Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Undesirable Super-Efficiency SBM Model
2.2. Social Network Analysis
2.2.1. Vector Autoregression (VAR) Granger Causality Test
2.2.2. Spatial Correlation Network Characteristics
- (1)
- Overall network characteristic analysis
- (2)
- Network centrality analysis
2.2.3. Block Model Analysis
2.3. Data Source
3. Results
3.1. Spatial and Temporal Differentiation of AWUE in China
3.1.1. Average AWUE of 30 Provinces
3.1.2. Temporal Evolution of the Provincial AWUE
3.1.3. Spatial Distribution of AWUE in 30 Provinces
3.2. Spatial Correlation Network of AWUE in China
3.2.1. Overall Network Characteristics and Evolution Trend
3.2.2. Centrality Analysis
3.2.3. Block Model Analysis
4. Discussion
4.1. Discussion of Overall Level of Provincial AWUE
4.2. Discussion of the Temporal Trend of AWUE
4.3. Discussion of Spatial Pattern of AWUE
4.4. Discussion of Spatial Correlation of Provincial AWUE
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A systematic study of sustainable development goal (SDG) interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.; Qadir, M.; Van Vliet, M.T.; Smakhtin, V.; Kang, S.-M. The state of desalination and brine production: A global outlook. Sci. Total Environ. 2019, 657, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N.W.; Clark, D.B.; Dankers, R.; Eisner, S.; Fekete, B.M.; Colón-González, F.J. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3245–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaozhong, K.; Xinmei, H.; Taisheng, D.; Tong, L.; Su, X.; Lu, H.; Li, X.; Huo, Z.; Li, S.; Ding, R. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 2017, 179, 5–17. [Google Scholar]
- Fuentes, E.; Arce, L.; Salom, J. A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis. Renew. Sustain. Energy Rev. 2018, 81, 1530–1547. [Google Scholar] [CrossRef]
- Munir, A.H.; MEjaz, Q. Global water crisis and future food security in an era of climate change. Food Policy 2010, 35, 365–377. [Google Scholar]
- Brown, L.R.; Halweil, B. China’s water shortage could shake world food security. World Watch 1998, 11, 10–21. [Google Scholar]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Mehrazar, A.; Bavani, A.R.M.; Gohari, A.; Mashal, M.; Rahimikhoob, H. Adaptation of water resources system to water scarcity and climate change in the suburb area of megacities. Water Resour. Manag. 2020, 34, 3855–3877. [Google Scholar] [CrossRef]
- Wallace, J. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Fengting, W.; Chang, Y.; Lichun, X.; Chang, Y. How can agricultural water use efficiency be promoted in China? A spatial-temporal analysis. Resour. Conserv. Recycl. 2019, 145, 411–418. [Google Scholar]
- De Fraiture, C.; Giordano, M.; Liao, Y. Biofuels and implications for agricultural water use: Blue impacts of green energy. Water Policy 2008, 10, 67–81. [Google Scholar] [CrossRef]
- Liangxin, F.; Guobin, L.; Fei, W.; Ritsema, C.J.; Geissen, V. Domestic water consumption under intermittent and continuous modes of water supply. Water Resour. Manag. 2014, 28, 853–865. [Google Scholar]
- Qingling, G.; Qingfu, R.; Rachael, H.N.; Wu, P.; Yu, Q. Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecol. Indic. 2019, 96, 329–335. [Google Scholar]
- Gao, H.; Wei, T.; Lou, I.; Yang, Z.; Shen, Z.; Li, Y. Water saving effect on integrated water resource management. Resour. Conserv. Recycl. 2014, 93, 50–58. [Google Scholar] [CrossRef]
- Jian, K.; Xinmei, H.; Huiping, Z.; Ding, R. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect. Agric. Water Manag. 2021, 255, 107008. [Google Scholar]
- Brent, C.; Nebo, J.; Xiying, Z. Reporting on water productivity and economic performance at the water-food nexus. Agric. Water Manag. 2020, 237, 106123. [Google Scholar]
- Condon, A.G. Drying times: Plant traits to improve crop water use efficiency and yield. J. Exp. Bot. 2020, 71, 2239–2252. [Google Scholar] [CrossRef] [PubMed]
- Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res. 2009, 112, 119–123. [Google Scholar] [CrossRef]
- Xinchun, C.; Wen, Z.; Mengyang, W.; Li, T.; Chen, S.; Wang, W. Water resources efficiency assessment in crop production from the perspective of water footprint. J. Clean. Prod. 2021, 309, 127371. [Google Scholar]
- Jin-Li, H.; Shih-Chuan, W.; Fang-Yu, Y. Total-factor water efficiency of regions in China. Resour. Policy 2006, 31, 217–230. [Google Scholar]
- Zewdie, M.C.; Moretti, M.; Tenessa, D.B.; Ayele, Z.; Nyssen, J.; Tsegaye, E.; Minale, A.; Van Passel, S. Agricultural Technical Efficiency of Smallholder Farmers in Ethiopia: A Stochastic Frontier Approach. Land 2021, 10, 246. [Google Scholar] [CrossRef]
- Ali, M.K.; Klein, K. Water use efficiency and productivity of the irrigation districts in Southern Alberta. Water Resour. Manag. 2014, 28, 2751–2766. [Google Scholar] [CrossRef]
- Mardani, A.; Zavadskas, E.K.; Streimikiene, D.; Jusoh, A.; Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sustain. Energy Rev. 2017, 70, 1298–1322. [Google Scholar] [CrossRef]
- D’inverno, G.; Carosi, L.; Romano, G.; Guerrini, A. Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output. Eur. J. Oper. Res. 2018, 269, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Gadanakis, Y.; Bennett, R.; Park, J.; Areal, F.J. Improving productivity and water use efficiency: A case study of farms in England. Agric. Water Manag. 2015, 160, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.; Ancev, T.; Hernández-Sancho, F. Efficient water use for sustainable irrigation industry. Water Resour. Manag. 2015, 29, 1683–1696. [Google Scholar] [CrossRef]
- Tian, Z.; Jian, P.; Wei, L.; Yang, Y.; Liu, Y. Spatial–temporal patterns of water use efficiency and climate controls in China’s Loess Plateau during 2000–2010. Sci. Total Environ. 2016, 565, 105–122. [Google Scholar]
- Dekker, S.C.; Groenendijk, M.; Booth, B.B.; Huntingford, C.; Cox, P.M. Spatial and temporal variations in plant water-use efficiency inferred from tree-ring, eddy covariance and atmospheric observations. Earth Syst. Dyn. 2016, 7, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Jingxue, W.; Yalin, L.; Huajun, Y.; Ge, J.; Wu, S.; Liu, L. Estimation and influencing factors of agricultural water efficiency in the Yellow River basin, China. J. Clean. Prod. 2021, 308, 127249. [Google Scholar]
- Easterly, W.; Levine, R. What have we learned from a decade of empirical research on growth? It’s Not Factor Accumulation: Stylized Facts and Growth Models. World Bank Econ. Rev. 2001, 15, 177–219. [Google Scholar] [CrossRef]
- Leydesdorff, L. Synergy in knowledge-based innovation systems at national and regional levels: The Triple-Helix model and the Fourth industrial revolution. J. Open Innov. Technol. Mark. Complex. 2018, 4, 16. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Caizhi, S.; Qifei, M. Spatial correlation network of water resources green efficiency between provinces of China. Geogr. Res. 2020, 39, 53–63. [Google Scholar]
- Teng, Q.; Jinping, T.; Hengquan, Z. Construction and evolutionary factors of spatial correlation network of China’s provincial water resource efficiency under environmental constraints. China Popul. Resour. Env. 2020, 30, 84–94. [Google Scholar]
- Yan, B.; Erda, W.; Jinhong, B.; Shi, Q. Spatial pattern and driving factors for interprovincial natural gas consumption in China: Based on SNA and LMDI. J. Clean. Prod. 2020, 263, 121392. [Google Scholar]
- Borgatti, S.P.; Mehra, A.; Brass, D.J.; Labianca, G. Network analysis in the social sciences. Science 2009, 323, 892–895. [Google Scholar] [CrossRef] [Green Version]
- Newman, L.; Dale, A. Network structure, diversity, and proactive resilience building: A response to Tompkins and Adger. Ecol. Soc. Nat. Resour. 2005, 10, r2. [Google Scholar] [CrossRef]
- Prell, C.; Hubacek, K.; Reed, M. Stakeholder analysis and social network analysis in natural resource management. Soc. Nat. Resour. 2009, 22, 501–518. [Google Scholar] [CrossRef]
- Olsson, P.; Folke, C.; Hahn, T. Social-ecological transformation for ecosystem management: The development of adaptive co-management of a wetland landscape in southern Sweden. Ecol. Soc. Nat. Resour. 2004, 9, 2. [Google Scholar] [CrossRef]
- Crona, B.; Bodin, Ö. What you know is who you know? Communication patterns among resource users as a prerequisite for co-management. Ecol. Soc. Nat. Resour. 2006, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Cook, W.D.; Tone, K.; Zhu, J. Data envelopment analysis: Prior to choosing a model. Omega 2014, 44, 1–4. [Google Scholar] [CrossRef]
- Cook, W.D.; Seiford, L.M. Data envelopment analysis (DEA)–Thirty years on. Eur. J. Oper. Res. 2009, 192, 1–17. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Introduction to Data Envelopment Analysis and Its Uses: With DEA-Solver Software and References; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Kharanagh, S.G.; Banihabib, M.E.; Javadi, S. An MCDM-based social network analysis of water governance to determine actors’ power in water-food-energy nexus. J. Hydrol. 2020, 581, 124382. [Google Scholar] [CrossRef]
- Carlson, E.J.; Poole, M.S.; Lambert, N.J.; Lammers, J.C. A study of organizational reponses to dilemmas in interorganizational emergency management. Commun. Res. 2017, 44, 287–315. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Fath, B.D.; Shi, L.; Ulgiati, S. Time and space model of urban pollution migration: Economy-energy-environment nexus network. Appl. Energy 2017, 186, 96–114. [Google Scholar] [CrossRef] [Green Version]
- Furht, B. Handbook of Social Network Technologies and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Krackhardt, D. Assessing the political landscape: Structure, cognition, and power in organizations. Adm. Sci. Q. 1990, 35, 342–369. [Google Scholar] [CrossRef]
- Cui, P.; Li, D. A SNA-based methodology for measuring the community resilience from the perspective of social capitals: Take Nanjing, China as an example. Sustain. Cities Soc. Nat. Resour. 2020, 53, 101880. [Google Scholar] [CrossRef]
- White, H.C.; Boorman, S.A.; Breiger, R.L. Social structure from multiple networks. I. Blockmodels of roles and positions. Am. J. Sociol. 1976, 81, 730–780. [Google Scholar] [CrossRef]
- Lilin, Z.; Yansui, L.; Yongsheng, W.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar]
- Yujie, H.; Xianke, H.; Munan, X.; Cheng, W.; Shu, Q. A study on the effects of regional differences on agricultural water resource utilization efficiency using super-efficiency SBM model. Sci. Rep. 2021, 11, 9953. [Google Scholar]
- Xinchun, C.; Jianfeng, X.; Mengyang, W.; Zeng, W.; Huang, X. Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness. Water Resour. Manag. 2021, 2021, 2519–2535. [Google Scholar]
- Qiuqiong, H.; Jinxia, W.; Yumin, L. Do water saving technologies save water? Empirical evidence from North China. J. Environ. Econ. Manag. 2017, 82, 1–16. [Google Scholar]
- Ricart, S.; Rico, A.M. Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agric. Water Manag. 2019, 217, 426–439. [Google Scholar] [CrossRef]
- Hongjun, C.; Fuji, X. How technological proximity affect collaborative innovation? An empirical study of China’s Beijing–Tianjin–Hebei region. J. Manag. Anal. 2018, 5, 287–308. [Google Scholar]
- Hongmei, Z.; Xinjing, W.; Mingjing, L.; Zhang, Y.; Fan, Y. Interregional trade among regions of urban energy metabolism: A case study between Beijing-Tianjin-Hebei and others in China. Resour. Conserv. Recycl. 2017, 132, 339–351. [Google Scholar]
- Xi-Ping, D.; Lun, S.; Heping, Z.; Turner, N.C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 2006, 80, 23–40. [Google Scholar]
- Lin, F.; Lin, Z. Does the trading of water rights encourage technology improvement and agricultural water conservation? Agric. Water Manag. 2020, 233, 106097. [Google Scholar]
Input and Output Elements | Variables | Unit |
---|---|---|
Input indicators | (I1) agricultural water use | 108 m3 |
(I2) total sown area for crop | 103 hm2 | |
(I3) total power of agricultural machinery | 104 kw | |
(I4) labor force in agricultural production | 104 persons | |
(I5) fertilizer content application | 104 t | |
Desirable output indicators | (O1) added value of agriculture | 108 RMB |
Undesirable output indicators | (O2) COD, TN, and TP emission from agriculture | 104 ton |
Province | Efficiency | Rank | Province | Efficiency | Rank |
---|---|---|---|---|---|
Beijing | 0.625 | 2 | Henan | 0.415 | 9 |
Tianjin | 0.398 | 11 | Hubei | 0.258 | 20 |
Hebei | 0.358 | 13 | Hunan | 0.222 | 22 |
Shanxi | 0.216 | 23 | Guangdong | 0.368 | 12 |
Inner Mongolia | 0.178 | 28 | Guangxi | 0.190 | 27 |
Liaoning | 0.346 | 14 | Hainan | 0.494 | 3 |
Jilin | 0.270 | 16 | Chongqing | 0.464 | 6 |
Heilongjiang | 0.278 | 17 | Sichuan | 0.278 | 18 |
Shanghai | 0.657 | 1 | Guizhou | 0.237 | 21 |
Jiangsu | 0.469 | 5 | Yunnan | 0.212 | 25 |
Zhejiang | 0.477 | 4 | Shaanxi | 0.460 | 7 |
Anhui | 0.211 | 26 | Gansu | 0.264 | 19 |
Fujian | 0.438 | 8 | Qinghai | 0.136 | 30 |
Jiangxi | 0.215 | 24 | Ningxia | 0.159 | 29 |
Shandong | 0.326 | 15 | Xinjiang | 0.410 | 10 |
Item | 2000–2009 | 2010–2019 | 2000–2019 |
---|---|---|---|
Network affinity | 136 | 200 | 301 |
Network density | 0.156 | 0.230 | 0.346 |
Network efficiency | 0.746 | 0.616 | 0.404 |
Network hierarchy | 0.537 | 0.242 | 0 |
Average distance | 2.302 | 2.045 | 1.789 |
Clustering coefficient | 0.210 | 0.305 | 0.371 |
Province | Point Centrality | Betweenness Centrality | Closeness Centrality | |||||
---|---|---|---|---|---|---|---|---|
Out-Degree | In-Degree | Centrality | Rank | Centrality | Rank | Centrality | Rank | |
Beijing | 7 | 5 | 37.931 | 27 | 1.029 | 23 | 61.702 | 27 |
Tianjin | 11 | 8 | 55.172 | 20 | 1.969 | 16 | 69.048 | 20 |
Hebei | 8 | 18 | 79.310 | 2 | 6.927 | 4 | 82.857 | 2 |
Shanxi | 8 | 16 | 72.414 | 10 | 2.505 | 12 | 78.378 | 10 |
Inner Mongolia | 7 | 5 | 34.483 | 28 | 1.474 | 17 | 60.417 | 28 |
Liaoning | 11 | 2 | 44.828 | 25 | 0.442 | 29 | 64.444 | 25 |
Jilin | 5 | 19 | 75.862 | 4 | 2.145 | 14 | 80.556 | 4 |
Heilongjiang | 8 | 10 | 55.172 | 21 | 4.201 | 9 | 69.048 | 21 |
Shanghai | 7 | 4 | 34.483 | 29 | 2.672 | 10 | 60.417 | 29 |
Jiangsu | 17 | 8 | 79.310 | 3 | 4.319 | 8 | 82.857 | 3 |
Zhejiang | 14 | 7 | 62.069 | 17 | 1.233 | 21 | 72.500 | 17 |
Anhui | 11 | 2 | 44.828 | 26 | 0.66 | 28 | 64.444 | 26 |
Fujian | 9 | 23 | 82.759 | 1 | 8.909 | 1 | 85.294 | 1 |
Jiangxi | 12 | 13 | 68.966 | 13 | 8.797 | 2 | 76.316 | 13 |
Shandong | 14 | 13 | 75.862 | 5 | 4.798 | 5 | 80.556 | 5 |
Henan | 20 | 1 | 72.414 | 11 | 1.052 | 22 | 78.378 | 11 |
Hubei | 15 | 8 | 75.862 | 6 | 2.601 | 11 | 80.556 | 6 |
Hunan | 2 | 8 | 34.483 | 30 | 0.886 | 25 | 60.417 | 30 |
Guangdong | 3 | 16 | 65.517 | 15 | 0.385 | 30 | 74.359 | 15 |
Guangxi | 9 | 13 | 72.414 | 12 | 1.333 | 19 | 78.378 | 12 |
Hainan | 14 | 2 | 55.172 | 22 | 0.917 | 24 | 69.048 | 22 |
Chongqing | 3 | 16 | 65.517 | 16 | 1.465 | 18 | 74.359 | 16 |
Sichuan | 13 | 6 | 62.069 | 18 | 0.707 | 27 | 72.500 | 18 |
Guizhou | 11 | 13 | 75.862 | 7 | 4.407 | 7 | 80.556 | 7 |
Yunnan | 11 | 14 | 75.862 | 8 | 2.220 | 13 | 80.556 | 8 |
Shaanxi | 14 | 3 | 55.172 | 23 | 0.770 | 26 | 69.048 | 23 |
Gansu | 11 | 8 | 51.724 | 24 | 1.299 | 20 | 67.442 | 24 |
Qinghai | 8 | 16 | 75.862 | 9 | 7.640 | 3 | 80.556 | 9 |
Ningxia | 4 | 15 | 58.621 | 19 | 2.140 | 15 | 70.732 | 19 |
Xinjiang | 14 | 9 | 68.966 | 14 | 4.579 | 6 | 76.316 | 14 |
Mean | 10.033 | 10.033 | 62.989 | -- | 2.816 | -- | 73.401 | -- |
Block | Reception | Spillover | Expected Internal Relationship Ratio % | Actual Internal Relationship Ratio % | Block Properties | ||
---|---|---|---|---|---|---|---|
Intra Block | Out of Block | Intra Block | Out of Block | ||||
I | 8 | 32 | 8 | 75 | 24 | 10 | Net Spillover Block |
II | 34 | 43 | 34 | 106 | 31 | 24 | Bidirectional Spillover Block |
III | 19 | 119 | 19 | 44 | 28 | 30 | Agent Block |
IV | 2 | 44 | 2 | 13 | 7 | 13 | Net Beneficial Block |
Block | Density Matrix | Image Matrix | ||||||
---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | |
I | 0.143 | 0.375 | 0.486 | 0.417 | 0 | 1 | 1 | 1 |
II | 0.188 | 0.378 | 0.867 | 0.433 | 0 | 1 | 1 | 1 |
III | 0.194 | 0.100 | 0.264 | 0.778 | 0 | 0 | 0 | 1 |
IV | 0.125 | 0.133 | 0.222 | 0.333 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, Y.; Zhang, F.; Wang, H.; Qin, T.; Tong, J.; Wang, T.; Wang, Z.; Kang, J.; Fang, Z. Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions? Land 2022, 11, 77. https://doi.org/10.3390/land11010077
Zhi Y, Zhang F, Wang H, Qin T, Tong J, Wang T, Wang Z, Kang J, Fang Z. Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions? Land. 2022; 11(1):77. https://doi.org/10.3390/land11010077
Chicago/Turabian StyleZhi, Yanling, Fan Zhang, Huimin Wang, Teng Qin, Jinping Tong, Ting Wang, Zhiqiang Wang, Jinle Kang, and Zhou Fang. 2022. "Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions?" Land 11, no. 1: 77. https://doi.org/10.3390/land11010077
APA StyleZhi, Y., Zhang, F., Wang, H., Qin, T., Tong, J., Wang, T., Wang, Z., Kang, J., & Fang, Z. (2022). Agricultural Water Use Efficiency: Is There Any Spatial Correlation between Different Regions? Land, 11(1), 77. https://doi.org/10.3390/land11010077