Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Study Area
2.2. Meteorological Conditions
2.3. Field Measurement and Soil Sampling
2.4. Laboratory Analysis
- The soil texture was determined using the Bouyoucose-Casagrande areometric method, based on a measurement of the density of the soil suspension during progressive sedimentation, and a sieving method to fractionate the sand. The contents of the particle size classes (sand, 2.0–0.05 mm; silt, 0.05–0.002 mm; and clay, <0.002 mm) were determined according to the Soil Taxonomy system from the United States Department of Agriculture [43].
- The soil bulk density (BD) was determined based on the gravimetric method, based on cylinders (100 cm3) for determining the mass of the dry soil per volume. The weight of each soil core was determined after drying in an oven at 105 °C for approximately 18–24 h. The dry bulk density for each core sample was then calculated as follows [44]:
- The soil water retention was investigated based on determining the soil suction using ceramic plates in a 5/15 bar pressure plate extractor. The pressure plate equipment used in this study was manufactured by the American Soil Moisture Equipment Corporation. In engineering practice, the soil suction is usually calculated in units of pF, as follows:
- The Ks was measured under laboratory conditions using a laboratory permeameter (Figure 3) and using the Darcy’s law [46] with constant head method (Equation (6)) and falling head method (Equation (7) on undisturbed soil samples for three replications. The constant method can be used with virtually any soil, apart from poorly permeable soils such as clay, whereas the falling-head method is used to measure low-permeability soils, such as f.i. clay or peat samples [47,48]. The soil samples were placed in the laboratory permeameter and then saturated in water for 2–3 days. For the purpose of this study, a permeameter produced by the Eijkelkamp with a closed or open system and 25 holders was used. The Ks was calculated using the Darcy’s [46] equation, as follows:
2.5. Rosetta Description
2.6. Statistical Analysis and Model Performance Evaluation
3. Results and Discussion
- Order 3: Brown forest soils (brown earths, PTG—Polish: Gleby brunatnoziemne; WRB: Cambisols; USDA: Inceptisols—Udepts), Type 3.1. ‘Euthrophic brown soils’ (PTG—Polish: Gleby brunatne eutroficzne; WRB: Haplic Cambisol, Haplic, Stagnic, Endogleyic, or Vertic Cambisol (Eutric); USDA: Typic or Humic or Aquic or Oxyaquic or Vertic Eutrudepts)—occurred in Strzybnik.
- Order 5: Brown forest podzolic soils (Soil lessivé) (PTG—Polish: Gleby płowoziemne; WRB: Luvisols, Albeluvisols; USDA: Alfisols—Aqualfs, Udalfs), Type 5.2. ‘Streak brown forest podzolic soils’ (PTG—Polish: Gleby płowe zaciekowe; WRB: Haplic, Stagnic, Gleyic, Cambic Albeluvisol; USDA: Typic, Arenic, Aquic, Oxyaquic, Haplic, Glossaqiuc, or Vertic Glossudalfs)—occurred in Wojnowice, Bojanów and Owsiszcze.
- Order 7: Chernozemic soils (PTG—Polish: Gleby czarnoziemne; WRB: Chernozems, Phaeozems; USDA: Mollisols—Aquolls, Udolls), Type 7.4. ‘Chernoziemic fluvisols’ (PTG—Polish: Mady czarnoziemne; WRB: Mollic Fluvisol, Endofluvic Phaeozem; USDA: Fluvaquentic Endoaquolls)—occurred in Tworków.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, A.; Mailapalli, D.R.; Behera, A. Evaluation of Saturated Hydraulic Conductivity Methods for Different Land Uses. Indian J. Ecol. 2017, 44, 456–466. [Google Scholar]
- Kanso, T.; Tedolidi, D.; Gromaire, M.-C.; Rameier, D.; Saad, M.; Chebbo, G. Horizontal and vertical variability of soil hydraulic properties in roadside sustainable drainage systems (SuDS)—Nature and Implications for Hydrological Performance Evaluation. Water 2018, 10, 987. [Google Scholar] [CrossRef] [Green Version]
- Ottoni, M.V.; Ottoni Filho, T.B.; Lopes-Assad, M.L.R.; Rotunno Filho, O.C. Pedotransfer functions for saturated hydraulic conductivity using a database with temperate and tropical climate soils. J. Hydrol. 2019, 575, 1345–1358. [Google Scholar] [CrossRef]
- Jabro, J.D. Estimation of saturated hydraulic conductivity of soils from particle-size distribution and bulk-density data. Trans. ASAE 1992, 35, 557–560. [Google Scholar] [CrossRef]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. ROSETTA: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J. Hydrol. 2001, 251, 163–176. [Google Scholar] [CrossRef]
- Li, Y.; Chen, D.; White, R.E.; Zhu, A.; Zhang, J. Estimating soil hydraulic properties of Fengqiu County soils in the North China plain using pedo-transfer functions. Geoderma 2007, 138, 261–271. [Google Scholar] [CrossRef]
- Jarvis, N.; Koestel, J.; Messing, I.; Moeys, J.; Lindahl, A. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrol. Earth Syst. Sci. 2013, 17, 5185–5195. [Google Scholar] [CrossRef] [Green Version]
- Papanicolaou, A.N.; Elhakeem, M.; Wilson, C.G.; Burras, C.L.; West, L.T.; Lin, H.; Clark, B.; Oneal, B.E. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma 2015, 243–244, 58–68. [Google Scholar] [CrossRef]
- Kruk, E. Impact of the Technological Path on Some Soil Properties on Loess Slope. J. Ecol. Eng. 2019, 20, 169–176. [Google Scholar] [CrossRef]
- Borek, Ł.; Bogdał, A.; Ostrowski, K. The effect of subsoiling on change of compaction and water permealility of silt loam. Annu. Set Environ. Prot. 2018, 20, 538–557. Available online: http://towarzystwo.ros.edu.pl/images/roczniki/2018/030_ROS_V20_R2018.pdf, (accessed on 5 December 2020).
- Lauffenburger, Z.H.; Gurdak, J.J.; Hobza, C.; Woodward, D.; Wolf, C. Irrigated agriculture and future climate change effects on groundwater recharge, northern High Plains aquifer, USA. Agric. Water Manag. 2018, 204, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Gamie, R.; De Smedt, F. Experimental and statistical study of saturated hydraulic conductivity and relations with other soil properties of a desert soil. Eur. J. Soil Sci. 2018, 69, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Shao, M.; Jia, X.; Nasir, M.; Zhang, C. Using pedotransfer functions to estimate soil hydraulic conductivity in the Loess Plateau of China. CATENA 2016, 143, 1–6. [Google Scholar] [CrossRef]
- Jačka, L.; Pavlásek, J.; Kuráž, V.; Pech, P. A comparison of three measuring methods for estimating the saturated hydraulic conductivity in the shallow subsurface layer of mountain podzols. Geoderma 2014, 219–220, 82–88. [Google Scholar] [CrossRef]
- Twarakavi, N.K.C.; Simunek, J.J.; Schaap, M.G. Development of pedotransfer functions for estimation of soil hydraulic parameters using support vector machines. Soil Sci. Soc. Am. J. 2009, 73, 1443–1452. [Google Scholar] [CrossRef] [Green Version]
- Bouma, J. Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 1989, 9, 177–213. [Google Scholar] [CrossRef]
- Deb, S.K.; Shukla, M.K. Variability of hydraulic conductivity due to multiple factors. Am. J. Environ. Sci. 2012, 8, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Gunarathna, M.; Sakai, K.; Nakandakari, T.; Momii, K.; Kumari, M. Machine learning approaches to develop pedotransfer functions for tropical Sri Lankan soils. Water 2019, 11, 1940. [Google Scholar] [CrossRef] [Green Version]
- Givi, J.; Prasher, S.O.; Patel, R.M. Evaluation of pedotransfer functions in predicting the soil water contents at field capacity and wilting point. Agric. Water Manag. 2004, 70, 83–96. [Google Scholar] [CrossRef]
- Borek, Ł.; Bogdał, A. Soil wetar retention of the Odra River alluvial soils (Poland): Estimating parameters by RETC model and laboratory measurements. Appl. Ecol. Environ. Res. 2018, 16, 4681–4699. Available online: http://www.aloki.hu/pdf/1604_46814699.pdf (accessed on 11 December 2020). [CrossRef]
- Wang, J.-P.; Zhuang, P.-Z.; Luan, J.-Y.; Liu, T.-H.; Tan, Y.-R.; Zhang, J. Estimation of unsaturated hydraulic conductivity of granular soils from particle size parameters. Water 2019, 11, 1826. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Schaap, M.G. Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. J. Hydrol. 2019, 575, 1011–1030. [Google Scholar] [CrossRef]
- Ahuja, L.R.; Cassel, D.K.; Bruce, R.R.; Barnes, B.B. Evaluation of spatial distribution of hydraulic conductivity using effective porosity data. Soil Sci. 1989, 148, 404–411. [Google Scholar] [CrossRef]
- Rawls, W.J.D.; Gimenez, D.; Grossman, R. Use of soil texture, bulk density and slope of the water retention curve to predict saturated hydraulic conductivity. Trans. ASAE 1998, 41, 983–988. [Google Scholar] [CrossRef]
- Timlin, D.J.; Ahuja, L.R.; Pachepsky, Y.; Williams, R.D.; Gimenez, D.; Rawls, W. Use of Brooks-Corey parameters to improve estimates of saturated conductivity from effective porosity. Soil Sci. Soc. Am. J. 1999, 63, 1086–1092. [Google Scholar] [CrossRef] [Green Version]
- Suleiman, A.A.; Ritchie, J.T. Estimating saturated hydraulic conductivity from soil porosity. Trans. ASAE 2001, 44, 235–339. [Google Scholar] [CrossRef]
- Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Wösten, J.H.M.; Lilly, A.; Nemes, A.; Le Bas, C. Development and use of a database of hydraulic properties of European soils. Geoderma 1999, 90, 169–185. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef] [Green Version]
- Weynants, M.; Vereecken, H.; Javaux, M. Revisiting vereecken pedotransfer functions: Introducing a closed-form hydraulic model. Vadose Zone J. 2009, 8, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta 3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Araya, S.N.; Ghezzehei, T.A. Using machine learning for prediction of saturated hydraulic conductivity and its sensitivity to soil structural perturbations. Water Resour. Res. 2019, 55, 5715–5737. [Google Scholar] [CrossRef]
- Puckett, W.E.; Dane, J.H.; Hajek, B. Physical and Mineralogical Data to Determine Soil Hydraulic Properties†. Soil Sci. Soc. Am. J. 1985, 49, 831–836. [Google Scholar] [CrossRef]
- Campbell, G.S. Soil Physics with BASIC: Transport Models for Soil-Plant Systems; Elsevier Scientific: New York, NY, USA, 1985. [Google Scholar]
- Smettem, K.R.J.; Bristow, K.L. Obtaining soil hydraulic properties for water balance and leaching models from survey data. 2. Hydraulic conductivity. Aust. J. Agric. Res. 1999, 50, 1259–1262. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R. Estimating general soil-water characteristics from texture. Soil Sci. Soc. Am. J. 1986, 5, 1031–1036. [Google Scholar] [CrossRef]
- Zhang, Y.; Schaap, M.G.; Zha, Y. A highresolution global map of soil hydraulic properties produced by a hierarchical parameterization of a physically based water retention model. Water Resour. Res. 2018, 54, 9774–9790. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Acosta, C.; Lascano, R.J.; Stroosnijder, L. Test of the ROSETTA pedotransfer function for saturated hydraulic conductivity. Open J. Soil Sci. 2012, 2, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Kondracki, J. Regional Geography of Poland; PWN: Warszawa, Poland, 2011; 440p, ISBN 9788301160227. (In Polish) [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the Polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. (In Polish). Available online: https://pta.up.poznan.pl/pdf/2014/FA%2031(2)_2014_skowera_nowa_wersja.pdf (accessed on 3 December 2020).
- Gulliver, J.S.; Anderson, J.L. (Eds.) Assessment of Stormwater Best Management Practices; Report of Stormwater Management Practice Assessment Project; University of Minnesota: Minneapolis, MN, USA, 2008; 599p. [Google Scholar]
- FAO. Land and Water Development Division; FAO: Rome, Italy, 1971. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Handbook; United States Department of Agriculture (USDA), Natural Resources Conservation Service: Washington, DC, USA, 1999; 886p. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf (accessed on 13 December 2020).
- Phogat, V.K.; Tomar, V.S.; Dahyia, R. Soil Physical Properties (Chapter 6). In Soil Science: An Introduction, 1st ed.; Rattan, R.K., Katyal, J.C., Dwivedi, B.S., Sarkar, A.K., Bhattachatyya, T., Tarafdar, J.C., Kukal, S.S., Eds.; Indian Society of Soil Science: New Delhi, India, 2015; pp. 135–171. [Google Scholar]
- Mocek, A.; Drzymała, S. Genesis, Analysis and Classification of Soils; Wyd. UP: Poznań, Poland, 2010; 418p. (In Polish) [Google Scholar]
- Darcy, H. Les Fontaines Publiques de la Ville de Dijon [The Public Fountains of the City of Dijon]; Dalmont: Paris, France, 1856. (In France) [Google Scholar]
- Klute, A.; Dinauer, R.C.; Page, A.L.; Miller, R.H.; Keeney, D.R. Methods of Soil Analysis. Part 1. Physical a Mineralogical Methods; SSSA Book Series No 5; Soil Science Society of America: Madison, WI, USA, 1986; p. 1358. ISBN 978-0891188117. [Google Scholar]
- Eijkelkamp. Laboratory Permeameter. Operating Instructions. 2017. Available online: https://en.eijkelkamp.com/products/laboratory-equipment/permeameter-closed-system-25-holders-73766.html;https://en.eijkelkamp.com/products/laboratory-equipment/set-for-pf-determination-with-ceramic-plates.html (accessed on 13 December 2020).
- Wit, K.E. Meting van de Doorlatendheid in Ongeroerde Monsters; Rapport 17; ICW: Wageningen, The Netherlands, 1963. [Google Scholar]
- PTG. Polish Soil Classification, 5th ed.; Soil Science Annual; 2011; Volume 62, p. 193. Available online: http://ssa.ptg.sggw.pl/en/artykul/2810/polish-soil-classification-fifth-edition (accessed on 13 December 2020). (In Polish).
- FAO; IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports, No. 106; FAO: Rome, Italy, 2015; p. 203. ISBN 978-92-5-108369-7. [Google Scholar]
- Schaap, M.G.; Leij, F.J.; van Genuchten, M.T. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 1998, 62, 847–855. [Google Scholar] [CrossRef]
- Schaap, M.G.; van Genuchten, M.T. A modified Mualem-van Genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone J. 2006, 5, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Rumsey, D.J. Statistics for Dummies, 2nd ed.; 2016; 408p. Available online: https://www.gettextbooks.com/author/Deborah_J_Rumsey (accessed on 19 December 2020).
- Zhang, X.; Zhu, J.; Wendroth, O.; Matocha, C.; Edwards, D. Effect of macroporosity on pedotransfer function estimates at the field scale. Vadose Zone J. 2019, 18, 180151. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Model. Part 1—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Mulla, D.J.; Mc Bratney, A.B. Soil spatial variability. In Soil Physics Companion; Warrick, A.W., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 343–373. [Google Scholar]
- Borek, Ł. The use of different indicators to evaluate chernozems fluvisols physical quality in the Odra River valley: A case study. Pol. J. Environ. Stud. 2019, 28, 4109–4116. [Google Scholar] [CrossRef]
- Rubio, C.M.; Poyatos, R. Applicability of HYDRUS-1D in a Mediterranean mountain area submitted to land use changes. Int. Sch. Res. Not. Soil Sci. 2012, 1–7. Available online: http://downloads.hindawi.com/archive/2012/375842.pdf (accessed on 13 December 2020). [CrossRef] [Green Version]
- Gill, S.M. Temporal Variability of Soil Hydraulic Properties under Different Soil Management Practices. 2012. Available online: https://www.researchgate.net/publication/311674921_ (accessed on 20 December 2020).
- Pollacco, J.A.P.; Webb, T.; McNeill, S.; Hu, W.; Carrick, S.; Hewitt, A.; Lilburne, L. Saturated hydraulic conductivity model computed from bimodal water retention curves for a range of New Zealand soils. Hydrol. Earth Syst. Sci. 2017, 21, 2725–2737. [Google Scholar] [CrossRef] [Green Version]
- Dexter, A.R.; Czyż, E.A.; Gaţe, O.P. Soil structure and the saturated hydraulic conductivity of subsoils. Soil Tillage Res. 2004, 79, 185–189. [Google Scholar] [CrossRef]
- Rezaei, M.; Saey, T.; Seuntjens, P.; Joris, I.; Boënne, W.; Van Meirvenne, M.; Cornelis, W. Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed apparent electrical conductivity. J. Appl. Geophys. 2016, 126, 35–41. [Google Scholar] [CrossRef]
- Merdun, H.; Çınar, Ö.; Meral, R.; Apan, M. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res. 2006, 90, 108–116. [Google Scholar] [CrossRef]
- García-Gutiérrez, C.; Pachepsky, Y.; Martín, M.A. Technical note: Saturated hydraulic conductivity and textural heterogeneity of soils. Hydrol. Earth Syst. Sci. 2018, 22, 3923–3932. [Google Scholar] [CrossRef] [Green Version]
- Hillel, D. Fundamentals of Soil Physics; Academic Press: New York, NY, USA, 2013; 413p, ISBN 9780080918709. [Google Scholar]
Year or Multi-Year | Months of the Growing Season | Period | |||||||
---|---|---|---|---|---|---|---|---|---|
Apr | May | Jun | Jul | Aug | Sep | Apr–Sep | Jan–Dec | ||
Sum of precipitation totals (mm) | |||||||||
2010 | 69 | 204 | 112 | 95 | 75 | 78 | 633 | 828 | |
2011 | 27 | 69 | 85 | 131 | 62 | 17 | 391 | 508 | |
2012 | 41 | 35 | 75 | 89 | 69 | 58 | 367 | 586 | |
2013 | 21 | 132 | 110 | 14 | 48 | 99 | 424 | 597 | |
2014 | 27 | 137 | 75 | 58 | 92 | 127 | 516 | 645 | |
2015 | 23 | 55 | 28 | 32 | 13 | 17 | 168 | 280 | |
2016 | 45 | 47 | 47 | 116 | 52 | 26 | 333 | 535 | |
2017 | 68 | 36 | 41 | 69 | 44 | 107 | 365 | 562 | |
2018 | 10 | 42 | 64 | 61 | 55 | 39 | 271 | 441 | |
2019 | 31 | 75 | 33 | 30 | 66 | 98 | 333 | 536 | |
Mean values | |||||||||
2010–2019 | 36 | 83 | 67 | 70 | 68 | 67 | 381 | 552 | |
1971–2000 | 45 | 67 | 79 | 94 | 74 | 56 | 415 | 616 | |
Mean monthly air temperatures (°C) | |||||||||
2010 | 9.0 | 12.5 | 17.2 | 20.4 | 18.7 | 12.7 | 15.1 | 7.9 | |
2011 | 10.6 | 13.7 | 17.8 | 17.4 | 19.2 | 15.4 | 15.7 | 9.2 | |
2012 | 9.9 | 15.3 | 17.7 | 19.9 | 19.1 | 14.7 | 16.1 | 9.2 | |
2013 | 9.0 | 13.8 | 16.9 | 19.7 | 19.1 | 12.6 | 15.2 | 9.0 | |
2014 | 10.8 | 13.8 | 16.3 | 20.4 | 17.4 | 15.6 | 15.7 | 10.5 | |
2015 | 8.8 | 13.1 | 16.8 | 20.9 | 22.3 | 15.6 | 16.3 | 10.4 | |
2016 | 9.0 | 14.7 | 18.4 | 19.6 | 18.2 | 16.4 | 16.1 | 9.8 | |
2017 | 7.8 | 14.3 | 18.8 | 19.1 | 20.1 | 13.8 | 15.7 | 9.7 | |
2018 | 14.0 | 17.0 | 18.5 | 20.2 | 21.5 | 16.0 | 17.9 | 10.6 | |
2019 | 10.4 | 11.9 | 21.9 | 19.6 | 20.9 | 14.7 | 16.6 | 10.8 | |
Mean values | |||||||||
2010–2019 | 9.9 | 14.0 | 18.0 | 19.7 | 19.7 | 14.8 | 16.0 | 9.7 | |
1971–2000 | 8.2 | 13.5 | 16.1 | 17.8 | 17.7 | 13.6 | 14.5 | 8.5 | |
Values of HTC (–) | |||||||||
2010 | 2.6 | 5.3 | 2.2 | 1.5 | 1.3 | 2.0 | Classification of months: | ||
2011 | 0.8 | 1.6 | 1.6 | 2.4 | 1.0 | 0.4 | extremely dry | ||
2012 | 1.4 | 0.7 | 1.4 | 1.4 | 1.2 | 1.3 | very dry | ||
2013 | 0.8 | 3.1 | 2.2 | 0.2 | 0.8 | 2.6 | dry | ||
2014 | 0.8 | 3.2 | 1.5 | 0.9 | 1.7 | 2.7 | relatively dry | ||
2015 | 0.9 | 1.4 | 0.6 | 0.5 | 0.2 | 0.4 | optimal | ||
2016 | 1.7 | 1.0 | 0.9 | 1.9 | 0.9 | 0.5 | moderately humid | ||
2017 | 2.9 | 0.8 | 0.7 | 1.2 | 0.7 | 2.6 | humid | ||
2018 | 0.2 | 0.8 | 1.2 | 1.0 | 0.8 | 0.8 | very humid | ||
2019 | 1.0 | 2.0 | 0.5 | 0.5 | 1.0 | 2.2 | extremely humid | ||
Mean values | |||||||||
2010–2019 | 1.3 | 2.0 | 1.3 | 1.2 | 1.0 | 1.6 |
Object Name Profile Number | Depth | Horizon | Soil Texture Group * | Physical Characteristics of Soils | |||||
---|---|---|---|---|---|---|---|---|---|
% Fraction | Bulk Density ρb | θ2.5 pF | θ4.2 pF | ||||||
(cm) | Sand | Silt | Clay | (g∙cm−3) | (cm3∙cm−3) | ||||
Wojnowice No. 1 | 0–28 | Ap | SiL | 30 | 60 | 10 | 1.64 | 0.273 | 0.105 |
28–62 | Etg | SiL | 20 | 69 | 11 | 1.62 | 0.305 | 0.085 | |
62–80 | Btg1 | SiL | 15 | 68 | 17 | 1.66 | 0.337 | 0.141 | |
80–120 | Btg2 | SL | 54 | 35 | 11 | 1.91 | 0.194 | 0.108 | |
120–150 | Cg | SiL | 21 | 63 | 16 | 1.80 | 0.297 | 0.137 | |
Wojnowice No. 2 | 0–30 | Ap | SiL | 33 | 56 | 11 | 1.61 | 0.314 | 0.122 |
30–62 | Etg | SiL | 18 | 70 | 12 | 1.58 | 0.330 | 0.102 | |
62–94 | Btg1 | SL | 74 | 17 | 9 | 1.86 | 0.260 | 0.089 | |
94–116 | Btg2 | L | 39 | 49 | 12 | 1.84 | 0.387 | 0.130 | |
116–150 | Cg | SiL | 21 | 63 | 16 | 1.72 | 0.337 | 0.132 | |
Strzybnik No. 1 | 0–27 | Ap | SiL | 26 | 61 | 13 | 1.54 | 0.210 | 0.135 |
27–100 | Bw | SiL | 11 | 70 | 19 | 1.69 | 0.313 | 0.150 | |
100–150 | C | SiL | 12 | 72 | 16 | 1.73 | 0.335 | 0.163 | |
Strzybnik No. 2 | 0–40 | Ap | SiL | 25 | 61 | 14 | 1.53 | 0.302 | 0.132 |
40–90 | Bw | SiL | 12 | 69 | 19 | 1.59 | 0.325 | 0.172 | |
90–150 | C | SiL | 12 | 72 | 16 | 1.62 | 0.336 | 0.124 | |
Owsiszcze No. 1 | 0–20 | Ap | SiL | 25 | 65 | 10 | 1.67 | 0.334 | 0.129 |
20–38 | Etg | SiL | 21 | 68 | 11 | 1.64 | 0.320 | 0.110 | |
38–65 | Btg | SiL | 16 | 64 | 20 | 1.68 | 0.364 | 0.177 | |
65–150 | Cg | SiL | 16 | 65 | 19 | 1.74 | 0.342 | 0.153 | |
Owsiszcze No. 2 | 0–25 | Ap | SiL | 25 | 65 | 10 | 1.42 | 0.312 | 0.129 |
25–43 | Etg | SiL | 21 | 68 | 11 | 1.58 | 0.343 | 0.110 | |
43–70 | Btg | SiL | 16 | 64 | 20 | 1.60 | 0.372 | 0.177 | |
70–150 | Cg | SiL | 16 | 65 | 19 | 1.60 | 0.370 | 0.153 | |
Owsiszcze No. 3 | 0–23 | Ap | SiL | 26 | 63 | 11 | 1.50 | 0.328 | 0.029 |
23–36 | Etg | SiL | 19 | 69 | 12 | 1.65 | 0.320 | 0.109 | |
36–68 | Btg | SiL | 17 | 63 | 20 | 1.59 | 0.372 | 0.181 | |
68–150 | Cg | SiL | 16 | 65 | 19 | 1.69 | 0.338 | 0.171 | |
Owsiszcze No. 4 | 0–28 | Ap | SiL | 26 | 63 | 11 | 1.33 | 0.340 | 0.029 |
28–41 | Etg | SiL | 19 | 69 | 12 | 1.56 | 0.352 | 0.109 | |
41–73 | Btg | SiL | 17 | 63 | 20 | 1.58 | 0.367 | 0.181 | |
73–150 | Cg | SiL | 16 | 65 | 19 | 1.63 | 0.344 | 0.171 | |
Owsiszcze No. 5 | 0–25 | Ap | SiL | 27 | 61 | 12 | 1.57 | 0.352 | 0.103 |
25–42 | Etg | SiL | 20 | 68 | 12 | 1.60 | 0.331 | 0.124 | |
42–65 | Btg | SiL | 17 | 63 | 20 | 1.60 | 0.363 | 0.168 | |
65–150 | Cg | SiL | 15 | 66 | 19 | 1.65 | 0.339 | 0.135 | |
Owsiszcze No. 6 | 0–30 | Ap | SiL | 27 | 61 | 12 | 1.40 | 0.351 | 0.103 |
30–47 | Etg | SiL | 20 | 68 | 12 | 1.58 | 0.358 | 0.124 | |
47–70 | Btg | SiL | 17 | 63 | 20 | 1.56 | 0.338 | 0.168 | |
70–150 | Cg | SiL | 15 | 66 | 19 | 1.64 | 0.344 | 0.135 | |
Bojanów No. 1 | 0–25 | Ap | SiL | 34 | 53 | 13 | 1.80 | 0.303 | 0.113 |
25–55 | Etg | SL | 54 | 30 | 16 | 1.96 | 0.246 | 0.115 | |
55–117 | Btg | SCL | 53 | 26 | 21 | 1.95 | 0.240 | 0.194 | |
117–150 | Cg | SL | 53 | 28 | 19 | 1.95 | 0.259 | 0.166 | |
Bojanów No. 2 | 0–28 | Ap | SiL | 25 | 63 | 12 | 1.65 | 0.316 | 0.152 |
28–63 | Etg | SiL | 16 | 68 | 16 | 1.69 | 0.299 | 0.175 | |
63–106 | Btg | SCL | 60 | 20 | 20 | 1.92 | 0.246 | 0.156 | |
106–150 | Cg | SL | 61 | 20 | 19 | 1.97 | 0.248 | 0.138 | |
Tworków No. 1 | 0–30 | Ap | SiCL | 18 | 47 | 35 | 1.44 | 0.427 | 0.269 |
30–46 | AC | C | 31 | 26 | 43 | 1.12 | 0.526 | 0.317 | |
46–63 | OCg | C | 16 | 19 | 65 | 1.06 | 0.609 | 0.331 | |
63–94 | 2O | SCL | 57 | 29 | 14 | 1.44 | 0.676 | 0.309 | |
94–150 | 3G | SiL | 19 | 62 | 19 | 1.40 | 0.488 | 0.192 | |
Tworków No. 2 | 0–18 | Ap | CL | 25 | 35 | 40 | 1.32 | 0.474 | 0.247 |
18–34 | AC | C | 18 | 21 | 61 | 1.29 | 0.516 | 0.289 | |
34–52 | G | L | 32 | 44 | 24 | 1.52 | 0.448 | 0.256 | |
52–85 | Cg1 | SL | 55 | 33 | 12 | 1.75 | 0.354 | 0.133 | |
85–150 | 2G | SL | 76 | 16 | 8 | 1.61 | 0.345 | 0.103 | |
Tworków No. 3 | 0–25 | Ap | L | 43 | 35 | 22 | 1.65 | 0.377 | 0.250 |
25–47 | A/Bw | L | 45 | 33 | 22 | 1.81 | 0.299 | 0.150 | |
47–75 | Bw | SL | 58 | 24 | 18 | 1.66 | 0.335 | 0.158 | |
75–117 | Cg | L | 40 | 43 | 17 | 1.68 | 0.348 | 0.131 | |
117–150 | 2Cg | L | 41 | 45 | 14 | 1.68 | 0.342 | 0.089 | |
Tworków No. 4 | 0–30 | Ap | CL | 22 | 40 | 38 | 1.11 | 0.566 | 0.294 |
30–42 | O | SiCL | 17 | 55 | 28 | 1.51 | 0.439 | 0.287 | |
42–71 | Bw | SiL | 27 | 53 | 20 | 1.56 | 0.423 | 0.187 | |
71–100 | Cg | SL | 54 | 33 | 13 | 1.65 | 0.269 | 0.074 | |
100–150 | 2Cg | SL | 67 | 25 | 8 | 1.62 | 0.309 | 0.065 |
Index Value | Physical Characteristics of Soils | |||||
---|---|---|---|---|---|---|
% Fraction | Bulk Density ρb | θ2.5 pF | θ4.2 pF | |||
Sand | Silt | Clay | (g∙cm−3) | (cm3∙cm−3) | ||
Minimum | 11 | 21 | 10 | 1.11 | 0.210 | 0.029 |
Maximum | 54 | 70 | 61 | 1.96 | 0.566 | 0.317 |
Mean | 25 | 57 | 19 | 1.55 | 0.350 | 0.152 |
Median | 25 | 62 | 12 | 1.58 | 0.329 | 0.127 |
SD | 9.21 | 14.77 | 12.21 | 0.18 | 0.079 | 0.075 |
CV (%) | 36.9 | 26.1 | 66.1 | 11.7 | 22.5 | 49.5 |
n | 32 | 32 | 32 | 32 | 32 | 32 |
Index Value | Physical Characteristics of Soils | |||||
---|---|---|---|---|---|---|
% Fraction | Bulk Density ρb | θ2.5 pF | θ4.2 pF | |||
Sand | Silt | Clay | (g∙cm−3) | (cm3∙cm−3) | ||
Minimum | 11 | 16 | 8 | 1.11 | 0.194 | 0.029 |
Maximum | 76 | 72 | 65 | 1.97 | 0.676 | 0.331 |
Mean | 30 | 52 | 18 | 1.60 | 0.351 | 0.155 |
Median | 24 | 62 | 16 | 1.62 | 0.338 | 0.138 |
SD | 16.8 | 17.6 | 10.5 | 0.23 | 0.086 | 0.065 |
CV (%) | 57.0 | 33.9 | 57.2 | 14.6 | 24.4 | 41.8 |
n | 68 | 68 | 68 | 68 | 68 | 68 |
Index Value | Ks (m∙day−1) | ||||||
---|---|---|---|---|---|---|---|
Field Measured | Laboratory Measured | PTF-1 | PTF-2 | PTF-3 | PTF-4 | PTF-5 | |
Minimum | 0.01 | 0.01 | 0.08 | 0.07 | 0.62 | 0.24 | 0.27 |
Maximum | 4.67 | 1.18 | 0.38 | 0.40 | 1.82 | 1.90 | 1.91 |
Mean | 0.85 | 0.21 | 0.17 | 0.25 | 1.41 | 0.45 | 0.45 |
Median | 0.40 | 0.11 | 0.18 | 0.28 | 1.60 | 0.33 | 0.31 |
SD | 1.09 | 0.29 | 0.05 | 0.10 | 0.37 | 0.34 | 0.34 |
CV (%) | 128.8 | 138.7 | 29.2 | 40.5 | 26.1 | 75.7 | 75.2 |
n | 32 | 32 | 32 | 32 | 32 | 32 | 32 |
Index Value | Ks (m∙day−1) | |||||
---|---|---|---|---|---|---|
Laboratory Measured | PTF-1 | PTF-2 | PTF-3 | PTF-4 | PTF-5 | |
Minimum | 0.01 | 0.08 | 0.07 | 0.55 | 0.24 | 0.27 |
Maximum | 3.48 | 0.38 | 0.66 | 2.71 | 4.11 | 3.93 |
Mean | 0.21 | 0.20 | 0.23 | 1.37 | 0.64 | 0.64 |
Median | 0.04 | 0.18 | 0.19 | 1.32 | 0.32 | 0.31 |
SD | 0.49 | 0.08 | 0.11 | 0.40 | 0.76 | 0.72 |
CV (%) | 230.7 | 41.8 | 48.0 | 28.7 | 119.2 | 111.8 |
n | 68 | 68 | 68 | 68 | 68 | 68 |
Variables | % Sand | % Silt | % Clay | Bulk Density | θ2,5 pF | θ4,2 pF | Ks—Field | Ks—Laboratory | Ks—PTF−1 | Ks—PTF−2 | Ks—PTF−3 | Ks—PTF−4 | Ks—PTF−5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% Sand | 1.00 | ||||||||||||
% Silt | −0.77 | 1.00 | |||||||||||
% Clay | −0.31 | −0.22 | 1.00 | ||||||||||
Bult density | 0.23 | −0.06 | −0.15 | 1.00 | |||||||||
θ2,5 pF | −0.29 | −0.04 | 0.47 | −0.61 | 1.00 | ||||||||
θ4,2 pF | −0.30 | −0.19 | 0.87 | −0.23 | 0.53 | 1.00 | |||||||
Ks—Field | 0.29 | −0.08 | −0.21 | −0.24 | 0.06 | −0.04 | 1.00 | ||||||
Ks—Laboratory | 0.29 | −0.18 | −0.36 | −0.30 | −0.17 | −0.20 | 0.54 | 1.00 | |||||
Ks—PTF−1 | 0.15 | 0.07 | −0.54 | 0.35 | −0.50 | −0.50 | −0.13 | 0.12 | 1.00 | ||||
Ks—PTF−2 | 0.34 | 0.09 | −0.93 | 0.06 | −0.43 | −0.78 | 0.15 | 0.40 | 0.53 | 1.00 | |||
Ks—PTF−3 | 0.37 | 0.15 | −0.96 | 0.12 | −0.47 | −0.85 | 0.21 | 0.34 | 0.55 | 0.95 | 1.00 | ||
Ks—PTF−4 | 0.81 | −0.75 | −0.17 | 0.17 | −0.22 | −0.20 | 0.21 | 0.35 | 0.03 | 0.28 | 0.20 | 1.00 | |
Ks—PTF−5 | 0.84 | −0.90 | 0.00 | 0.04 | −0.06 | −0.04 | 0.12 | 0.25 | −0.04 | 0.13 | 0.06 | 0.90 | 1.00 |
Model | Field Measured Ks (m∙day−1) | Laboratory Measured Ks (m∙day−1) | ||||||
---|---|---|---|---|---|---|---|---|
n | RMSD | NSE | R2 | n | RMSD | NSE | R2 | |
Rosetta—PTF-1 | 32 | 1.63 | −0.42 | 0.02 | 68 | 0.23 | 0.04 | 0.01 |
Rosetta—PTF-2 | 32 | 1.54 | −0.34 | 0.02 | 68 | 0.19 | 0.20 | 0.16 |
Rosetta—PTF-3 | 32 | 1.64 | −0.42 | 0.04 | 68 | 1.58 | −6.34 | 0.12 |
Rosetta—PTF-4 | 32 | 1.40 | −0.22 | 0.04 | 68 | 0.65 | −2.03 | 0.12 |
Rosetta—PTF-5 | 32 | 1.40 | −0.22 | 0.01 | 68 | 0.61 | −1.83 | 0.06 |
Laboratory measured | 32 | 1.53 | −0.33 | 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borek, Ł.; Bogdał, A.; Kowalik, T. Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study. Land 2021, 10, 959. https://doi.org/10.3390/land10090959
Borek Ł, Bogdał A, Kowalik T. Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study. Land. 2021; 10(9):959. https://doi.org/10.3390/land10090959
Chicago/Turabian StyleBorek, Łukasz, Andrzej Bogdał, and Tomasz Kowalik. 2021. "Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study" Land 10, no. 9: 959. https://doi.org/10.3390/land10090959
APA StyleBorek, Ł., Bogdał, A., & Kowalik, T. (2021). Use of Pedotransfer Functions in the Rosetta Model to Determine Saturated Hydraulic Conductivity (Ks) of Arable Soils: A Case Study. Land, 10(9), 959. https://doi.org/10.3390/land10090959