0.069 | 0.56 |
ln(Other input expense) | 0.545 | 0.98 | 3.130 *** | 4.22 |
ln(Manure expense) × ln(Organic fertilizer expense) | −0.001 * | −1.84 | −0.002 ** | −2.37 |
ln(Manure expense) × ln(Chemical fertilizer expense) | 0.003 *** | 3.86 | 0.004 *** | 4.18 |
ln(Manure expense) × ln(Hired labor expense) | −0.000 | −1.14 | −0.001 | −1.07 |
ln(Manure expense) × ln(Family labor expense) | 0.001 | 0.17 | 0.005 | 1.08 |
ln(Manure expense) × ln(Machinery expense) | −0.004 *** | −3.45 | −0.006 *** | −4.28 |
ln(Manure expense) × ln(Other input expense) | −0.003 | −0.63 | −0.006 | −0.95 |
ln(Organic fertilizer expense) × ln(Chemical fertilizer expense) | 0.001 | 1.14 | 0.001 | 0.80 |
ln(Organic fertilizer expense) × ln(Hired labor expense) | −0.001 * | −1.88 | −0.001 ** | −2.48 |
ln(Organic fertilizer expense) × ln(Family labor expense) | −0.010 | −1.58 | −0.001 | −0.09 |
ln(Organic fertilizer expense) × ln(Machinery expense) | −0.001 * | −1.71 | −0.002 * | −1.81 |
ln(Organic fertilizer expense) × ln(Other input expense) | 0.005 | 0.80 | 0.004 | 0.46 |
ln(Chemical fertilizer expense) × ln(Hired labor expense) | −0.001 | −1.55 | −0.001 | −1.25 |
ln(Chemical fertilizer expense) × ln(Family labor expense) | −0.003 | −0.27 | −0.001 | −0.09 |
ln(Chemical fertilizer expense) × ln(Machinery expense) | −0.003 ** | −2.52 | −0.003 ** | −2.14 |
ln(Chemical fertilizer expense) × ln(Other input expense) | −0.007 | −0.83 | −0.003 | −0.25 |
ln(Hired labor expense) × ln(Family labor expense) | −0.003 | −1.04 | −0.002 | −0.58 |
ln(Hired labor expense) × ln(Machinery expense) | 0.001 * | 1.700 | 0.001 ** | 2.09 |
ln(Hired labor expense) × ln(Other input expense) | 0.004 | 0.87 | 0.004 | 0.75 |
ln(Family labor expense) × ln(Machinery expense) | −0.012 | −1.43 | −0.005 | −0.48 |
ln(Family labor expense) × ln(Other input expense) | 0.061 | 1.50 | 0.040 | 0.73 |
ln(Machinery expense) × ln(Other input expense) | 0.003 | 0.39 | −0.003 | −0.36 |
ln(Manure expense) × ln(Manure expense) | 0.003 | 1.58 | 0.006 ** | 1.99 |
ln(Organic fertilizer expense) × ln(Organic fertilizer expense) | 0.002 | 1.17 | −0.001 | −0.41 |
ln(Chemical fertilizer expense) × ln(Chemical fertilizer expense) | 0.008 *** | 5.66 | 0.009 *** | 4.55 |
ln(Hired labor expense) × ln(Hired labor expense) | 0.005 *** | 3.940 | 0.009 *** | 5.5 |
ln(Family labor expense) × ln(Family labor expense) | 0.007 ** | 2.22 | 0.009 ** | 2.25 |
ln(Machinery expense) × ln(Machinery expense) | 0.002 | 1.31 | 0.004 ** | 2.15 |
ln(Other input expense) × ln(Other input expense) | −0.043 | −1.37 | −0.164 *** | −3.98 |
Control variables | ||||
Soil lacks N | 0.089 | 0.52 | −0.056 | −0.25 |
Soil lacks K | 0.160 | 1.30 | 0.162 | 1.00 |
Soil lacks P | 0.108 | 0.89 | 0.320 ** | 2.01 |
Soil lacks trace elements | 0.134 | 1.21 | 0.233 | 1.61 |
Soil lacks organic matter | 0.028 | 0.33 | 0.228 ** | 2.03 |
Soil does not lack anything | 0.259 | 1.12 | 0.241 | 0.8 |
Years to bear fruit | 0.008 ** | 2.28 | −0.005 | −1.00 |
Production cycle stage | 0.200 *** | 6.00 | 0.203 *** | 4.52 |
Natural disaster | −0.005 *** | −11.78 | −0.006 *** | −10.93 |
Subsidy for organic fertilizer | 0.122 *** | 3.09 | 0.069 | 1.31 |
Rain | −0.000 | −0.27 | −0.000 * | −1.76 |
Sunlight | 0.000 ** | 2.23 | −0.001 *** | −4.35 |
Temperature 1 | −0.006 ** | −2.38 | 0.017 *** | 4.7 |
Temperature 2 | 0.011 *** | 3.81 | −0.018 *** | −4.41 |
Temperature 3 | 0.000 | 0.42 | 0.003 ** | 2.32 |
Constant | 5.314 | 0.25 | −4.246 | −0.18 |
Sigma | −0.970 *** | −20.41 | −0.408 *** | −8.68 |
Gamma | −0.093 | −0.76 | −0.170 | −1.35 |
Mu | 2.621 | 0.12 | 3.006 | 0.13 |
Observations | 1377 | 1377 | ||
Number of farms | 459 | 459 |
Panel A2-1 | Panel A2-2 | |||
---|---|---|---|---|
(Yield is in kg/ha) | (Yield is in yuan/ha) | |||
Variables | Coeff. | z-Statistics | Coeff. | z-Statistics |
ln(manure quantity) | −0.013 | −0.44 | −0.028 | −0.71 |
ln(Organic matter) | 0.187 | 1.29 | −0.132 | −0.63 |
ln(Bacteria count) | −0.056 | −0.66 | −0.019 | −0.17 |
ln(Organic fertilizer N) | 0.092 | 0.12 | −0.808 | −0.81 |
ln(Organic fertilizer P) | 0.096 | 0.08 | 0.810 | 0.52 |
ln(Organic fertilizer K) | −0.159 | −0.10 | 0.149 | 0.07 |
ln(Chemical fertilizer N) | 0.173 | 0.43 | −0.359 | −0.66 |
ln(Chemical fertilizer P) | −0.207 | −0.32 | 0.394 | 0.45 |
ln(Chemical fertilizer K) | 0.066 | 0.11 | −0.023 | −0.03 |
ln(Hired labor quantity) | 0.084 *** | 2.67 | 0.102 ** | 2.42 |
ln(Family labor quantity) | 0.335 ** | 2.29 | 0.207 | 1.06 |
ln(Machinery quantity) | 0.307 *** | 2.71 | 0.325 ** | 2.14 |
ln(manure quantity) × ln(Organic matter) | 0.008 *** | 10.68 | 0.013 *** | 10.27 |
ln(manure quantity) × ln(Bacteria count) | −0.006 *** | 4.78 | −0.009 *** | 5.81 |
ln(manure quantity) × ln(Organic fertilizer N) | 0.004 | −5.53 | 0.002 | −6.43 |
ln(manure quantity) × ln(Organic fertilizer P) | 0.011 | 0.57 | 0.001 | 0.25 |
ln(manure quantity) × ln(Organic fertilizer K) | −0.015 | 0.90 | −0.004 | 0.03 |
ln(manure quantity) × ln(Chemical fertilizer N) | 0.003 | −0.91 | 0.005 * | −0.16 |
ln(manure quantity) × ln(Chemical fertilizer P) | −0.008 | 1.52 | −0.010 | 1.86 |
ln(manure quantity) × ln(Chemical fertilizer K) | 0.006 | −1.53 | 0.007 | −1.5 |
ln(manure quantity) × ln(Hired labor quantity) | 0.000 | 1.22 | −0.000 | 1.06 |
ln(manure quantity) × ln(Family labor quantity) | 0.004 | 0.08 | 0.007 | −0.48 |
ln(manure quantity) × ln(Machinery quantity) | 0.000 | 1.08 | 0.001 | 1.43 |
ln(Organic matter) × ln(Bacteria count) | 0.017 ** | 0.10 | 0.017 | 0.54 |
ln(Organic matter) × ln(Organic fertilizer N) | −0.185 | 2.05 | −0.058 | 1.47 |
ln(Organic matter) × ln(Organic fertilizer P) | −0.192 | −1.45 | 0.063 | −0.34 |
ln(Organic matter) × ln(Organic fertilizer K) | 0.379 | −1.07 | −0.020 | 0.26 |
ln(Organic matter) × ln(Chemical fertilizer N) | −0.009 | 1.38 | 0.029 | −0.05 |
ln(Organic matter) × ln(Chemical fertilizer P) | 0.019 | −0.27 | −0.030 | 0.65 |
ln(Organic matter) × ln(Chemical fertilizer K) | −0.004 | 0.45 | 0.005 | −0.52 |
ln(Organic matter) × ln(Hired labor quantity) | 0.001 | −0.10 | 0.001 | 0.11 |
ln(Organic matter) × ln(Family labor quantity) | −0.010 | 1.27 | 0.020 | 0.54 |
ln(Organic matter) × ln(Machinery quantity) | 0.007 ** | −0.62 | 0.014 *** | 0.84 |
ln(Bacteria count) × ln(Organic fertilizer N) | 0.022 | 2.04 | −0.006 | 2.97 |
ln(Bacteria count) × ln(Organic fertilizer P) | 0.005 | 0.46 | −0.012 | −0.09 |
ln(Bacteria count) × ln(Organic fertilizer K) | −0.027 | 0.18 | 0.019 | −0.34 |
ln(Bacteria count) × ln(Chemical fertilizer N) | 0.011 | −0.37 | −0.018 | 0.2 |
ln(Bacteria count) × ln(Chemical fertilizer P) | −0.021 | 0.50 | 0.014 | −0.57 |
ln(Bacteria count) × ln(Chemical fertilizer K) | 0.006 | −0.74 | −0.000 | 0.37 |
ln(Bacteria count) × ln(Hired labor quantity) | −0.001 ** | 0.25 | −0.001 | 0 |
ln(Bacteria count) × ln(Family labor quantity) | −0.005 | −2.03 | −0.014 | −1.63 |
ln(Bacteria count) × ln(Machinery quantity) | −0.007 *** | −0.51 | −0.012 *** | −1.06 |
ln(Organic fertilizer N × ln(Organic fertilizer P) | 0.019 | −3.34 | 0.639 | −4.16 |
ln(Organic fertilizer N × ln(Organic fertilizer K) | 0.536 | 0.06 | −0.874 | 1.51 |
ln(Organic fertilizer N × ln(Chemical fertilizer N) | 0.065 | 0.90 | −0.032 | −1.09 |
ln(Organic fertilizer N × ln(Chemical fertilizer P) | −0.002 | 1.40 | −0.063 | −0.51 |
ln(Organic fertilizer N × ln(Chemical fertilizer K) | −0.010 | −0.02 | 0.110 | −0.41 |
ln(Organic fertilizer N × ln(Hired labor quantity) | 0.005 | −0.09 | 0.003 | 0.73 |
ln(Organic fertilizer N × ln(Family labor quantity) | 0.009 | 0.93 | 0.036 | 0.38 |
ln(Organic fertilizer N × ln(Machinery quantity) | −0.007 | 0.16 | 0.019 | 0.48 |
ln(Organic fertilizer P × ln(Organic fertilizer K | 0.078 | −0.27 | −0.957 | 0.57 |
ln(Organic fertilizer P × ln(Chemical fertilizer N) | 0.072 | 0.15 | −0.007 | −1.43 |
ln(Organic fertilizer P × ln(Chemical fertilizer P) | 0.058 | 1.36 | 0.197 | −0.1 |
ln(Organic fertilizer P × ln(Chemical fertilizer K) | −0.128 | 0.31 | −0.176 | 0.79 |
ln(Organic fertilizer P × ln(Hired labor quantity) | 0.001 | −0.71 | −0.005 | −0.72 |
ln(Organic fertilizer P × ln(Family labor quantity) | 0.087 | 0.07 | −0.009 | −0.37 |
ln(Organic fertilizer P × ln(Machinery quantity) | 0.022 | 0.78 | 0.013 | −0.06 |
ln(Organic fertilizer K × ln(Chemical fertilizer N) | −0.139 | 0.50 | 0.045 | 0.21 |
ln(Organic fertilizer K × ln(Chemical fertilizer P) | −0.063 | −1.57 | −0.150 | 0.38 |
ln(Organic fertilizer K × ln(Chemical fertilizer K) | 0.145 | −0.23 | 0.077 | −0.41 |
ln(Organic fertilizer K × ln(Hired labor quantity) | −0.006 | 0.55 | 0.003 | 0.21 |
ln(Organic fertilizer K × ln(Family labor quantity) | −0.098 | −0.40 | −0.031 | 0.17 |
ln(Organic fertilizer K × ln(Machinery quantity) | −0.016 | −0.66 | −0.033 | −0.16 |
ln(Chemical fertilizer N × ln(Chemical fertilizer P) | 0.023 | −0.25 | −0.038 | −0.36 |
ln(Chemical fertilizer N × ln(Chemical fertilizer K) | 0.008 | 0.42 | 0.046 | −0.5 |
ln(Chemical fertilizer N × ln(Hired labor quantity) | −0.003 | 0.20 | −0.003 | 0.81 |
ln(Chemical fertilizer N × ln(Family labor quantity) | −0.002 | −1.49 | 0.051 | −0.96 |
ln(Chemical fertilizer N × ln(Machinery quantity) | −0.011 | −0.05 | 0.003 | 1.24 |
ln(Chemical fertilizer P × ln(Chemical fertilizer K) | 0.015 | −0.6 | −0.008 | 0.13 |
ln(Chemical fertilizer P × ln(Hired labor quantity) | 0.003 | 0.8 | 0.009 * | −0.33 |
ln(Chemical fertilizer P × ln(Family labor quantity) | 0.022 | 0.86 | −0.059 | 1.94 |
ln(Chemical fertilizer P × ln(Machinery quantity) | 0.007 | 0.37 | 0.020 | −0.74 |
ln(Chemical fertilizer K × ln(Hired labor quantity) | −0.001 | 0.38 | −0.007 * | 0.75 |
ln(Chemical fertilizer K × ln(Family labor quantity) | −0.019 | −0.43 | 0.015 | −1.79 |
ln(Chemical fertilizer K × ln(Machinery quantity) | 0.004 | −0.35 | −0.024 | 0.2 |
ln(Hired labor quantity) × ln(Family labor quantity) | −0.004 | 0.32 | −0.005 | −1.43 |
ln(Hired labor quantity) × ln(Machinery quantity) | −0.000 | −1.19 | −0.001 | −0.93 |
ln(Family labor quantity) × ln(Machinery quantity) | −0.033 ** | −0.34 | −0.030 | −0.57 |
ln(manure quantity) × ln(manure quantity) | −0.000 | −2.35 | 0.004 | −1.61 |
ln(Organic matter) × ln(Organic matter) | −0.022 ** | −0.13 | −0.026 * | 1.33 |
ln(Bacteria count) × ln(Bacteria count) | −0.001 | −20 | 0.001 | −1.76 |
ln(Organic fertilizer N) × ln(Organic fertilizer N) | −0.234 | −0.2 | 0.155 | 0.38 |
ln(Organic fertilizer P) × ln(Organic fertilizer P) | 0.005 | −0.96 | 0.085 | 0.48 |
ln(Organic fertilizer K) × ln(Organic fertilizer K) | −0.404 | 0.10 | 0.971 | 1.24 |
ln(Chemical fertilizer N) × ln(Chemical fertilizer N) | −0.031 | −0.74 | −0.015 | 1.33 |
ln(Chemical fertilizer P) × ln(Chemical fertilizer P) | −0.013 | −0.91 | 0.010 | −0.31 |
ln(Chemical fertilizer K) × ln(Chemical fertilizer K) | 0.007 | −0.71 | 0.013 ** | 0.41 |
ln(Hired labor quantity) × ln(Chemical fertilizer K) | 0.004 *** | 1.40 | 0.008 *** | 2.01 |
ln(Family labor quantity) × ln(Family labor quantity) | 0.008 | 3.28 | 0.011 | 4.52 |
ln(Machinery quantity) × ln(Machinery quantity) | 0.002 | 1.53 | 0.004 ** | 1.5 |
ln(Other input expense) | 0.442 *** | 1.63 | 0.579 *** | 2.16 |
Control variables | ||||
Soil lacks N | 0.156 | 0.90 | 0.050 | 0.22 |
Soil lacks K | 0.163 | 1.34 | 0.164 | 0.97 |
Soil lacks P | 0.082 | 0.70 | 0.232 | 1.49 |
Soil lacks trace elements | 0.076 | 0.70 | 0.206 | 1.44 |
Soil lacks organic matter | 0.048 | 0.56 | 0.214 * | 1.93 |
Soil does not lack anything | 0.236 | 1.06 | 0.225 | 0.78 |
Years to bear fruit | 0.010 *** | 2.75 | −0.004 | −0.87 |
Production cycle stage | 0.217 *** | 6.48 | 0.241 *** | 5.35 |
Natural disaster | −0.005 *** | −12.41 | −0.007 *** | −11.33 |
Subsidy for organic fertilizer | 0.103 *** | 2.66 | 0.043 | 0.83 |
Rain | −0.000 | −0.32 | −0.000 | −0.99 |
Sunlight | 0.000 ** | 2.31 | −0.001 *** | −3.56 |
Temperature 1 | −0.006 ** | −1.98 | 0.017 *** | 4.37 |
Temperature 2 | 0.010 *** | 2.92 | −0.021 *** | −4.31 |
Temperature 3 | 0.000 | 0.12 | 0.002 | 1.39 |
Constant | 2.891 | 0.10 | 3.585 ** | 2.19 |
Sigma | −1.020 *** | −21.54 | −0.421 *** | −2.99 |
Gamma | −0.152 | −1.20 | −0.128 | −0.43 |
Mu | 2.410 | 0.08 | 1.217 | 1.55 |
Observations | 1377 | 1377 | ||
Number of farms | 459 | 459 |
References
- FAO. The Future of Food and Agriculture–Trends and Challenges; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/i6583e/i6583e.pdf (accessed on 1 December 2020).
- Mylona, K.; Maragkoudakis, P.; Miko, L.; Bock, A.-K.; Wollgast, J.; Caldeira, S.; Ulberth, F. Future of food safety and nutrition-Seeking win-wins, coping with trade-offs. Food Policy 2018, 74, 143–146. [Google Scholar] [CrossRef]
- Jiao, X.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Yuan, L.; Jiang, R.; Jiang, B.; Rengel, Z. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Wu, Y. Chemical fertilizer use efficiency and its determinants in China’s farming sector: Implications for environmental protection. China Agric. Econ. Rev. 2011, 3, 117–130. [Google Scholar] [CrossRef]
- Yang, Y.; He, Y.; Li, Z. Social capital and the use of organic fertilizer: An empirical analysis of Hubei Province in China. Environ. Sci. Pollut. Res. 2020, 27, 1–12. [Google Scholar] [CrossRef]
- Wu, H.; Ge, Y. Excessive Application of Fertilizer, Agricultural Non-Point Source Pollution, and Farmers’ Policy Choice. Sustainability 2019, 11, 1165. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Gu, B.; Ju, X.; Chang, J.; Ge, Y.; Vitousek, P.M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 2015, 112, 8792–8797. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. Thoughts of China’s food security strategy in the new era. J. Agric. Sci. Technol. 2013, 15, 1–6. [Google Scholar]
- Liu, Z.; Wang, S.; Xue, B.; Li, R.; Geng, Y.; Yang, T.; Li, Y.; Dong, H.; Luo, Z.; Tao, W. Emergy-based indicators of the environmental impacts and driving forces of non-point source pollution from crop production in China. Ecol. Indic. 2021, 121, 107023. [Google Scholar] [CrossRef]
- Tang, J.W.; Lin, Z.A.; Xu, J.X.; Qi, J.; Wang, Y.H. Effect of organic manure and chemical fertilizer on soil nutrient. Soil Fertil. Sci. China 2006, 3, 44–47. [Google Scholar]
- Yang, H.S. Resource management, soil fertility and sustainable crop production: Experiences of China. Agric. Ecosyst. Environ. 2006, 116, 27–33. [Google Scholar] [CrossRef]
- Bhatt, M.K.; Labanya, R.; Joshi, H.C. Influence of long-term chemical fertilizers and organic manures on soil fertility-A review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar] [CrossRef]
- Kang, Y.; Hao, Y.; Shen, M.; Zhao, Q.; Li, Q.; Hu, J. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotoxicol. Environ. Saf. 2016, 130, 279–288. [Google Scholar] [CrossRef]
- Kochakinezhad, H.; Peyvast, G.-A.; Kashi, A.-K.; Olfati, J.-A.; Asadi, A. A comparison of organic and chemical fertilizers for tomato production. J. Org. Syst. 2012, 7, 14–25. [Google Scholar]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Wang, C.; Huang, C.; Qian, J.; Xiao, J.; Li, H.; Wen, Y.; He, X.; Ran, W.; Shen, Q.; Yu, G. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy. PLoS ONE 2014, 9, e88279. [Google Scholar] [CrossRef]
- Linquist, B.A.; Phengsouvanna, V.; Sengxue, P. Benefits of organic residues and chemical fertilizer to productivity of rain-fed lowland rice and to soil nutrient balances. Nutr. Cycl. Agroecosyst. 2007, 79, 59–72. [Google Scholar] [CrossRef]
- He, L.-L.; Zhong, Z.; Yang, H. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J. Integr. Agric. 2017, 16, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Du, Z.-L.; Wu, W.-L.; Zhang, Q.-Z.; Guo, Y.; Meng, F. Long-term manure amendments enhance soil aggregation and carbon saturation of stable pools in North China plain. J. Integr. Agric. 2014, 13, 2276–2285. [Google Scholar] [CrossRef]
- Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 2011, 48, 53–62. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
- Yang, X.; Fang, S. Practices, perceptions, and implications of fertilizer use in East-Central China. Ambio 2015, 44, 647–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawe, D.; Dobermann, A.; Ladha, J.K.; Yadav, R.L.; Bao, L.; Gupta, R.K.; Lal, P.; Panaullah, G.; Sariam, O.; Singh, Y. Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crop. Res. 2003, 83, 191–213. [Google Scholar] [CrossRef]
- Hashimi, R.; Matsuura, E.; Komatsuzaki, M. Effects of Cultivating Rice and Wheat with and without Organic Fertilizer Application on Greenhouse Gas Emissions and Soil Quality in Khost, Afghanistan. Sustainability 2020, 12, 6508. [Google Scholar] [CrossRef]
- Ma, W.; Ma, C.; Su, Y.; Nie, Z. Organic farming: Does acquisition of the farming information influence Chinese apple farmers’ willingness to adopt? China Agric. Econ. Rev. 2017, 9, 211–224. [Google Scholar] [CrossRef]
- Liu, G.; Xie, H. Simulation of Regulation Policies for Fertilizer and Pesticide Reduction in Arable Land Based on Farmers’ Behavior—Using Jiangxi Province as an Example. Sustainability 2019, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Läpple, D. Adoption and abandonment of organic farming: An empirical investigation of the Irish drystock sector. J. Agric. Econ. 2010, 61, 697–714. [Google Scholar] [CrossRef]
- Acs, S.; Berentsen, P.; Huirne, R.; Van Asseldonk, M. Effect of yield and price risk on conversion from conventional to organic farming. Aust. J. Agric. Resour. Econ. 2009, 53, 393–411. [Google Scholar] [CrossRef] [Green Version]
- Brentari, E.; Levaggi, R.; Zuccolotto, P. Pricing strategies for Italian red wine. Food Qual. Prefer. 2011, 22, 725–732. [Google Scholar] [CrossRef]
- Rebelo, J.; Lourenço-Gomes, L.; Gonçalves, T.; Caldas, J. A hedonic price analysis for the Portuguese wine market: Does the distribution channel matter? J. Appl. Econ. 2019, 22, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.; Huo, X. Transaction Costs and Farm-to-Market Linkages: Empirical Evidence from China Apple Producers. In Proceedings of the International Association of Agricultural Economists 2015 Conference, Milan, Italy, 9–14 August 2015. [Google Scholar]
- Wang, L.; Huo, X. Transaction costs comparison between cooperatives and conventional apple producers: A case study of Northwestern China. Ann. Public Coop. Econ. 2014, 85, 233–255. [Google Scholar]
- Huang, Y.Z.; Luo, X.F.; Liu, D.; Yu, W.Z.; Tang, L. Factors affecting farmers’ adoption of organic fertilizer instead of chemical fertilizer—explaining the phenomenon of farmers’ little behavior with strong willingness. Resour. Environ. Yangtze Basin 2019, 28, 632–641. [Google Scholar]
- Ajewole, O.C. Farmers response to adoption of commercially available organic fertilizers in Oyo state, Nigeria. Afr. J. Agric. Res. 2010, 5, 2497–2503. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Abebe, G.; Debebe, S. Factors affecting use of organic fertilizer among smallholder farmers in Sekela district of Amhara region, Northwestern Ethiopia. Cogent Food Agric. 2019, 5, 1669398. [Google Scholar] [CrossRef]
- Wu, H.; Hao, H.; Lei, H.; Ge, Y.; Shi, H.; Song, Y. Farm Size, Risk Aversion and Overuse of Fertilizer: The Heterogeneity of Large-Scale and Small-Scale Wheat Farmers in Northern China. Land 2021, 10, 111. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, T.; Yao, S.; Guo, Y. Effects of Households’ Fertilization Knowledge and Technologies on Over-Fertilization: A Case Study of Grape Growers in Shaanxi, China. Land 2020, 9, 321. [Google Scholar] [CrossRef]
- Zheng, W.; He, Z.; Xu, X. Evaluation of over fertilization in main grain crops in Jiangsu and its influencing factors. Res. Agric. Mod. 2017, 38, 666–672. [Google Scholar]
- Li, W.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J. Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Sci. Total Environ. 2021, 759, 143554. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Vitousek, P.M.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhang, Y.; Nadolnyak, D.; Wesley, J.D.; Zhang, Y. Fertilizer industry subsidies in China: Who are the beneficiaries? China Agric. Econ. Rev. 2014, 6, 433–451. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Ma, L.; Huang, G.; Oenema, O.; Zhang, F.; Dou, Z. An analysis of China’s fertilizer policies: Impacts on the industry, food security, and the environment. J. Environ. Qual. 2013, 42, 972–981. [Google Scholar] [CrossRef] [PubMed]
- Sher, A.; Abbas, A.; Mazhar, S.; Azadi, H.; Lin, G. Fostering sustainable ventures: Drivers of sustainable start-up intentions among aspiring university students in Pakistan. J. Clean. Prod. 2020, 262, 121269. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean. Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Pan, D.; Kong, F.; Zhang, N.; Ying, R. Knowledge training and the change of fertilizer use intensity: Evidence from wheat farmers in China. J. Environ. Manag. 2017, 197, 130–139. [Google Scholar] [CrossRef]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Meeusen, W.; van Den Broeck, J. Efficiency estimation from Cobb-Douglas production functions with composed error. Int. Econ. Rev. 1977, 18, 435–444. [Google Scholar] [CrossRef]
- Stevenson, R.E. Likelihood functions for generalized stochastic frontier estimation. J. Econom. 1980, 13, 57–66. [Google Scholar] [CrossRef]
- Greene, W.H. A gamma-distributed stochastic frontier model. J. Econom. 1990, 46, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, P.; Sickles, R.C. Production frontiers and panel data. J. Bus. Econ. Stat. 1984, 2, 367–374. [Google Scholar]
- Battese, G.E.; Coelli, T.J. Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J. Econom. 1988, 38, 387–399. [Google Scholar] [CrossRef]
- Kumbhakar, S.C. Production frontiers, panel data, and time-varying technical inefficiency. J. Econom. 1990, 46, 201–211. [Google Scholar] [CrossRef]
- Sickles, R.C. Panel estimators and the identification of firm-specific efficiency levels in parametric, semiparametric and nonparametric settings. J. Econom. 2005, 126, 305–334. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.I. Derivation of the Hicks, or direct, elasticity of substitution using the input distance function. Econ. Lett. 2010, 108, 349–351. [Google Scholar] [CrossRef]
- Henningsen, A.; Henning, C.H.C.A. Imposing regional monotonicity on translog stochastic production frontiers with a simple three-step procedure. J. Product. Anal. 2009, 32, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Uematsu, H.; Mishra, A.K. Organic farmers or conventional farmers: Where’s the money? Ecol. Econ. 2012, 78, 55–62. [Google Scholar] [CrossRef]
- DAI, Z.; FEI, L.; Jian, Z.; HUANG, D.; LIU, T. Optimization of water and nitrogen management for surge-root irrigated apple trees in the Loess Plateau of China. J. Integr. Agric. 2021, 20, 260–273. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, P.; Hu, H.; Xie, H.; Yu, Z.; Chen, S. Effect of the grain-growing purpose and farm size on the ability of stable land property rights to encourage farmers to apply organic fertilizers. J. Environ. Manag. 2019, 251, 109621. [Google Scholar] [CrossRef]
- Ma, W.; Renwick, A.; Yuan, P.; Ratna, N. Agricultural cooperative membership and technical efficiency of apple farmers in China: An analysis accounting for selectivity bias. Food Policy 2018, 81, 122–132. [Google Scholar] [CrossRef]
- Hao, J.; Bijman, J.; Gardebroek, C.; Heerink, N.; Heijman, W.; Huo, X. Cooperative membership and farmers’ choice of marketing channels–Evidence from apple farmers in Shaanxi and Shandong Provinces, China. Food Policy 2018, 74, 53–64. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A. Does cooperative membership improve household welfare? Evidence from apple farmers in China. Food Policy 2016, 58, 94–102. [Google Scholar] [CrossRef]
Variable | Definition (Unit) | Mean | SD |
---|---|---|---|
Yield quantity | Apple yield (kilograms/hectare) | 21,334.542 | 15,659.826 |
Yield value | Value of apple yield (yuan/hectare) | 73,291.896 | 62,067.129 |
Inputs measured in value terms | |||
Manure expenses | Cost of manure (yuan/hectare) | 1081.236 | 6092.374 |
Organic fertilizer expenses | Cost of organic fertilizer (yuan/hectare) | 7256.262 | 6812.736 |
Chemical fertilizer expenses | Cost of chemical fertilizer (yuan/hectare) | 14,581.613 | 15,940.643 |
Hired labor expenses | Cost of hired labor (yuan/hectare) | 12,646.026 | 16,975.909 |
Family labor expenses | Cost of family labor(yuan/hectare) | 56,930.878 | 48,056.499 |
Machinery expenses | Cost of machinery (yuan/hectare) | 3564.014 | 4320.171 |
Other inputs expenses | Cost of other inputs (yuan/hectare) | 12,308.880 | 9938.363 |
Inputs measured in physical units | |||
Manure quantity | Quantity of manure (kilograms/hectare) | 3318.948 | 13,735.943 |
Organic matter | Quantity of organic matter in organic fertilizer (kilograms/hectare) | 1822.634 | 1548.943 |
Bacteria count | Count of number of bacteria in organic fertilizer per hectare | 7,390,000 | 13,300,000 |
Organic fertilizer N | Quantity of nitrogen in organic fertilizer (kilograms/hectare) | 226.266 | 411.165 |
Organic fertilizer P | Quantity of phosphorus in organic fertilizer (kilograms/hectare) | 322.624 | 504.546 |
Organic fertilizer K | Quantity of potassium in organic fertilizer (kilograms/hectare) | 197.086 | 310.634 |
Chemical fertilizer N | Quantity of nitrogen in chemical fertilizer (kilograms/hectare) | 638.112 | 584.502 |
Chemical fertilizer P | Quantity of phosphorus in chemical fertilizer (kilograms/hectare) | 485.134 | 441.874 |
Chemical fertilizer K | Quantity of potassium in chemical fertilizer (kilograms/hectare) | 637.459 | 725.032 |
Hired labor quantity | Hired labor (hours/hectare) | 1040.280 | 1787.203 |
Family labor quantity | Family labor (hours/hectare) | 4437.734 | 3433.827 |
Machinery quantity | Machinery power (kilowatts/hectare) | 2789.700 | 4851.341 |
Variable | Definition (Unit) | Mean | SD |
---|---|---|---|
Number of available sales channels | Total number of sales channels | 1.635 | 0.516 |
Dummy variables for individual sales channels | |||
Unified sales by cooperatives | Yes = 1; no = 0 | 0.004 | 0.066 |
Dealer door-to-door purchases | Yes = 1; no = 0 | 0.854 | 0.353 |
Enterprise sales (fresh fruit) | Yes = 1; no = 0 | 0.015 | 0.123 |
Direct-to-consumer sales | Yes = 1; no = 0 | 0.017 | 0.131 |
Apple broker | Yes = 1; no = 0 | 0.122 | 0.327 |
Enterprise sales (juice pressing) | Yes = 1; no = 0 | 0.573 | 0.495 |
Farmers transport apples to dealers | Yes = 1; no = 0 | 0.050 | 0.218 |
Variable | Definition/Unit | Mean | SD |
---|---|---|---|
Dummy variables for farmers’ perception of soil quality | |||
Soil lacks N | Yes = 1; no = 0 | 0.022 | 0.146 |
Soil lacks K | Yes = 1; no = 0 | 0.044 | 0.204 |
Soil lacks P | Yes = 1; no = 0 | 0.041 | 0.199 |
Soil lacks trace elements | Yes = 1; no = 0 | 0.048 | 0.214 |
Soil lacks organic matter | Yes = 1; no = 0 | 0.085 | 0.279 |
Soil does not lack anything | Yes = 1; no = 0 | 0.011 | 0.104 |
Farmer does not know | Yes = 1; no = 0 | 0.773 | 0.419 |
Years to bear fruit | Years a new apple tree requires to bear fruit | 11.034 | 7.001 |
Production cycle stage | Stage of apple production cycle (high = 1; low = 0) | 0.651 | 0.477 |
Natural disaster | Percentage of production lost due to natural disasters (%) | 26.408 | 40.643 |
Subsidy for organic fertilizer | Yes = 1; no = 0 | 0.280 | 0.449 |
Rainfall | Average total rainfall (cm), March 15–September 40 | 26.340 | 35.507 |
Sunlight | Average daily hours of sunlight, 15 March–30 September | 15.862 | 12.467 |
Temperature 1 | Average daily temperature (°C), 15 March–15 April | 10.665 | 1.786 |
Temperature 2 | Average daily temperature (°C), 16–30 April | 13.994 | 1.390 |
Temperature 3 | Average daily temperature (°C), 1 May–30 September | 16.591 | 6.932 |
County dummy: Huangling | Yes = 1; no = 0 | 0.214 | 0.410 |
County dummy: Luochuan | Yes = 1; no = 0 | 0.266 | 0.442 |
County dummy: Pucheng | Yes = 1; no = 0 | 0.235 | 0.424 |
County dummy: Yanchuan | Yes = 1; no = 0 | 0.285 | 0.452 |
Panel A (Yield is in kg/ha) | Panel B (Yield is in yuan/ha) | |||
---|---|---|---|---|
Input | Elasticity | Z | Elasticity | Z |
Manure expense | −0.009 | −0.75 | −0.016 | −1.03 |
Organic fertilizer expense | 0.023 * | 1.79 | 0.003 | 0.17 |
Chemical fertilizer expense | 0.065 *** | 4.91 | 0.068 *** | 3.82 |
Hired labor expense | 0.032 *** | 6.47 | 0.045 *** | 7.05 |
Family labor expense | 0.061 * | 1.94 | 0.039 | 0.94 |
Machinery expense | 0.002 | 0.20 | 0.015 | 0.92 |
Other input expense | 0.837 *** | 2.88 | 2.087 *** | 5.42 |
Control variables included | ||||
Soil quality dummies | Yes | Yes | ||
Years to bear fruit | Yes | Yes | ||
Production cycle stage | Yes | Yes | ||
Natural disaster | Yes | Yes | ||
Subsidy for organic fertilizer | Yes | Yes | ||
Rainfall | Yes | Yes | ||
Sunlight | Yes | Yes | ||
Temperature 1, 2, and 3 | Yes | Yes | ||
Total number of observations (3 per farm) | 1377 | 1377 | ||
Number of farms | 459 | 459 |
Panel C (Yield is in kg/ha) | Panel D (Yield is in yuan/ha) | |||
---|---|---|---|---|
Input | Elasticity | Z | Elasticity | Z |
Manure quantity | 0.007 | 0.61 | −0.011 | −0.72 |
Organic matter | 0.191 ** | 2.37 | 0.194 * | 1.80 |
Bacteria count | −0.027 | −0.94 | −0.079 ** | −1.98 |
Organic fertilizer N | −1.125 | −1.08 | −0.430 | −0.31 |
Organic fertilizer P | −0.442 | −0.32 | 1.589 | 0.86 |
Organic fertilizer K | 0.216 | 0.15 | 1.385 | 0.69 |
Chemical fertilizer N | 0.163 | 0.72 | −0.048 | −0.15 |
Chemical fertilizer P | 0.087 | 1.06 | −0.010 | −0.09 |
Chemical fertilizer K | 0.079 * | 1.82 | 0.131 ** | 2.25 |
Hired labor quantity | 0.036 *** | 5.76 | 0.051 *** | 6.27 |
Family labor quantity | 0.052 | 1.23 | 0.049 | 0.87 |
Machinery quantity | 0.010 | 0.80 | 0.018 | 1.08 |
Other input expense | 0.442 *** | 10.68 | 0.579 *** | 10.27 |
Control variables included | ||||
Soil quality dummies | Yes | Yes | ||
Years to bear fruit | Yes | Yes | ||
Production cycle stage | Yes | Yes | ||
Natural disaster | Yes | Yes | ||
Subsidy for organic fertilizer | Yes | Yes | ||
Rainfall | Yes | yes | ||
Sunlight | Yes | Yes | ||
Temperature 1, 2, and 3 | Yes | Yes | ||
Number of observations (3 per farm) | 1377 | 1377 | ||
Number of farms | 459 | 459 |
Input Pair | Elasticity of Substitution (Yield is in kg/ha) | Elasticity of Substitution (Yield is in yuan/ha) |
---|---|---|
Organic fertilizer expense and chemical fertilizer expense | 1.080 | 0.745 |
Organic matter (organic fertilizer) and chemical fertilizer N | 0.905 | 1.066 |
Organic matter (organic fertilizer) and chemical fertilizer P | 0.784 | 0.581 |
Organic matter (organic fertilizer) and chemical fertilizer K | 1.062 | 0.975 |
Bacteria count (organic fertilizer) and chemical fertilizer N | 0.926 | 0.914 |
Bacteria count (organic fertilizer) and chemical fertilizer P | 5.585 | 0.635 |
Bacteria count (organic fertilizer) and chemical fertilizer K | 0.819 | 0.846 |
Organic fertilizer N and chemical fertilizer N | 0.891 | 1.125 |
Organic fertilizer P and chemical fertilizer P | 1.168 | 0.443 |
Organic fertilizer K and chemical fertilizer K | 0.413 | 1.051 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
---|---|---|---|---|---|---|---|---|---|---|
Partial Output Elasticity for Organic Matter | Partial Output Elasticity for Bacteria Count | Partial Output Elasticity for Organic Fertilizer N | Partial Output Elasticity for Organic Fertilizer P | Partial Output Elasticity for Organic Fertilizer K | ||||||
Variables | Yield in kg/ha | Yield in yuan/ha | Yield in kg/ha | Yield in yuan/ha | Yield in kg/ha | Yield in yuan/ha | Yield in kg/ha | Yield in yuan/ha | Yield in kg/ha | Yield in yuan/ha |
Number of available sales channels | −0.001 | −0.079 *** | 0.004 | 0.026 *** | 0.821 *** | −0.191 *** | 0.161 *** | −0.655 *** | 0.603 ** | −2.186 *** |
(−0.07) | (−4.71) | (0.48) | (2.62) | (7.55) | (−2.71) | (2.83) | (−10.69) | (2.45) | (−5.63) | |
Sales channel dummies | ||||||||||
Unified sales by cooperatives | 0.070 | 0.181 ** | −0.046 | −0.105 | 0.255 | 0.025 | 0.279 | −0.285 | −0.253 | −0.397 |
(0.93) | (2.55) | (−1.08) | (−1.49) | (0.19) | (0.09) | (0.57) | (−0.23) | (−0.36) | (−0.12) | |
Dealer door-to-door purchases | 0.031 | 0.108 * | −0.028 ** | −0.053 *** | −0.737 ** | 0.273 *** | −0.033 | 0.616 * | −0.955 *** | 2.358 *** |
(0.71) | (1.91) | (−2.24) | (−2.98) | (−2.06) | (4.26) | (−0.24) | (1.90) | (−4.61) | (2.63) | |
Enterprise sales (fresh fruit) | 0.029 | −0.000 | −0.004 | 0.023 * | 0.350 | 0.059 | 0.049 | −0.208 | −0.067 | −0.485 |
(0.47) | (−0.00) | (−0.42) | (1.73) | (0.35) | (0.29) | (0.17) | (-0.24) | (−0.07) | (−0.17) | |
Direct-to-consumer sales | −0.003 | 0.060 * | −0.001 | 0.002 | −1.549 *** | 0.345 * | −0.387 | 1.392 *** | −1.319 | 4.460 *** |
(−0.12) | (1.91) | (-0.02) | (0.03) | (−16.91) | (1.92) | (−1.42) | (9.84) | (−1.60) | (5.88) | |
Apple broker | 0.029 | 0.112 ** | −0.042 *** | −0.066 *** | −0.628 ** | 0.346 *** | 0.128 | 0.633 *** | −1.315 *** | 2.436 *** |
(0.70) | (2.28) | (−3.48) | (−6.32) | (−2.29) | (4.42) | (0.82) | (2.92) | (−5.43) | (4.16) | |
Enterprise sales (juice pressing) | 0.007 | 0.061 *** | 0.002 | −0.018 | −0.650 *** | 0.118 | −0.137 *** | 0.508 *** | −0.491 ** | 1.815 *** |
(0.43) | (3.56) | (0.12) | (−0.93) | (−3.14) | (1.43) | (−2.86) | (3.31) | (−2.35) | (3.16) | |
Farmers transport apples to dealers | - | - | - | - | - | - | - | - | - | - |
Control variables included | ||||||||||
Soil quality dummies | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Years to bear fruit | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Production cycle stage | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Natural disaster | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Subsidy for organic fertilizer | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Rainfall | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Sunlight | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Temperature 1, 2, and 3 | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
County dummies | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 0.112 | −0.173 *** | 0.060 | 0.063 | 4.468 *** | −2.833 *** | 0.992 ** | −2.024 ** | 7.881 *** | −19.004 *** |
(1.14) | (−2.58) | (1.41) | (1.08) | (4.20) | (−7.87) | (2.17) | (−2.47) | (11.23) | (−7.09) | |
Number of observations (3 per farm) | 1377 | 1377 | 1377 | 1377 | 1377 | 1377 | 1377 | 1377 | 1377 | 1377 |
Number of farms | 459 | 459 | 459 | 459 | 459 | 459 | 459 | 459 | 459 | 459 |
Variables | Technical Inefficiency | |
---|---|---|
(11) | (12) | |
Yield in kg/ha | Yield in yuan/ha | |
Number of available sales channels | −0.103 *** | −0.044 |
(−8.67) | (−0.99) | |
Sales channel dummies | ||
Unified sales by cooperatives | −0.077 | −0.197 |
(−0.30) | (−1.22) | |
Dealer door-to-door purchases | 0.069 | 0.020 |
(0.82) | (0.16) | |
Enterprise sales (fresh fruit) | 0.154 ** | 0.063 |
(5.31) | (0.58) | |
Direct-to-consumer sales | −0.091 | −0.171 |
(−0.62) | (−1.68) | |
Apple broker | 0.059 | 0.148 |
(0.40) | (0.72) | |
Enterprise sales (juice pressing) | 0.082 * | −0.002 |
(2.71) | (−0.03) | |
Farmers transport apples to dealers | - | - |
Control variables included | ||
Soil quality dummies | Yes | Yes |
Years to bear fruit | Yes | Yes |
Production cycle stage | Yes | Yes |
Natural disaster | Yes | Yes |
Subsidy for organic fertilizer | Yes | Yes |
Rainfall | Yes | Yes |
Sunlight | Yes | Yes |
Temperature 1, 2, and 3 | Yes | Yes |
County dummies | Yes | Yes |
Constant | 2.344 *** | 1.231 ** |
(0.160) | (0.355) | |
Number of observations | 459 | 459 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, P.; Abler, D.; Lin, G.; Sher, A.; Quan, Q. Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China. Land 2021, 10, 858. https://doi.org/10.3390/land10080858
Fang P, Abler D, Lin G, Sher A, Quan Q. Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China. Land. 2021; 10(8):858. https://doi.org/10.3390/land10080858
Chicago/Turabian StyleFang, Pingping, David Abler, Guanghua Lin, Ali Sher, and Quan Quan. 2021. "Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China" Land 10, no. 8: 858. https://doi.org/10.3390/land10080858
APA StyleFang, P., Abler, D., Lin, G., Sher, A., & Quan, Q. (2021). Substituting Organic Fertilizer for Chemical Fertilizer: Evidence from Apple Growers in China. Land, 10(8), 858. https://doi.org/10.3390/land10080858