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Abstract: Over the last few years, landslides have occurred more and more frequently worldwide,
causing severe effects on both natural and human environments. Given that landslide susceptibility
(LS) assessments and mapping can spatially determine the potential for landslides in a region, it
constitutes a basic step in effective risk management and disaster response. Nowadays, several LS
models are available, with each one having its advantages and disadvantages. In order to enhance
the benefits and overcome the weaknesses of individual modeling, the present study proposes a
hybrid LS model based on the integration of two different statistical analysis models, the multivariate
Geographical Detector (GeoDetector) and the bivariate information value (IV). In a GIS-based
framework, the hybrid model named GeoDIV was tested to generate a reliable LS map for the vicinity
of the Pinios artificial lake (Ilia, Greece), a Greek wetland. A landslide inventory of 60 past landslides
and 14 conditioning (morphological, hydro-lithological and anthropogenic) factors was prepared
to compose the spatial database. An LS map was derived from the GeoDIV model, presenting the
different zones of potential landslides (probability) for the study area. This map was then validated
by success and prediction rates—which translate to the accuracy and prediction ability of the model,
respectively. The findings confirmed that hybrid modeling can outperform individual modeling, as
the proposed GeoDIV model presented better validation results than the IV model.

Keywords: landslides; susceptibility; hybrid modeling; Geographical Detector; information value; Greece

1. Introduction

A landslide is a gravity-driven environmental process which involves the movement
of rocks, debris, earth, or a combination of them down a slope [1]. According to official data,
landslides constituted the third (after floods and storms, and before earthquakes) most
frequent natural disaster worldwide in 2020 [2]. Generally, the extreme weather events due
to climate change, and the high seismic activity in combination with the poorly planned
expansion of human activities (deforestation of slopes, uncontrolled irrigation, etc.), have
contributed to a global upward tendency in landslide occurrence in the recent years [3].

Due to their occurring without warning and seriously threatening both natural and
human environments, landslides are a major problem. Due to severe damage, or even
destruction, of infrastructure and properties, they generate larger annual economic losses
(billions euro) than any other natural disaster in many countries. In addition, a considerable
number of people each year are injured and, in some cases, killed by them. It is indicative
that during 1998–2017, totally 4.8 million people were affected by landslides worldwide,
with 18,414 of them being killed [4]. In addition, the environmental effects of landslides
are mainly changes in terrain morphology, and increased sediment loads in rivers and
subsequent transport to dams.
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The increased frequency of landslides and the severity of their effects have led to
growing interest from international scientific community. Since predictions of occurrence
and intensity remain challenging, most of the attention has been given to the determination
of potential spatial locations. The acquisition of this spatial information can be achieved
through landslide susceptibility (LS) assessments and mapping. LS refers to the potential
landslide activity as a result of terrain conditions [5]. An assessment depends on the spatial
distribution of past landslides in an area and their relation to its terrain conditions, in order
to generate spatial predictions for areas that are not landslide-affected but have similar
conditions. The output is a map presenting the region of interest divided into homoge-
neous zones of susceptibility [6]. LS maps with high levels of accuracy and reliability are
considered crucial tools that can then be used as inputs for disaster management plans.

The advancements in the geospatial tools of geographic information systems (GIS)
and remote sensing (RS), assisted by improvements in computer processing power, have
improved LS modeling over the last few decades. Based on the literature, a considerable
number of models are currently available for assessing LS at different spatial scales. In
terms of degree of objectivity and necessity for landslide occurrence data, all these models
can be separated into two different groups, the qualitative and quantitative models. The
qualitative (or semi-quantitative) models estimate a susceptibility score on the basis of
weights assigned to landslide conditioning factors from one or more expert(s). They suffer
from low objectivity associated with the experts’ subjective judgements [7]. On the other
hand, the quantitative models decrease bias in the weight assignments, since they depend
on fixed mathematical rules, regardless of any expert judgement [8]. Particularly, the
impacts of different conditioning factors on past occurrences are quantitatively determined,
resulting in high objectivity.

The current capability for acquiring multi-temporal landslide occurrence data through
RS-based approaches has led to wide use of the data-driven quantitative models. These
models range from complicated geotechnical and advanced machine learning models to
more conventional statistical analysis models. Based on mechanical laws for the calculation
of a safety factor, the geotechnical models [9,10] examine the slope stability from the
perspective of the mechanical properties of the slope. Being based on human learning
procedures, machine learning models are used to solve problems characterized by nonlinear
functions and data. Commonly applied machine learning models are artificial neural
networks (ANN), support vector machines (SVM), random forests (RF) and decision trees
(DT) [11–13].

Regarding statistical analysis models, their fundamental principle is to estimate the
probability of a landslide under the existence of spatial associations between the condition-
ing factors and past landslides [14]. Depending on the examination of factors individually
or cumulatively, they can be either bivariate or multivariate. In bivariate modeling, weights
are calculated for the classes of each individual factor by their levels of association with
landslides in a historic dataset. Frequency ratio (FR), information value (IV) and weights
of evidence (WoE) constitute the main representatives of bivariate models [15,16]. Con-
versely, in multivariate modeling, all the factors are sampled, and the presence or absence
of landslide is determined for each of the sampling units [17]. Then, weights are calculated
for the factors via statistical means. Among the multivariate models, logistic regression
(LR) is doubtless the most used [18,19]. However, models such as LR consider the factors
as explanatory variables without taking into account the spatial information contained in
them and exploring their impacts on landslide occurrence (dependent variable) from a
spatial perspective. In order to overcome this limitation, new spatially-based multivariate
models have been put forward recently. These models can address the specificities of each
space and consider that spatial variations in landslides may cause different responses to
variations in the factor variables. Such a model is the Geographical Detector (GeoDetector).
Although GeoDetector has been tested in various studies of health, social and environ-
mental sciences [20–22] over the last few years, its use in landslide-related research has
been quite limited. Since it provides an effective way to identify and eliminate redundant
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variables, GeoDetector has been used in a few relevant studies [14,23,24] for factor selection
purposes.

In general, all the quantitative models have been proven beneficial for identifying
locations that are prone to landslides; however, some shortcomings still characterize them.
The geotechnical models require detailed mechanical data of soil or rock, and as a result
they are only suitable for studying small regions or single slopes. Although the statistical
models are easy to understand and perform well in most cases, they find it difficult to
solve situations with large amounts of data. Moreover, despite their ability to handle
large amounts of nonlinear data, machine learning models are not significantly better than
the statistical ones, and cannot perform well under different conditions and in different
areas [25]. In order to produce the most reliable LS map for a region of interest, one possible
solution is to compare different models and select the optimum in terms of accuracy and
prediction ability. Several studies have compared two or more different models to recognize
the most suitable for a specific region [26–28].

The aforementioned shortcomings tend to increase the uncertainty and reduce the effi-
ciency of models when applied individually. Thus, another solution has gained popularity
recently, which is the development of hybrid models. Hybrid modeling can resolve the
shortcomings of individual models and improve performance. This type of modeling has
been gradually applied in LS assessment studies over the last decade. For instance, in the
work of Arabameri et al. [8], the efficiency of the integration of statistical (FR) and machine
learning (RF) models was explored for LS mapping in northern Iran. For assessing the LS
in a region of India, Saha et al. [29] integrated a statistical and a machine learning model to
improve on their individual accuracies. Chen et al. [30] applied a combination of bivariate
(WoE) and multivariate (LR) statistical models with a machine learning model (RF) for LS
mapping of a mountainous region of China. Roy et al. [31] delineated LS zones in districts
of India by integrating bivariate statistical (WoE) and machine learning (SVM) models.
Chowdhuri et al. [32] introduced hybrid models from statistical and machine learning
model integrations for predicting spatially the landslide occurrence in a basin of India. In
addition, some studies have improved the performances of machine learning models by
combining them with optimization or meta-heuristic algorithms [33,34].

In Greece, landslide activity has been highly facilitated by the frequent occurrence
of intense rainfall and seismic events. Along with them, its complex geo-morphological
settings (strained geological formations and steep slopes) and the uncontrolled land-use
in landslide-prone areas have contributed. As a result, the interest in and awareness of
the importance of LS assessments for regions of Greece have increased, particularly over
the last decade. However, the majority of relevant studies has focused on the implementa-
tion of individual statistical and machine learning models [35–37], rather than integrated
approaches. It could be mentioned that the work of Chalkias et al. [38] constitutes an
exception.

The region of Peloponnese has experienced severe natural disasters, including floods,
earthquakes, landslides and wildfires. Specifically, landslides have highly damaged settle-
ments within its boundaries (mainly in its northern and western parts), resulting in partial
destruction and necessary re-locations to nearby geologically stable lands. Considering all
the above, the present study aimed to assess the LS and create a reliable map of a wetland
in northwestern Peloponnese. Therefore, a hybrid LS modeling is proposed based on the
integration of two different statistical models, the multivariate GeoDetector and bivariate
IV. Past landslide occurrence and conditioning factor datasets were incorporated into the
hybrid model, named GeoDIV, and analyzed in a GIS environment to determine the spatial
distribution of susceptibility. In order to confirm the targeted reliability of LS map, the
performance of proposed GeoDIV model was compared with that of the individual IV
model in a validation procedure.
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2. Study Area

The surrounding area of the Pinios artificial lake was selected for investigation in this
study. It is located in the western part of Greece and the northwestern part of geographical
area of Peloponnese (Figure 1), covering a total extent of approximately 239 km2. It
belongs administratively to the Prefecture of Ilia and hydrologically to the drainage basin
of Pinios River. The boundaries of the study area are defined in the north and south by
the basin’s boundaries, and in the west and east by altitude contours of 100 and 200 m,
respectively. The Pinios artificial lake was created in 1960, after the construction of a dam on
the homonym river, and is the largest in Peloponnese (with a total extent of approximately
20 km2). Its water is used for the irrigation of the plain of Ilia, and hence it is considered
one of the most important land improvement projects in the entire prefecture. The total
quantity of water withdrawn from the lake annual for irrigation and water supply purposes
amounts to 126 million m3.
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Following the typical landscape of Ilia Prefecture, the study area can be characterized
as an agricultural region at a low altitude (mean altitude at 154 m above sea level). Het-
erogeneous croplands or fields mixed with natural vegetation represent the predominant
agricultural lands. More than 30 settlements are situated within its boundaries, containing
5400 inhabitants according to the official 2011 census [39].

The climate is Mediterranean mild with a mean temperature ranging from 20 to 25 ◦C
in the summer months, and from 4 to 10 ◦C in the winter months [40]. Long-term rainfall
records including the period of the last two decades show a mean annual value reaching
approximately 500 mm. From a geological perspective, the study area is mainly covered by
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Neogene and Quaternary loose deposits varying in thickness and consistency. Confined
granular aquifer systems have been formed inside alluvial deposits, and unconfined
aquifers have been developed in Quaternary deposits where groundwater flows to the
direction of the sea [41].

3. Data and Methods

In this study, a hybrid model was developed for LS assessment based on the integration
of two different individual models, the GeoDetector and IV. A spatial database was created
in GIS to be used in hybrid modeling, including: (a) the landslide inventory dataset and (b)
the conditioning factor datasets.

3.1. Landslide Inventory

Such a dataset provides information about the landslide events that occurred in the past in
a given region. Hence, this information is crucial for any quantitative LS modeling effort. A
database maintained by the Laboratory of Engineering Geology at the Department of Geology
at University of Patras referring to landslides that occurred between 2000 and 2015 [42], and
field surveys, were initially exploited for the spatial locations of past landslides in the study area.
Then, multi-temporal Google Earth satellite imagery (Figure 2) was used for their delimitation.
Based on the classification proposed by Varnes [1], for this study, the term landslide included
shallow debris flows and earth rotational slides, varying in extent from some hundreds to
several thousands of meters squared (Table 1). Since it is not always possible to differentiate the
depletion and accumulation zones of these landslide types in an inventory map [18], these zones
were mapped together in an entire area forming a single polygon feature for each landslide.
Therefore, 60 landslide polygons were eventually represented in the relevant inventory map
(Figure 1).

Table 1. Types and basic morphometrical parameters of the landslides in the study area.

Landslide
Type

Amount of
Events

% of Total
Landslide Events

Area (sq. m) Altitude (m) Slope Angle (Degrees)

Max Min Mean Max Min Mean Max Min Mean

Debris
flows 40 67 4187 103 1268 348 110 222 60 15 26

Earth
rotational

slides
20 33 18,000 240 4188 332 89 199 45 15 30

3.2. Conditioning Factors

Landslide occurrence is considered to be affected by a variety of natural and anthro-
pogenic factors representing the conditions of a given region. These conditioning factors
can be separated into two main categories: (a) the preparatory factors which create suitable
conditions for a landslide by changing the state of a slope from stable to marginally stable,
and (b) the triggering factors which initiate a landslide by changing the state of a slope from
marginally stable to unstable [43]. Morphological and hydro-lithological conditions of the
region of interest are represented by natural preparatory factors, whereas the human inter-
ventions on it are represented by anthropogenic preparatory factors. The triggering factors
mainly represent climatic and seismic conditions related to rainstorms and earthquakes,
respectively.
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The red dashed lines indicate the location of the landslide before it happened, and the red solid line
shows the scar of the landslide after it occurred.

Since no official guidelines are used by the scientific community for the selection of
factors, the characteristics of the study area, data availability and a literature review [29,30]
were taken into account for this study. In total, fourteen conditioning factors were selected,
including both preparatory and triggering factors. In particular, the altitude, slope angle,
slope aspect, profile curvature, plan curvature, stream density, stream power index (SPI),
topographical wetness index (TWI), lithology, proximity to faults and soil type were used
as natural preparatory factors; the land use/cover and proximity to roads were used as
anthropogenic preparatory factors, and the mean annual rainfall was used as a triggering
factor.

Defined as the height above a reference point (typically above the mean sea level),
altitude is an important conditioning factor due to its gravitational potential energy. In
general, the higher the slope angle is, the higher the likelihood of failure. Therefore,
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steep slopes are more prone to failures. The slope aspect is defined as the azimuth-based
orientation of terrain and is highly related to exposure to sunlight; evapotranspiration;
and rainfall’s effects on weathering, soil, vegetation cover and root development [44].
Expressed by different types, such as plan and profile, the curvature indicates the runoff
and erosion factors of water. The plan curvature is perpendicular to the maximum slope
direction, whereas the profile curvature is parallel to the same direction [45]. By retaining
more rainfall water and erosion-induced sediment than convex slopes, concave slopes are
correlated with higher likelihoods of failure.

Considering its effects on groundwater recharge, stream density constitutes another
important factor for landslide activity. This factor determines the ratio of the total length of
streams to the extent of the study area. A high stream density is linked to low surface water
infiltration and thus mass movements with high velocity [46]. SPI is another hydrological
factor that measures the erosive power of the streams. On the other hand, TWI quantifies
the moisture content of the surface [32].

Lithology is one of the most crucial factors for LS assessments, since different litho-
logical formations have different slope instability performances in terms of strength and
permeability. In a tectonically active country such as Greece, the faults seem to be associated
with extensive fractured zones and steep relief anomalies presenting favorable conditions
for landslides [35]. Hence, landslides are usually found in proximity to faults. Additionally,
different soil types can have different impacts on surface infiltration and groundwater flow,
depending on their particular physical and mechanical properties [47].

Changes in land use/cover as a result of human activities such as cultivation, defor-
estation and forest logging can significantly affect the occurrence of landslides. Proximity
to roads can also reflect the human impact on landslides, as road construction at the base
of a slope tends to degrade its stability.

Rainfall—causing an increase in the pore water pressure and a reduction in the shear
strength of the soil [48]—is a basic triggering mechanism for not only the development
of new landslides but also the re-activation of old ones. Particularly in Greece, rainfall-
triggered landslides are among the most frequent and devastating disasters [38]. It is worth
mentioning that since the majority of earthquakes that occurred in the study area during
the last two decades were characterized by relatively low magnitudes (with Mw between
3.0 and 3.5) and great depth (greater than 15 km) [49], seismic factor was not included in
the analysis.

As is shown in Table 2, all the above conditioning factors were represented by GIS-
supported data formats. Most of them were in raster format (grids), but others were
converted from vector (point, line, or polygon features) to a raster format with 25 m spatial
resolution.

3.3. Geographical Detector (GeoDetector)

GeoDetector is a spatially-based multivariate statistical model which was developed
in 2010 by Wang et al. [50]. It can detect the spatially stratified heterogeneity of a given
phenomenon according to the basic principle that if a determinant is associated with the
phenomenon, then there may be some similarities between their spatial distributions.
Furthermore, it can reveal the driving forces behind the phenomenon by quantifying the
impacts of individual determinants and of their pairwise interactions. The phenomenon
under investigation as a dependent variable can be represented by either numerical contin-
uous or discrete classified (stratified) data, and the determinants as explanatory variables
exclusively by classified data.
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Table 2. Summary of the datasets representing the conditioning factors.

Factor Dataset Data Source Spatial/Temporal
Scale/Resolution Primary Format

Altitude EU-DEM (v1.1) “Copernicus” Land
Monitoring Service 25 m/2011 Raster (grid)

Slope angle DEM derivative 25 m/2011 Raster (grid)

Slope aspect DEM derivative 25 m/2011 Raster (grid)

Plan & Profile
curvatures DEM derivative 25 m/2011 Raster (grid)

Stream density Rivers and streams
General Use Map of Greece

(Hellenic Military
Geographical Service)

1:50,000/1989 Vector (line)

SPI
DEM-based hydrological analysis 25 m/2011 Raster (grid)

TWI

Lithology Lithological formations Geological Map of Greece
(Institute of Geology and

Mineral Exploration)
1:50,000/1993 Vector (polygon)

Proximity to faults Faults

Soil type Soil types

Hellenic Ministry of
Environment and Energy 1:50,000/1997

Vector (polygon)
Soil Map of Greece (Aristotle
University of Thessaloniki) 1:500,000/2015

Land use/cover “CORINE” features “Copernicus” Land
Monitoring Service 1:100,000/2018 Vector (polygon)

Proximity to roads Main roads “OpenStreetMap” –/2020 Vector (line)

Mean annual rainfall “E-OBS” daily
precipitation

“Copernicus” Climate
Change Service 0.1 degrees/2000–2015 Raster (grid)

In the case of LS, GeoDetector can detect whether a conditioning factor (explanatory
variable) causes the spatial stratified heterogeneity of landslide occurrence (presence or
absence of a landslide, dependent variable) or not. In particular, it can quantify the
degree of impact of each factor on the landslide occurrence using a q-statistic calculated as
follows [51]:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (1)

where h = 1, 2, . . . , L is a given class (stratum) of an explanatory variable; L is the number of
classes; Nh and N are the numbers of samples in class h and entire study area, respectively;
and σh and σ are the variance of dependent variable in class h and entire study area,
respectively. Ranging from 0 to 1, the higher the q value is, the more this explanatory
variable contributes to the dependent variable. A p-statistic, an indicator of statistical
significance for each explanatory variable, is also calculated by a non-central F-distribution:

p(q < x) = p
(

F <
N − L
L− 1

x
1− x

)
= 1− a (2)

where a is the probability of q being higher than or equal to x. In a 95% confidence interval,
an explanatory variables with a p value greater than 0.05 is considered to have a statistically
insignificant relationship with the dependent variable and could be eliminated from the
model.

By estimating the value of q-statistic corresponding to the interaction of two explana-
tory variables, GeoDetector can also quantify the degree of the interactive impact of each
pair of conditioning factors on landslide occurrence. As is shown in Table 3, based on the
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comparison of this value with the individually estimated values, the type of interaction
can be then determined.

Table 3. Types of interaction between two explanatory variables (X1 and X2).

Interaction Type Description

Nonlinear-weaken q(X1∩X2) < Min(q(X1), q(X2))

Univariate-weaken Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1),
q(X2))

Bivariate-enhanced q(X1∩X2) > Max(q(X1), q(X2))
Independent q(X1∩X2) = q(X1) + q(X2)

Nonlinear-enhanced q(X1∩X2) > q(X1) + q(X2)

3.4. Information Value (IV)

IV is a bivariate statistical model which was initially proposed by Yin and Yan [52]
and later modified by van Westen [53]. It includes class-level estimations of weight values
based on the spatial associations between the landslide occurrence and each class of each
conditioning factor. The IV for a given factor class is derived from a mathematical formula
of the ratio of landslide density in this class to the landslide density in entire study area (or
factor):

IV = ln
(

Npix(Si)/Npix(Ni)
∑ Npix(Si)/ ∑ Npix(Ni)

)
(3)

where Npix(Si) is the number of landslide pixels within the factor class i, and Npix(Ni) is
the number of all pixels in the same class. The calculated value can be either positive or
negative, and the higher (or lower) it is, the more (or less) significant the contribution of
the relevant factor class to landslide occurrence.

4. LS Assessment by Hybrid Modeling

Considering the functionalities and data requirements of the two models compos-
ing the GeoDIV hybrid model, two GIS-based data processing procedures initially took
place under the general methodological framework (Figure 3). These procedures were the
(non)landslide sampling and the factor preparation. For sampling, the landslide inventory
dataset was divided into two subsets used as inputs in the model’s training (training
dataset) and validation (validation dataset), respectively. Among the amount of 60 land-
slides contained in the inventory, 80% of them (48 in amount) were randomly selected
for the training dataset in this study. The remaining 20% (12 in number) constituted the
validation dataset. Based on the sizes of mapped landslides and the spatial resolution of
obtained factor data, the entire study area was then tiled into grid pixels of 25 × 25 m as
the basic analysis unit, resulting in 188 training and 41 validation landslide pixels. The IV
model required only a landslide dataset, whereas the GeoDetector model required both
landslide and non-landslide datasets. Hence, in order to construct the dependent variable
for GeoDetector, an equal number of pixels from the not landslide-affected part of study
area were also selected in a random way for the training dataset (totally 376 pixels). The tar-
get values of 0 and 1 were assigned to the non-landslide and landslide pixels, respectively,
making the dependent variable a binary classified dataset.
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In regard to factor preparation, the raster layers of conditioning factors on a continuous
numerical scale (altitude, slope angle, profile curvature, plan curvature, stream density, SPI,
TWI, proximity to faults, proximity to roads and mean annual rainfall) were divided into
a number of discrete classes (Figure 4). In this study, the number of categories and their
relative break values were mainly determined by the “natural breaks (Jenks)” classification
method [54]. In this method, class breaks identify the most similar within-group values and
maximize the differences between classes according to the deviations about the median [55].
Additionally, the raster layers of factors originally on a discrete classified scale (slope aspect,
lithology, soil type, and land use/cover) were prepared by grouping them into more or less
common initial classes (Figure 4).

After the data processing procedures, the GeoDIV model was implemented. A database
was firstly created as the result of the matching of the sample of 376 training data with each
factor layer. Including the fourteen classified factors as independent variables and the landslide
presence or absence (binary target value of 0 and 1) as the dependent variable were determined
in the GeoDetector software, developed by Xu and Wang [56], to determine the impacts of
the factors and their pairwise interactions on the spatial stratified heterogeneity of landslide
occurrence represented by the training sample. This determination included the calculation
of q values for the factors and their pairwise interactions (Tables 4 and 5). To incorporate in
the model only the factors with statistically significant relationships with landslide occurrence,
the estimated p values (Table 4) of the factors were also exploited for factor selection. Despite
the requirement for p values less than 0.05 in the 95% confidence interval, factors such as
altitude, slope angle, plan curvature, stream density, TWI, proximity to faults, proximity to
roads, lithology, soil type and land use/cover remained in the model. Conversely, slope aspect,
profile curvature, SPI and mean annual rainfall were not qualified to be further analyzed by the
model, indicating that there were statistically insignificant relationships (i.e., p values greater
than 0.05) between them and landslide occurrence in the same confidence interval.



Land 2021, 10, 973 11 of 23
Land 2021, 10, x FOR PEER REVIEW 11 of 24 
 

 

 

Figure 4. Cont.



Land 2021, 10, 973 12 of 23

Land 2021, 10, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 4. Conditioning factors: (a) altitude; (b) slope angle; (c) slope aspect; (d) plan curvature; (e) profile curvature; (f) 
stream density; (g) SPI; (h) TWI; (i) lithology; (j) proximity to faults; (k) soil type; (l) mean annual rainfall; (m) land 
use/cover; (n) proximity to roads. 

After the data processing procedures, the GeoDIV model was implemented. A data-
base was firstly created as the result of the matching of the sample of 376 training data 
with each factor layer. Including the fourteen classified factors as independent variables 
and the landslide presence or absence (binary target value of 0 and 1) as the dependent 
variable were determined in the GeoDetector software, developed by Xu and Wang [56], 
to determine the impacts of the factors and their pairwise interactions on the spatial strat-
ified heterogeneity of landslide occurrence represented by the training sample. This de-
termination included the calculation of q values for the factors and their pairwise interac-
tions (Tables 4 and 5). To incorporate in the model only the factors with statistically sig-
nificant relationships with landslide occurrence, the estimated p values (Table 4) of the 
factors were also exploited for factor selection. Despite the requirement for p values less 
than 0.05 in the 95% confidence interval, factors such as altitude, slope angle, plan curva-
ture, stream density, TWI, proximity to faults, proximity to roads, lithology, soil type and 
land use/cover remained in the model. Conversely, slope aspect, profile curvature, SPI 
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Table 4. The q and p-statistic values for the conditioning factors, calculated using GeoDetector.

Factor q Value p Value

Altitude 0.078 0.00
Slope angle 0.264 0.00
Slope aspect 0.038 0.06 *

Plan curvature 0.016 0.01
Profile curvature 0.021 0.06 *
Stream density 0.065 0.00

SPI 0.003 0.30 *
TWI 0.019 0.04

Lithology 0.053 0.00
Proximity to faults 0.147 0.00

Soil type 0.072 0.00
Land use/cover 0.151 0.00

Proximity to roads 0.174 0.00
Mean annual rainfall 0.001 0.85 *

* indicate the factors eliminated from GeoDetector according to the p values.
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Table 5. The q-statistic values for the pairwise interactions between the conditioning factors, calculated using GeoDetector.

Factor Altitude Slope
Angle

Slope
Aspect

Plan
Curvature

Profile
Curvature SPI TWI Proximity

to Roads
Proximity
to Faults

Stream
Density

Mean
Annual
Rainfall

Lithology Soil Type Land
Use/Cover

Altitude
Slope
angle 0.370

Slope
aspect 0.268 0.423

Plan
curvature 0.106 0.294 0.098

Profile
curvature 0.101 0.300 0.074 0.034

SPI 0.093 0.274 0.061 0.022 0.027
TWI 0.104 0.298 0.110 0.032 0.033 0.021

Proximity
to roads 0.290 0.488 0.347 0.196 0.211 0.190 0.204

Proximity
to faults 0.299 0.398 0.388 0.184 0.188 0.153 0.197 0.319

Stream
density 0.289 0.317 0.237 0.092 0.121 0.083 0.097 0.310 0.377

Mean
annual
rainfall

0.155 0.301 0.137 0.030 0.041 0.012 0.027 0.224 0.243 0.227

Lithology 0.123 0.278 0.133 0.067 0.078 0.058 0.070 0.242 0.224 0.134 0.072
Soil type 0.195 0.341 0.275 0.090 0.101 0.085 0.099 0.299 0.319 0.274 0.163 0.107

Land
use/cover 0.215 0.350 0.285 0.175 0.177 0.168 0.180 0.326 0.273 0.278 0.170 0.177 0.286
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Subsequently, by matching only the 188 landslide training data with each layer of
statistically significant factors, the landslide density for each of their classes was estimated.
The IVs were then calculated by Equation (2) to determine the impact of each class on
landslide occurrence (Figure 5).
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By using the q values from GeoDetector as factor-level weights and IVs as class-level
weights, the overall landslide susceptibility (LS) score was estimated through a GIS-based
weighted linear combination of statistically significant factors:

LS = ∑n
j=1 WJ × si,j (4)

where Wj is the weight of a given factor j, si,j is the weight for a given class i of factor j
and n is the number of factors. The spatial distribution of the estimated overall score was
visualized by a LS map divided into five classes (“very low”, “low”, “moderate”, “high”
and “very high” susceptibility) according to the “natural breaks (Jenks)” method (Figure 6).
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5. Results

The weights from the GeoDIV model are summarized in Table 4 and Figure 5. Among
the conditioning factors that eventually remained in the model, the highest factor-level
weight was obtained from slope angle (q value of 0.264). It was followed by proximity
to roads, land use/cover and proximity to faults (q values of 0.174, 0.151 and 0.147, re-
spectively). For these factors, the classes with the highest class-level weights were the
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“greater than 18 degrees” (IV = 2.01) for slope angle, “0 to 285 m” (IV = 1.16) for proximity
to roads, “scrub vegetation” (IV = 1.06) for land use/cover and “0–1290 m” (IV = 0.72)
for proximity to faults. The rest of conditioning factors were found to have much lower
factor-level weights (q values below 0.10). Plan curvature was the factor with the lowest
weight (q value of 0.016).

According to the correlations between Tables 3 and 5, the impact degree and types
of the different pairwise interactions of factors were determined. The interaction between
slope angle and proximity to roads presented the highest weight value (q value of 0.488).
This value was greater than the sum of their individual values, indicating that their
interaction type was nonlinearly enhanced. Generally, the weights of all the factors (even
the lowest of plan curvature) were significantly increased by slope angle, achieving either
nonlinear enhancement or bivariate enhancement.

The LS map from GeoDIV model is illustrated in Figure 6. It shows that the “high”
and “very high” susceptibility zones are mainly in the southern and northern parts of the
vicinity of Pinios artificial lake, with some large pockets of “high” susceptibility in the
western part. These two zones cover 25% and 12%of the lake’s vicinity, respectively.

Validation and Comparison

In order to evaluate the performance of a model applied for LS assessment and
mapping, a validation step is required. Since it can provide information about the accuracy
and prediction ability of the model, and thus the reliability of its LS output, this step is
crucial for any relevant research effort. A standard validation procedure is one based on
success and prediction rates [28,45,48]. This specific procedure depends on the creation
of two rate curves explaining the percentages of landslides that fall into defined LS ranks.
These curves are graphically presented in cumulative frequency diagrams, with respect to
the two different datasets of landslide inventory. For the success rate curve, the landslide
training dataset was used to indicate how well the model fits to the training data. On the
contrary, for the prediction rate curve, the “independent” landslide validation dataset was
used to show how well the model can predict the distribution of future landslides [57].

To obtain the success and prediction rate curves in this study, the overall LS score
(Equation (3)) was initially sorted in descending order (from high to low). Then, the ordered
LS score was divided into 100 classes with 1% cumulative intervals. The resultant LS ranks
(0–100%, where a higher rank means a lower LS score) were plotted on the x-axis, whereas
their cumulative percentages of training and validation landslide data are on the y-axis.
An area under curve (AUC) value was eventually calculated for each of the two rate curves
indicating the accuracy and prediction ability of GeoDIV model, respectively. With a range
of 0.5–1.0, this value reflects the model’s performance.

Aiming to confirm the potential “superiority” of the hybrid modeling against the
individual modeling and explore the impact of GeoDetector-based factor selection on LS
assessment, the individual IV model was also applied, and its validation results were
compared with those of GeoDIV model. In this context, IVs were additionally calculated
for the classes of statistically insignificant factors (not included in GeoDIV model). The
overall LS score (presented also by classes, in Figures 7 and 8) was then obtained by the
summation of all the fourteen IV-weighted factors as follows:

LS = ∑n
j=1 IVj (5)
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Based on the LS score rank, the success and prediction rate curves were created, and
the relative AUC values were calculated for individual IV model as well.

The results of validation procedure for both models are presented in Figure 9. The
success and prediction rate curves indicate that the first 30% of the LS ranks derived from
GeoDIV model can explain about 70% of landslide training data and 60% of landslide
validation data, respectively. Moreover, the relevant AUC values of 0.78 and 0.76 revealed
remarkable accuracy (data fitting) and prediction ability of the model. All these results
were found to be worse for individual IV model, with explanation percentages of 60% and
50%, respectively, and AUC values of 0.72 and 0.71, respectively.
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6. Discussion

Due to the observed upward tendency in landslide occurrence, authorities of all the
administration levels (national, regional and local) are called on to collaborate with the
scientific community to spatially determine potential landslide instances and mitigate, or
even prevent, the damage and losses that they may cause. LS assessment and mapping
is the first and most basic step for effective risk management and disaster response [58].
Several LS assessment models have been developed and applied, with their own advan-
tages and disadvantages [59]. A current tendency is the integration of these individual
models to enhance their benefits and overcome their weaknesses. The consequent hybrid
models are expected to reduce the uncertainty and improve the reliability of the output LS
maps [60]. In order to address this statement, in the present study, a hybrid model based
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on the integration of two different statistical analysis models, multivariate GeoDetector
and bivariate IV, was proposed for LS assessment and mapping. In general, GeoDetector,
as a new spatial model, has been rarely used in LS studies compared with other models.
Hence, its integrated applications are even more limited. To the best of our knowledge and
without ignoring the research works of Luo and Liu [7] and Yang et al. [61], the proposed
integration had not been tested hitherto for the development of hybrid LS modeling.

A variety of natural and anthropogenic conditioning factors and a landslide inventory
for a Greek wetland around the Pinios artificial lake, were analyzed as inputs in the hybrid
model named GeoDIV. It can be stated that the advantages (or disadvantages) of GeoDIV
model are “inherited” from the two individual models which it was based on. Under strict,
prior defined data assumptions, the IV model is capable of evaluating the impact of each
class of many conditioning factors due to the occurrence of past landslides; however, the
mutual relationship between the factors is mostly neglected [62]. Without any assumptions
on the distribution of data, the GeoDetector model is capable of exploring this relationship
but not evaluating individually the impact of each factor class.

In addition to the models, factor selection also plays a major role in the LS results [14].
Too many redundant factors may lead to less realistic and reliable results. Therefore,
the capability of significance statistics-based factor selection provided by GeoDetector
makes it an ideal option for selecting the most proper factors and then assigning objective
weights to them with regard to their different contributions to past landslide occurrence. By
incorporating this property of GeoDetector in hybrid GeoDIV model, among the fourteen
conditioning factors initially collected, four of them (slope aspect, profile curvature, SPI,
and mean annual rainfall) were identified as statistically insignificant and were not finally
included in LS assessment. Similar factors were also eliminated as redundant in [14,23,24].

Focusing on the factors qualified from factor selection, slope angle was highlighted by
the factor-level weights (q values) of the GeoDIV model. In GeoDetector’s terminology,
slope angle can be characterized as the factor which most explains the spatial stratified
heterogeneity of landslide occurrence in the study area. In simple words, its weight was
found to be much higher than the rest of factors, revealing that slope angle has the greatest
impact on landslide activity. This is in line with findings from other studies in Greece which,
on the basis of using either qualitative or quantitative models at different scales (national
and regional), also indicated slope angle as one of the most important factors [38,63,64].

When slope angle interacted to some degree with proximity to roads, an even greater
impact was detected, according to the interaction weights. Generally, the single impacts of
all other factors were shown to be significantly improved from their interactions with the
slope angle. Except for the particularly influential role of the specific factor, this finding also
confirms the “nature” of landslides as a phenomenon that, to a great extent, constitutes the
result of interactions between multiple conditioning factors. From a sub-factor perspective,
as it was derived from the class-level weights (IVs), the steep parts of study area being very
close to roads and covered by scrub vegetation seem to be more prone to landslides.

The output map of the GeoDIV model illustrated the spatial distribution of the esti-
mated LS. It shows that extensive parts, mainly located in south and north, are most likely
to have landslides in the future. In comparison with the relevant map from the individual
IV model, it can be mentioned that despite the preservation of the general spatial pattern,
there was displacement of the pockets from low susceptibility in GeoDIV’s map to higher
susceptibility in IV’s map. This “overestimation” from the IV model may have been due to
the inclusion of the additional four conditioning factors, confirming the above statement
about the negative impacts of redundant factors on the reliability of LS results.

Regarding the performance of proposed hybrid model, it has to be firstly noted
that GeoDIV provided far more than satisfactory validation results in terms of accuracy
(success rate) and prediction ability (prediction rate), considering the scale of analysis.
Compared to the IV model, although both models seemed to converge to approximate
results, the convergence of GeoDIV was found to be faster. This finding proves the expected
“superiority” of hybrid against the individual modeling and is in agreement with previous
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studies, concluding that the integration of bivariate with multivariate statistical models
improved the performance of former ones [30,47].

Some assumptions and limitations of the present study have to be pointed out. The
quality of LS assessment and mapping is highly related to both the landslide inventory
and conditioning factors. By using Google Earth satellite imagery, the landslides with
identifiable signs in the images were mainly mapped in landslide inventory. Hence, the
inventory cannot totally represent the landslide-contributing factors of the study area.
Moreover, although the preparation of different susceptibility maps for the various types
of landslides can provide more realistic predictions [65], the different types of mapped
landslides were not considered in this study. On the other hand, the differentiation between
landslide source and deposition zones enabled the models to accurately identify source
areas and hence to precisely define the factors that contribute to the initiation of a landslide.
The lack of this differentiation resulted to a study’s assumption concerning the existence of
similar terrain conditions within these zones and thus the representation of each landslide
by a single polygon feature. Considerable simplification of these polygons had to be then
undertaken by converting them to grid pixels. In this way, an underestimation of landslide
data may have taken place in some cases. Additionally, the sampling procedure for the
creation of the landslide training and validation datasets can affect the model’s efficiency.
On the basis of appropriate sizes, a sufficient amount of data should be included in the
training dataset, and a remaining “independent” amount of data in the validation dataset.
From the perspective of conditioning factors, their spatial resolution and classification can
affect the precision of the spatial matching between the landslide and factor data. Therefore,
the examination of alternatives for these parameters could lead to different results.

7. Conclusions

A hybrid model named GeoDIV was applied to produce a reliable LS map for the
vicinity of Pinios artificial lake (Ilia, Greece). Based on the analysis of landslide and
factor conditioning data, the GeoDIV framework exploited the multivariate GeoDetector
to eliminate redundant factors and objectively quantify the individual and interactive
impacts of the remaining ones (factor-level weights) on landslide occurrence. The bivariate
IV was used for objectively quantifying the impacts of their classes (class-level weights).
In practice, the integration of these two models increased their efficiency. The findings
confirmed that hybrid modeling outperform modeling: the GeoDIV model yielded better
results than the individual IV model in terms of accuracy and prediction ability. Thus,
GeoDIV can be considered as a promising and robust model which can be beneficial not
only to the current study area, but also to other regions with similar or even different
conditions and settings.

In general, it was revealed that hybrid LS modeling assisted by multiple geospatial
tools (RS and GIS) can contribute well to the production of reliable maps. The LS map
produced by the GeoDIV model could be important basis for the regional or local authori-
ties in order to develop both general (long-term) and emergency (short-term) strategies
centered on “space design” disaster management. Knowledge about the potential for
landslides in a region is valuable for policy makers, as it can allow them to select safe
locations while planning land use and approving construction projects. Policy makers
could also identify threatened settlements and roads, and in response take drastic disaster
management measures (including building engineered structures, planning evacuation
routes and issuing early warnings).

Future research work will focus on testing the proposed hybrid modeling for LS
assessments of other regions characterized by different environmental and/or human
settings, with various landslide densities. Comparisons with other advanced models, such
as machine learning models, will be also performed.
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