
����������
�������

Citation: Zhi, Y.; Zhang, F.; Wang, H.;

Qin, T.; Tong, J.; Wang, T.; Wang, Z.;

Kang, J.; Fang, Z. Agricultural Water

Use Efficiency: Is There Any Spatial

Correlation between Different

Regions? Land 2022, 11, 77.

https://doi.org/10.3390/

land11010077

Academic Editors: Uttam Khanal and

Sanzidur Rahman

Received: 9 December 2021

Accepted: 4 January 2022

Published: 5 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

Agricultural Water Use Efficiency: Is There Any Spatial
Correlation between Different Regions?
Yanling Zhi 1,2 , Fan Zhang 2 , Huimin Wang 1,2,*, Teng Qin 3, Jinping Tong 3, Ting Wang 2, Zhiqiang Wang 2 ,
Jinle Kang 2 and Zhou Fang 1,2

1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University,
Nanjing 210098, China; zhiyanling@hhu.edu.cn (Y.Z.); fangzhou@hhu.edu.cn (Z.F.)

2 Institute of Management Science, Business School, Hohai University, Nanjing 210098, China;
zhangfanhhu@hhu.edu.cn (F.Z.); wangtingtt@hhu.edu.cn (T.W.); zqwang@hhu.edu.cn (Z.W.);
kjlhhu@hhu.edu.cn (J.K.)

3 School of Business, Changzhou University, Changzhou 213159, China; qtblue@cczu.edu.cn (T.Q.);
tjp@cczu.edu.cn (J.T.)

* Correspondence: hmwang@hhu.edu.cn; Tel.: +86-25-6851-4227

Abstract: Affected by global climate change and water shortages, food security continues to be
challenged. Improving agricultural water use efficiency is essential to guarantee food security. China
has been suffering from water scarcity for a long time, and insufficient water supply in the agricultural
sector has seriously threatened regional food security and sustainable development. This study
adopted the super-efficiency slack-based model (SBM) to measure the provincial agricultural water
use efficiency (AWUE). Then, we applied the vector autoregression (VAR) Granger causality test and
social network analysis (SNA) method to explore the spatial correlation of AWUE between different
provinces and reveal the interprovincial transmission mechanism of spillover effects in AWUE.
The results show the following: (1) In China, the provincial AWUE was significantly enhanced,
and the gaps in provincial AWUE have widened in the past 20 years. (2) There were apparent
spatial heterogeneity and correlations of provincial AWUE. The provinces with higher AWUE were
mainly located in economically developed and coastal areas. (3) The correlation of AWUE between
provinces showed significant network structure characteristics. Fujian, Hebei, Jiangsu, Shandong, and
Hubei Qinghai were central to the network, with high centrality. (4) The AWUE spatial correlation
network could be divided into four blocks. Each block played a different role in the cross-provincial
transmission of spillover effects. Therefore, it is necessary to manage the agricultural water resources
and improve water use efficiency from the perspective of the network.

Keywords: agricultural water use efficiency; undesirable super-efficiency SBM model; vector autore-
gression (VAR) Granger causality test; social network analysis (SNA); spatial correlation network

1. Introduction

Water is indispensable and irreplaceable for human well-being and socio-economic
sustainability. Among the 17 Sustainable Development Goals (SDGs) published by the
United Nations General Assembly in 2015, at least 4 goals are related to the sustainable
utilization and management of water resources, namely, SDG-6, SDG-7, SGD-12, and
SDG-13 [1]. However, due to the rising water demands associated with population growth
and economic development, coupled with diminishing water supplies caused by climate
change and contamination, water is becoming scarce in most regions of the world [2,3].
The recent literature demonstrates that nearly half of the global population faces severe
water scarcity, which directly conflicts with the above SDGs [4]. The agriculture sector is
the largest water user globally, accounting for approximately 70% of global water with-
drawal due to irrigation [5]. Insufficient water resources have posed a substantial threat to
agricultural production and food security [6]. In addition, backward agricultural irrigation
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technology, extensive water use patterns, and low water use efficiency have further intensi-
fied water scarcity [7]. Thus, sustainable agricultural water resource management is related
to regional food security and closely linked to economic development, ecological security,
and quality of life [8,9]. When water supplies are limited, agricultural production should
maximize net income per unit of water used rather than per land unit [10]. Evaluating
and improving agricultural water use efficiency (AWUE) are also the basis for promoting
regional water resource management [11,12].

Widening water demand and supply gaps have been a significant challenge for China.
China has been suffering from water scarcity for a long time [13], whose per capita wa-
ter supply is less than 2200 m3, only one quarter of the world average [14]. Since 1998,
agricultural water use in China has consumed over 60% of the total national water con-
sumption [15], and this figure is as high as 80–90% in some arid regions, such as Ningxia
and Xinjiang. Meanwhile, there has been severe conflict between water availability and
food production in China, feeding 21% of the world’s population needs with only 6%
of the global freshwater resources [16]. As one of the largest agricultural countries, the
improvement in AWUE in China could contribute to global sustainable water utilization
and food security [17].

Generally, AWUE refers to the ratio of physical and economic output to water resource
input during agricultural production, a broad concept of physiological, agronomic, and
engineering processes, and management practice [18]. Many studies evaluated AWUE with
a single-factor index. They focused on the ratio between crop biomass or grain production
and the amount of water consumed by crops, including rainfall, the irrigation water applied,
and crop transpiration [19–21]. Thus, AWUE also reflects the production ability of water
resources, such as crop water productivity, irrigation water productivity, and generalized
water productivity [22]. It was later recognized that water alone as the only input could not
produce the necessary outputs in the production process. Other inputs are also essential
in AWUE assessment [23]. Therefore, the total factor water use efficiency measured by
multiple input models has entered the mainstream. The frequently used assessment
methods are stochastic frontier analysis (SFA) and data envelopment analysis (DEA) [24,25].
Compared with SFA, DEA is a non-parametric evaluation model and does not require
any distributional assumptions about efficiency [26], avoiding the influences of subjective
factors on water resource efficiency assessment. In addition, improved DEA models
can even deal with both desirable and undesirable outputs simultaneously, significantly
improving the accuracy of resource use efficiency evaluation [27]. At present, DEA models
have been widely used globally to assess the water use efficiency of a decision-making unit
(e.g., farm, enterprise/company, irrigation district, industrial/agricultural sector) [25,28,29].

The spatial difference and correlation of water use efficiency have attracted significant
attention in recent years. On the one hand, water use efficiency exhibits noticeable regional
variation. The literature has shown that water use efficiency is sensitive to meteorological
factors, such as temperature, precipitation, and moisture [30]. Water use efficiency increases
with atmospheric CO2 but declines with increasing atmospheric evaporative demand [31].
Water use efficiency is also influenced by socio-economic factors. The value of AWUE is
higher in developed areas than in undeveloped areas in China [13]. On the other hand,
water use efficiency has demonstrated a significant spatial correlation. The AWUE of one
region is related to the geographical conditions and the economic development level, which
is likely to be influenced by the neighboring regions [32]. The adjacent regions’ agricultural
production behaviors also affect the local region’s AWUE, resulting in spatial spillover
effects on the local region [13]. Awareness of spatial correlation among regional AWUE is
essential for improving water utilization efficiency.

The temporal and spatial patterns of AWUE are related to various natural and socio-
economic elements, which are types of agricultural ecosystems, agricultural production
factors, and agricultural water resource management measures [3,25]. Agricultural produc-
tion factors will flow spontaneously from the area with a low factor return rate to a high
factor return rate [33]. In contrast, the management departments will actively guide the
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cross-region transfer of technology, information, talents, and goods to promote sustainable
water use and regional synergy development [34,35]. Due to the cross-regional mobility of
the agricultural production factors, various regions’ agricultural water resource utilization
may present close connections. As the scope of factors’ mobility continues to expand, an
increasing number of regions have shown relevance in AWUE, and the spatial correlation of
AWUE shows a network characteristic [36,37]. Meanwhile, the spatial correlation network
of AWUE could reflect the distribution pattern of spillover effects related to certain fac-
tors [38], which could guide the improvement in AWUE. However, this important feature
is often ignored in AWUE studies. Utilizing this information on the spatial correlation of
AWUE may help implement effective measures to improve AWUE.

In the spatial correlation of AWUE, different nodes (regions) have various resource
(such as information, technology, knowledge, and talents related to water saving) control
capabilities, resulting in diverse network structures [39]. Due to the spillover effects, the
nodes with strong power may influence various other nodes and be in the central position
of the network. Creating solid links among regions can enhance mutual learning and
sharing of resources and advice [40]. Moreover, nodes similar to one another are better able
to communicate information and apply the same governance [41]. For the whole network,
centralization helps form groups and build support for collective action, such as the fast
spread of particular water-saving technologies [42]. In contrast, over-centralization may
not be conducive to long-term planning and problem solutions [43]. Thus, it is necessary
to investigate the spatial network structure related to AWUE and propose appropriate
strategies to improve AWUE.

This study aimed to explore the spatial correlation of AWUE between different
provinces in China and provide support for the designation of agricultural water resource
management strategies. In this study, AWUE is defined as a total factor water efficiency in-
dex. The super-efficiency slack-based model (SBM) with undesirable outputs and the social
network analysis (SNA) method were used to: (1) evaluate AWUE at the province level
within and beyond China, and (2) investigate the characteristics of the spatial correlation
network of AWUE.

2. Materials and Methods

The analysis process for the spatial correlation of AWUE is illustrated in Figure 1.
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efficiency (AWUE).

Firstly, to assess the AWUE of provinces in China, the super-efficiency SBM with
undesirable outputs was used. This model is an improved DEA method and needs to select
the appropriate input and output indicators for the production efficiency evaluation.

Secondly, the vector autoregression (VAR) Granger causality test model was used to
analyze the dynamic connections between different provinces in China.
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Thirdly, to investigate the characteristics of the spatial correlation network of AWUE,
the SNA model was used. In particular, the centrality and block analysis can reveal the
core provinces which influence the coordinated improvement in AWUE.

2.1. Undesirable Super-Efficiency SBM Model

DEA is a non-parametric evaluation method for measuring the relative efficiency of
units where they have multiple inputs and outputs [44]. The primary analysis unit is
defined as the decision-making unit (DMU). The efficiency value of a DMU is the distance
from the DMU to the best-practice frontier. The frontier shows the maximum of diverse
outputs with different input combinations or views the minimum combination of necessary
inputs for diverse outputs. DMUs below the frontier are considered inefficient, while
DMUs on the frontier are regarded as efficient. The traditional radial and angle DEA
models calculate the efficiency according to a certain input–output proportion, ignoring
the excess in inputs and shortfalls in outputs, which are likely to deviate from the efficiency
measurement. The slack-based model (SBM) [45] was applied to avoid the slack problem of
inputs and outputs, which belongs to a non-radial and non-angle DEA model. Moreover,
when using conventional SBM-DEA models, the efficiency values of all DMUs are within
the range of zero to one. This means that we fail to rank the DMUs with an efficiency value
of one. Then, the super-efficiency model in DEA was proposed to exclude each observation
from its own reference set, making it possible to obtain efficiency scores that exceed one [46].
Thus, the super-efficiency SBM model with undesirable outputs is suitable for the AUWE
assessment in this study, which is defined as follows:

ρ = min
1− 1

m ∑m
i=1 xi/xio

1 + 1
S1+S2

[
∑S1

p=1

(
yg

p/yg
po

)
+ ∑S2

q=1

(
yb

q/yb
qo

)] (1)
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p ≤ yg
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q ≥ yb

qo
n
∑

j=1,j 6=o
λj = 1, yg ≥ 0, yb ≥ 0, λ ≥ 0

i = 1, 2, · · ·m; p = 1, 2, · · · S1; q = 1, 2, · · · S2; j = 1, 2, · · · n

(2)

where ρ represents the AWUE value, n is the number of evaluation units, m is the input
elements, S1 and S2 are the number of desirable and undesirable outputs, x, yg, and yb

are slack variables for inputs, desirable outputs, and undesirable outputs, and λ is the
envelope multiplier. If ρ ≥ 1, the DMU is on the agricultural production frontier and DEA
effective. If 0 < ρ < 1, it means the DMU is not DEA effective, and there is still potential to
improve the agricultural water use efficiency in the evaluation unit.

2.2. Social Network Analysis

SNA is a sociological research method used to investigate the relationships of actors,
which consists of a set of nodes (actors) and ties (relationships between actors) [47]. SNA
has also invented graph-theoretic properties to characterize structures, positions, links, and
dyadic properties of the overall “shape” [39]. The AWUE of provinces is embedded in a
social network by formal or informal relationships, and their changes are affected by the
social network [48]. In the spatial correlation network of AWUE, the “nodes” are provinces,
which present the AWUE of a particular region, and “ties” are the connection between
these provinces, which show the spillover effects of factors related to AWUE. This section
contains two parts: firstly, establishing the correlations in the AWUE in different provinces
using the VAR Granger causality test; secondly, constructing the spatial correlation network
of provincial AWUE with the method of SNA.
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2.2.1. Vector Autoregression (VAR) Granger Causality Test

This step addresses the correlation among variables, which discusses a relationship
between two nodes. In general, the influence of AWUE in different provinces has a lag,
which means that the WUE information during a specific period in one area can predict
the changing trend of WUE in the other regions [37]. Therefore, this paper used the VAR
Granger causality test to build the dynamic correlation between provincial AWUE in China
and construct a spatial correlation network matrix.

Firstly, the time series of AWUE in any given two provinces x, y were defined as {xt}
and {yt}, respectively. Secondly, two VAR models were constructed to test whether there is
an interaction between the AWUE of the two regions.

xt = α1 +
m

∑
i=1

ρ1,ixt−i +
n

∑
i=1

σ1,iyt−i + ε1,t (3)

yt = α2 +
p

∑
i=1

ρ2,ixt−i +
q

∑
i=1

σ2,iyt−i + ε2,t (4)

where αi, ρi, and σi (i = 1, 2) are the parameters to be estimated, εi,t (i = 1, 2) represents
the residual terms, which obeys the standard normal distribution, m, n, p, and q are the lag
orders of the autoregressive terms. Through Equation (3), we can test whether the AWUE
in region x is affected with a lag by its AWUE and the AWUE in region y. If the test result
rejects the null hypothesis, the historical information of sequence {yt} is helpful to explain
the variable change of sequence {xt}, which means that {yt} is the Granger cause of {xt}, and
then create a directed link from region y to region x. According to this method, the links
between all pairs of two regions in the study area are tested, and the spatial correlation
network map of provincial AWUE is obtained. It should be noted that the stationarity test
of time series was carried out by a unit root test model, the ultimate hysteresis order was
set to an order of 2, and 1% was used as the significance test standard.

2.2.2. Spatial Correlation Network Characteristics

This step analyzes the spatial correlation network structure of provincial AWUE with
two indicators: overall network characteristics and network centrality analysis [38,49,50].
This paper used the software UCINET (v 6.659) to obtain them.

(1) Overall network characteristic analysis

Four items were used to describe the overall network characteristics: network affinity,
network density, network efficiency, and network hierarchy.

Network affinity describes the sum of all the actual connections in the network, which
reflect the overall scale of the network. It is represented by M.

Network density measures the degree of cohesion in the network. The more connec-
tions there are in the provincial AWUE, the greater the network density. It is expressed as
Equation (5). D represents the network density, N is the number of nodes in the network,
and N(N − 1) is the maximum potential connection.

D =
M

N(N − 1)
(5)

Network efficiency refers to the connection efficiency between nodes in the network.
The lower the network efficiency, the more redundant lines and overflow channels there
are, and the more stable the whole network.

Network hierarchy reflects the asymmetric accessibility in the network. The higher
the network hierarchy, the more rigid the network. The network hierarchy is calculated
by Equation (6). H represents the network hierarchy, K is the group number of symmetric
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reachable points in the network, and Max(K) is the number of groups of maximum possible
reachable points.

H = 1− K
Max(K)

(6)

(2) Network centrality analysis

Three parameters are used to describe the power of the nodes: point centrality, be-
tweenness centrality, and closeness centrality. In a network, power means influence [47],
and there is a positive relationship between centrality and power [51].

Point centrality measures the degree of association between a node and other nodes,
indicating the degree to which a node is in the center of the network. The province with a
higher point centrality has more connections with other provinces in the AWUE network
and is likely to be the center node of the network. Point centrality (De) is calculated by
Equation (7).

De =
L

N(N − 1)− 1
(7)

where L stands for the number of provinces directly connected to the other; this centrality
has two types in directed graphs: in-degree and out-degree. The former refers to the
incoming spillover effects of factors related to AWUE from other provinces. In contrast, the
latter is the outgoing spillover effects to other provinces.

Betweenness centrality indicates the mediation and bridge function, investigating how
a node can control the communication between other nodes. It evaluates the number of
times a node acts as a bridge along the shortest path between two other nodes, indicating
the node’s control ability of the overall network [52]. It is represented by Cb and is calculated
by Equation (8).

Cb =
n

∑
j

n

∑
k

bjk(i); j 6= k 6= i, j < k (8)

Closeness centrality refers to the closeness of a node to all other nodes in the network,
which reflects the ability of a node to not be controlled by other nodes in the entire network.

2.2.3. Block Model Analysis

The block model is a primary social, spatial clustering analysis method [53]. It can
explore the network’s internal structure, investigate the position and role of each node in
the block, evaluate the path of sending and receiving information between blocks, and
conduct descriptive analysis. According to the block model, the social network is divided
into four sections: bidirectional block, agent block, net beneficial block, and net spillover
block. We used the CONCOR module in UCINET to finish the block model analysis. The
maximum depth was set to 2. The focus on the standard was set to 0.2, dividing the
30 provinces into 4 blocks.

2.3. Data Source

In terms of the measurement of AWUE, five variables related to agricultural production
were selected as input indicators, and the output indicators were from two aspects of
desirable outputs and undesirable outputs, as shown in Table 1. For the availability and
validity of the data, this research selected 30 provinces in China as the study area, excluding
Hong Kong, Macao, Taiwan, and Tibet, and chose 2000 to 2019 as the research period.
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Table 1. Input and output indicators in the assessment of agricultural water use efficiency.

Input and Output Elements Variables Unit

Input indicators

(I1) agricultural water use 108 m3

(I2) total sown area for crop 103 hm2

(I3) total power of agricultural machinery 104 kw
(I4) labor force in agricultural production 104 persons
(I5) fertilizer content application 104 t

Desirable output indicators (O1) added value of agriculture 108 RMB

Undesirable output indicators (O2) COD, TN, and TP emission from agriculture 104 ton

Since this paper evaluated agricultural water use efficiency, water withdrawal in
the agricultural sector (irrigation, forestry, farming, and fishery) was the primary input
indicator. As irrigation accounts for most of the agricultural water, this article prioritized
the production factors related to the planting industry, such as crop sown area, agricultural
machinery power, and fertilizer. In addition, the labor force was also included as an input
element. Corresponding to the water use in the agricultural sector, we selected added value
of agriculture as a desirable output indicator. To eliminate the influence of interannual
price changes, we used the comparable price index to re-calculate the price based on the
year 2000. Meanwhile, the undesirable output was mainly considered the non-point source
pollution caused by agricultural production.

The data relating to the AWUE assessment were obtained from the China Water Re-
sources Bulletin, China Rural Statistical Yearbook, and China Statistical Yearbook, covering
2000–2019. The discharges of agricultural non-point source pollution mainly come from
crop fertilization, livestock breeding, and straw burning, which are estimated through the
discharge of the pollution loads of chemical oxygen demand (COD), total nitrogen (TN),
and total phosphorus (TP). The inventory analysis method was used to assess the above
three indicators [54].

3. Results
3.1. Spatial and Temporal Differentiation of AWUE in China
3.1.1. Average AWUE of 30 Provinces

As shown in Table 2, all the average values of provincial AWUE were less than one,
meaning that the agricultural water resource usage was inefficient at the province level.
Thus, there is still room for improvement in agricultural water use in China.

Table 2. Average agricultural water use efficiency in China from 2000 to 2019.

Province Efficiency Rank Province Efficiency Rank

Beijing 0.625 2 Henan 0.415 9
Tianjin 0.398 11 Hubei 0.258 20
Hebei 0.358 13 Hunan 0.222 22
Shanxi 0.216 23 Guangdong 0.368 12

Inner Mongolia 0.178 28 Guangxi 0.190 27
Liaoning 0.346 14 Hainan 0.494 3

Jilin 0.270 16 Chongqing 0.464 6
Heilongjiang 0.278 17 Sichuan 0.278 18

Shanghai 0.657 1 Guizhou 0.237 21
Jiangsu 0.469 5 Yunnan 0.212 25

Zhejiang 0.477 4 Shaanxi 0.460 7
Anhui 0.211 26 Gansu 0.264 19
Fujian 0.438 8 Qinghai 0.136 30
Jiangxi 0.215 24 Ningxia 0.159 29

Shandong 0.326 15 Xinjiang 0.410 10
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There are distinct spatial disparities in AWUE among different provinces. In the
past twenty years, the top five provinces with the highest average AWUE were Shanghai
(0.657), Beijing (0.765), Hainan (0.494), Zhejiang (0.477), and Jiangsu (0.469). These five
provinces are located in economically developed regions or coastal areas with abundant
precipitation. In contrast, the bottom five districts with the lowest average AWUE were
Qinghai (0.136), Ningxia (0.159), Inner Mongolia (0.178), Guangxi (0.190), and Anhui (0.211).
These five provinces are mainly in arid and semi-arid areas with less precipitation, compar-
atively backward agricultural water technology, and large agricultural non-point pollution
discharge [55]. The average AWUE in Shanghai was about five times that of Qinghai.

3.1.2. Temporal Evolution of the Provincial AWUE

The AWUE of most provinces has increased significantly over time, which means that
the agricultural water use efficiency has considerably improved (Figure 2). In 2000, the
AWUE of all 30 provinces was less than 0.4. In 2019, the AWUE in more than 50% of the
provinces was more than 0.6. It is worth noting that the AWUE of 11 provinces gradually
exceeded 1 since 2015, which indicates that agricultural water usage in these provinces had
reached an utterly efficient state.
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In addition, the change trajectories of AWUE presented noticeable differences. The
AWUE in most provinces experienced a process of first rising slightly and then rising
drastically. The AWUE in Beijing and Shanghai started to increase around 2005, reaching 1
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in 2015 and 2008. Meanwhile, the AWUE in most provinces such as Tianjin, Hebei, Jiangsu,
Zhejiang, Fujian, Shandong, Henan, Hainan, Shaanxi, Gansu, and Xinjiang entered a stage
of significant improvement since 2011 and exceeded 1 in 2019. Moreover, there are some
provinces where AWUE has been low, with a minimal increment during the observation,
including Inner Mongolia, Anhui, Guangxi, Qinghai, and Ningxia.

The average value of AWUE in China presented a significant increasing trend between
2000 and 2019. The variable coefficients of AWUE rose from 2000 to 2008 and reached
a peak in 2008. Then, they decreased between 2009 and 2012 and increased again later
(Figure 3). The fluctuations in variable coefficients revealed that the gaps in AWUE between
the 30 provinces were the smallest in 2000 and the widest in 2008. Moreover, the gaps in the
provincial AWUE are currently in the expanding stage. The spatial imbalance of China’s
agricultural water use efficiency is significant.
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3.1.3. Spatial Distribution of AWUE in 30 Provinces

To further analyze the spatial pattern of AWUE, the spatial distribution map of the
AWUE of the 30 provinces in 2019 is plotted and shown in Figure 4. Overall, it is clearly
illustrated that the AWUE in China presented apparent spatial aggregation and spatial
variability at the provincial scale. According to the evaluation results of AWUE in 2019,
we found that provinces with AWUE greater than one were mainly in southeastern and
northwestern China. Provinces with AWUE lower than 0.4 were primarily in southwestern,
south central, and northwestern China. The major grain-producing areas in northeast
China, e.g., Heilongjiang, Jilin, and Liaoning, had AWUE between 0.4 and 0.7. Moreover,
provinces whose AWUE was 0.6–0.8 were mainly concentrated on the Huang-Huai-Hai
Plain [56], such as Hebei and Shandong in East China. The lowest AWUE was found in
Inner Mongolia with 0.240 in 2019, followed by Qinghai (0.248) and Ningxia (0.273), all of
which are arid provinces with water resource per unit area less than 20× 104 m3/km2.

3.2. Spatial Correlation Network of AWUE in China

With the VAR Granger causality test (1% significance level), the spatial correlation
matrix of AWUE in China was established. Then, the network map was drawn to show the
structure and pattern of the spatial correlation network of AWUE, as shown in Figure 5. The
spatial correlation of China’s interprovincial AWUE presents a typical network structure.
There are no isolated nodes in the whole spatial correlation network, which indicates that
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correlations of the agricultural water utilization of provinces in China have transcended
geographically adjacent areas and evolved to form a massive spatial network. In other
words, due to the frequent mobility of production factors related to AWUE, there has been
a close correlation of AWUE between geographically non-adjacent regions. Therefore, the
improvement in AWUE in any province will affect other provinces through the network.
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3.2.1. Overall Network Characteristics and Evolution Trend

Table 3 shows the overall features of the spatial correlation network of AWUE. Mean-
while, to study the evolution trend of the interprovincial AWUE spatial correlation network,
this paper divided the whole sample investigation period into two stages, with 2000–2009
and 2010–2019.

Table 3. Overall characteristics of interprovincial agricultural water use efficiency spatial network.

Item 2000–2009 2010–2019 2000–2019

Network affinity 136 200 301
Network density 0.156 0.230 0.346

Network efficiency 0.746 0.616 0.404
Network hierarchy 0.537 0.242 0
Average distance 2.302 2.045 1.789

Clustering coefficient 0.210 0.305 0.371

The potential maximum spatial correlation of the spatial correlation network of AWUE
in the 30 provinces is 870 (30× 29). From 2000 to 2019:

(1) The total actual spatial correlation (network affinity) was 307, and the network
density was 0.346, indicating that the level of spatial correlation in the provincial AWUE in
China was not high. There is still enormous scope to improve the interprovincial correlation
of AWUE in the network.

(2) The network correlation was 1, meaning all 30 provinces were in the spatial
correlation network of AWUE, and the accessibility and connectivity of the whole network
were good. The AWUE of each province always had direct or indirect links with that
of other provinces, presenting significant spillover effects of production factors related
to AWUE.

(3) The network hierarchy was 0, indicating that there was no rigid network structure,
and there was a close interrelation between these provinces.

(4) The network efficiency was 0.397, reflecting that there were many redundant links
in the network, and the spatial spillover effects of AWUE had a multiple superposition
phenomenon. The more redundant and invalid connections there are, the stabler and more
robust the network is, and the slower the transmission speed among the nodes.

(5) The average distance and clustering coefficient of the network were 1.775 and
0.378, implying that the spatial correlation network of AWUE in China had prominent
small-world characteristics. The short average distance revealed that we could establish a
connection between any two nodes in the network through 1–2 intermediary provinces.
The high clustering coefficient indicated a frequent connection and interaction in the
provincial AWUE.

From the perspective of evolution, the features of the spatial correlation network of
AWUE in China show a noticeable variation (Table 3). The network affinity and density
in 2010–2019 were higher than in 2000–2009. The network efficiency and hierarchy in
2010–2019 were lower than in 2000–2009. With the growth of AWUE in China, the spatial
correlations of AWUE in different provinces have risen significantly, indicating that the
spillover effects of interprovincial agricultural water use efficiency have been enhanced.

3.2.2. Centrality Analysis

The point centrality, betweenness centrality, and closeness centrality of the spatial
correlation network of AWUE in China were calculated to reveal the status and role of each
province (Table 4).
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Table 4. Central analysis of spatial correlation network of agricultural water use efficiency in China.

Province
Point Centrality Betweenness Centrality Closeness Centrality

Out-Degree In-Degree Centrality Rank Centrality Rank Centrality Rank

Beijing 7 5 37.931 27 1.029 23 61.702 27
Tianjin 11 8 55.172 20 1.969 16 69.048 20
Hebei 8 18 79.310 2 6.927 4 82.857 2
Shanxi 8 16 72.414 10 2.505 12 78.378 10

Inner Mongolia 7 5 34.483 28 1.474 17 60.417 28
Liaoning 11 2 44.828 25 0.442 29 64.444 25

Jilin 5 19 75.862 4 2.145 14 80.556 4
Heilongjiang 8 10 55.172 21 4.201 9 69.048 21

Shanghai 7 4 34.483 29 2.672 10 60.417 29
Jiangsu 17 8 79.310 3 4.319 8 82.857 3

Zhejiang 14 7 62.069 17 1.233 21 72.500 17
Anhui 11 2 44.828 26 0.66 28 64.444 26
Fujian 9 23 82.759 1 8.909 1 85.294 1
Jiangxi 12 13 68.966 13 8.797 2 76.316 13

Shandong 14 13 75.862 5 4.798 5 80.556 5
Henan 20 1 72.414 11 1.052 22 78.378 11
Hubei 15 8 75.862 6 2.601 11 80.556 6
Hunan 2 8 34.483 30 0.886 25 60.417 30

Guangdong 3 16 65.517 15 0.385 30 74.359 15
Guangxi 9 13 72.414 12 1.333 19 78.378 12
Hainan 14 2 55.172 22 0.917 24 69.048 22

Chongqing 3 16 65.517 16 1.465 18 74.359 16
Sichuan 13 6 62.069 18 0.707 27 72.500 18
Guizhou 11 13 75.862 7 4.407 7 80.556 7
Yunnan 11 14 75.862 8 2.220 13 80.556 8
Shaanxi 14 3 55.172 23 0.770 26 69.048 23
Gansu 11 8 51.724 24 1.299 20 67.442 24

Qinghai 8 16 75.862 9 7.640 3 80.556 9
Ningxia 4 15 58.621 19 2.140 15 70.732 19
Xinjiang 14 9 68.966 14 4.579 6 76.316 14

Mean 10.033 10.033 62.989 – 2.816 – 73.401 –

The average out-degree, in-degree, and point-degree of each province in China were
10.033, 10.033, and 62.989, respectively. The top nine provinces with the highest point
centrality were Fujian, Hebei, Jiangsu, Jilin, Shandong, Hubei, Guizhou, Yunnan, and
Qinghai. Their degree centrality value exceeded 80, which indicates that these provinces
had many more connections with other regions and played the role of central actors in the
network. As shown in Figure 6, the nodes representing these provinces had more links and
were in the center of the network. Meanwhile, Beijing, Inner Mongolia, Liaoning, Shanghai,
Anhui, Hunan, and Hainan had low ranks of point centrality and acted as marginal actors
in the whole network.

In terms of spillover and reception among the provinces (Figure 7), Henan, Jiangsu,
Hubei, Shandong, Zhejiang, Hainan, Shaanxi, and Xinjiang were overflowing with higher
out-degree, indicating these areas had more impacts on AWUE in the rest of the provinces
than the rest of the provinces on themselves. Meanwhile, Fujian, Jilin, Hebei, Shanxi,
Guangdong, Chongqing, and Qinghai were mainly beneficial with high in-degree, meaning
that the AWUE levels of these provinces were primarily affected by other regions. The
spillover and reception of Shandong, Jiangxi, and Guizhou were nearly equal.
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In general, provinces with high average AWUE were likely to have higher out-degree
than in-degree, suggesting that regions with higher AWUE would have more significant
spillover effects of factors related to AWUE, which would benefit the improvement in
AWEU in other areas. On the contrary, provinces with low AWUE would have higher
in-degree and lower out-degree, and other districts may affect their AWUE.
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However, provinces with high AWUE, such as Fujian and Chongqing, did not have
apparent spillover effects as expected and had absorbed advanced experience from others
through high in-degree. Meanwhile, provinces with low AWUE, such as Liaoning, Anhui,
and Hubei, had more spillover effects than receiving effects. Considering these three regions
are main grain-producing areas in China, we must promote them to receive spillover effects
of factors related to effectively using water.

The average betweenness centrality in the network was 2.816, and nine provinces had
a higher value than that (Figure 8). The betweenness centrality in Fujian, Jiangxi, Qinghai,
and Hebei was about 7, indicating that these four provinces had controlled more than
seven transmission channels in the spatial correlation network of AWUE in China. The
betweenness centrality in Shandong, Xinjiang, Guizhou, Jiangsu, and Heilongjiang was
more than 4. Provinces with high betweenness centrality play a role as a “bridge” in the
network, meaning they are critical nodes for disseminating and exchanging information
technology related to agricultural water utilization.
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There are slight differences between the rankings of the centrality degree and between-
ness centrality of the 30 provinces in the network.

The average closeness centrality of the nodes in the network was 73.401, and more
than 50% of the provinces had a higher value than that, which indicates the whole network
was relatively balanced. As shown in Figure 9, Fujian, Hebei, Jiangsu, Jilin, Shandong,
Hubei, Guizhou, Yunnan, and Qinghai ranked higher in closeness centrality, meaning they
had a short distance to other nodes and could communicate with other provinces quickly
in the network.

By comparing the point centrality, betweenness centrality, and closeness centrality of
the spatial correlation network of AWUE in China, we found that Fujian, Hebei, Jiangsu,
Shandong, Guizhou, and Qinghai had high point centrality, centrality, and closeness
centrality at the same time. These provinces were essential nodes in the network and could
play a vital role in improving AWUE.
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3.2.3. Block Model Analysis

The total correlation in the network was 301. The number of correlations within blocks
was 63, with a ratio of 20.93%. Meanwhile, the correlation out of blocks was 238, with a
ratio of 79.07%, meaning that the spillover effects between blocks were more significant
(Table 5). Moreover, the net spillover block, bidirectional spillover block, and agent block
contained most of the nodes and links in the spatial correlation network of AWUE.

Table 5. Spillover effect of agricultural water use efficiency spatial correlation block in China.

Block
Reception Spillover Expected Internal

Relationship
Ratio %

Actual Internal
Relationship

Ratio %
Block PropertiesIntra

Block
Out of
Block

Intra
Block

Out of
Block

I 8 32 8 75 24 10 Net Spillover Block
II 34 43 34 106 31 24 Bidirectional Spillover Block
III 19 119 19 44 28 30 Agent Block
IV 2 44 2 13 7 13 Net Beneficial Block

Block I had eight nodes: Beijing, Inner Mongolia, Liaoning, Shanghai, Zhejiang, Anhui,
Jiangxi, and Hainan. There were 83 spillover relations in block I, and 75 issuing spillover
relations to other blocks. The expected internal relationship was 24%, while the actual
internal proportion was 10%. Therefore, block I was named the net spillover block, whose
members are more likely to send spillover effects on AWUE to other blocks. Among the
members, Inner Mongolia, Liaoning, Jiangxi, and Anhui are major grain-producing areas
in China, contributing about 20% of the grain production. Beijing, Shanghai, Zhejiang, and
Hainan have high agricultural water use efficiency levels.

Block II had ten nodes: Tianjin, Jiangsu, Shandong, Henan, Hubei, Sichuan, Guizhou,
Shaanxi, Gansu, and Xinjiang. There were 140 spillover relations in block II, 34 spillover
connections within the block, and 106 spillover relations to other blocks. The expected
internal relationship proportion was 31%, more than the actual relationship proportion of
24%. Therefore, we called block II the bidirectional spillover block. Members in this block
likely have bidirectional spillover effects on nodes inside and outside. Jiangsu, Henan, and
Hubei are also major grain-producing provinces.
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Block III had nine nodes: Hebei, Shanxi, Jilin, Heilongjiang, Guangdong, Guangxi,
Chongqing, Yunnan, and Qinghai. There were 63 spillover relations in block III, 19 within
this block, and 44 issuing spillovers to other blocks. The expected internal relationship was
28%, while the actual internal proportion was 30%. According to the above characteristics,
block III was classified as the agent block, which plays the role of an “intermediary” and
“bridge” in the correlation network. Provinces in this block are evenly distributed in the
northeast, northwest, southwest, southeast, and north central subregions of China, which
is conducive to the spread of the spillover effects of AWUE across provinces.

Block IV had three nodes: Fujian, Hunan, and Ningxia. There were only 15 spillover
relations in this block, 2 within the block, 44 receiving spillover relations in other blocks,
and 13 sending spillover relations to other blocks. The expected internal relationship
proportion was 7%, and the actual relationship proportion was 13%, meaning block IV was
classified as the net beneficial block. Provinces in the net beneficial block mainly receive the
spillover effects of other blocks. Fujian’s food demand is great, but the local grain output is
small, whose external food dependence is high.

Then, the density matrix was calculated to further analyze the spillover effects of
AWUE between the four blocks in the network. According to the results in Table 3, the
density of the whole spatial correlation network of AWUE was 0.346. If the density of
each block in the density matrix is higher than 0.346, the corresponding value in the image
matrix is 1; otherwise, the value is 0. The results are shown in Table 6.

Table 6. Density matrix and image matrix of agricultural water use efficiency in China.

Block
Density Matrix Image Matrix

I II III IV I II III IV

I 0.143 0.375 0.486 0.417 0 1 1 1
II 0.188 0.378 0.867 0.433 0 1 1 1
III 0.194 0.100 0.264 0.778 0 0 0 1
IV 0.125 0.133 0.222 0.333 0 0 0 0

Block I and block II mainly overflowed to block III and block IV, which meant that
the former two blocks had substantial spillover effects of AWUE on the latter two blocks.
Meanwhile, block III mainly overflowed to block IV. Moreover, only block II overflowed to
itself, which suggests that the AWUE of nodes in this block had a significant correlation.

Figure 10 shows the transmission mechanism of spillover effects of factors related to
agricultural water utilization between the four blocks. The net spillover block (block I)
was the “engine” of the AWUE spatial correlation network, driving changes in agricultural
water use efficiency in other members of the network. The net spillover block mainly sent
spillover effects of factors related to agricultural water utilization to block II and block III.
The bidirectional spillover block (block II) was the “steering wheel” of the network, leading
to improving agricultural water resource management. The agent block (block III) was
the “bridge” of the network, coordinating the exchange and dissemination of information
and technology concerning water resources among the provinces. The net beneficial block
(block IV) was the weak link of the whole network due to the low level of AWUE or the
great import of agricultural products from other blocks.



Land 2022, 11, 77 17 of 22

Land 2022, 11, x FOR PEER REVIEW 17 of 23 
 

density of the whole spatial correlation network of AWUE was 0.346. If the density of each 
block in the density matrix is higher than 0.346, the corresponding value in the image 
matrix is 1; otherwise, the value is 0. The results are shown in Table 6. 

Table 6. Density matrix and image matrix of agricultural water use efficiency in China. 

Block  Density Matrix  Image Matrix 
Ⅰ Ⅱ Ⅲ Ⅳ Ⅰ Ⅱ Ⅲ Ⅳ 

Ⅰ 0.143 0.375 0.486 0.417 0 1 1 1 
Ⅱ 0.188 0.378 0.867 0.433 0 1 1 1 
Ⅲ 0.194 0.100 0.264 0.778 0 0 0 1 
Ⅳ 0.125 0.133 0.222 0.333 0 0 0 0 

Block Ⅰ and block Ⅱ mainly overflowed to block Ⅲ and block Ⅳ, which meant 
that the former two blocks had substantial spillover effects of AWUE on the latter two 
blocks. Meanwhile, block Ⅲ mainly overflowed to block Ⅳ. Moreover, only block Ⅱ 
overflowed to itself, which suggests that the AWUE of nodes in this block had a significant 
correlation. 

Figure 10 shows the transmission mechanism of spillover effects of factors related to 
agricultural water utilization between the four blocks. The net spillover block (block Ⅰ) 
was the “engine” of the AWUE spatial correlation network, driving changes in agricul-
tural water use efficiency in other members of the network. The net spillover block mainly 
sent spillover effects of factors related to agricultural water utilization to block Ⅱ and 
block Ⅲ. The bidirectional spillover block (block Ⅱ) was the “steering wheel” of the net-
work, leading to improving agricultural water resource management. The agent block 
(block Ⅲ) was the “bridge” of the network, coordinating the exchange and dissemination 
of information and technology concerning water resources among the provinces. The net 
beneficial block (block Ⅳ) was the weak link of the whole network due to the low level 
of AWUE or the great import of agricultural products from other blocks. 

 
Figure 10. Spatial correlation between the four blocks. Figure 10. Spatial correlation between the four blocks.

4. Discussion
4.1. Discussion of Overall Level of Provincial AWUE

The overall agricultural water use efficiency of China was at a low level. This result
is consistent with the research conclusion of Wang et al. [13]. The main reasons for this
were the backward irrigation technology, extensive water use pattern, and inefficient
agricultural water management. Only 1.1% of rural residents in major irrigation districts
have adopted modern water-saving technology [57], meaning there is great potential for
AWUE improvement. In addition, using chemical fertilizers will increase the grain yield,
but excessive use of them will affect the soil and water environment through non-point
source pollution [32]. Therefore, water-saving management and reducing non-point source
pollution should be involved when implementing measures to improve agricultural water
use efficiency.

4.2. Discussion of the Temporal Trend of AWUE

On the one hand, the evaluation value of AWUE is determined by the ratio of inputs
and outputs. Due to the rapid increase in the economic outputs of the agricultural sector,
and the reduction in non-point source pollution, AWUE in certain provinces showed a
significant upward trend, such as Beijing, Shanghai, Jiangsu, and Zhejiang. On the other
hand, AWUE reflects the condition of water conservancy facilities, the application of water-
saving measures, farmers’ awareness of water saving, etc. [13]. Economically developed or
major grain-producing provinces always have advanced agricultural water use technology
and information, causing their AWUE to have apparent temporal trends. In addition,
policies related to agricultural production also introduce significant drives for AWUE
improvement. In 2011, the Decision on Accelerating the Reform and Development of
Water Conservancy, released by the CPC Central Committee and State Council, required
the government to pay great attention to water conservancy construction and establish
the rational allocation and efficient utilization system of water resources. In 2015, the
Planning of National Agriculture Sustainable Development (2015–2030) was issued by the
China Ministry of Agriculture, which aims to increase the effective utilization coefficient
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of farmland irrigation water. Therefore, provincial AWUE showed growth after 2011 and
2015. Due to regional differences in policy implementation measures and standards, there
would be regional differences in the effects of the above policies on AWUE.

4.3. Discussion of Spatial Pattern of AWUE

The spatial performance of AWUE is primarily determined by the regional climate
and agricultural system characteristics [56]. In general, the southern subregions are rich in
precipitation and have well water resource endowment, which would benefit crop growth.
Moreover, developed provinces always have advanced agricultural production technology
and higher value-added agricultural products, which results in increased economic outputs
per unit of water use. Thus, provinces with high AWUE values were located in southeastern
China, while provinces with low values were mainly located in southwestern, south
central, and north central China. Meanwhile, neighboring provinces always have similar
geographical conditions and close communication, conducive to spreading spatial spillover
effects between the adjacent areas [13,22,32].

However, the AWUE in several major grain-producing areas was low, including Hubei,
Hunan, Jiangxi, and Anhui. Since it is often necessary to input a lot of irrigation water to
ensure grain outputs, redundancy and shortage of irrigation water are the main reasons for
low AWUE [58]. Moreover, the economic value per unit area for growing wheat and rice is
lower than that for planting vegetables, fruits, and other cash crops.

4.4. Discussion of Spatial Correlation of Provincial AWUE

In the context of regional coordinated development, mobility of agricultural produc-
tion factors has become more frequent [59], resulting in closer connections of resource
utilization efficiency between different regions [38]. Each province could receive and send
spillover effects of factors concerning agricultural water utilization, resulting in a significant
correlation of AWUE between provinces. Meanwhile, with the increase in connections of
AWUE between different provinces, the whole network became more robust.

The role of a particular province in the network may be related to its position in the
national agricultural system. Figure 11 shows the ranking of provinces in agricultural
economic outputs, grain outputs, and AWUE. Hebei, Jiangsu, Jilin, Shandong, and Hubei
are major grain-producing areas from functional zoning. Provinces with a high added
value of agriculture and large grain outputs may export many agricultural products to
other provinces. Along with the frequent agricultural products trade, information and
technology related to agricultural water utilization would be widespread. The AWUE in
these provinces is more likely to correlate with other regions. From water use efficiency,
agricultural sectors in Jilin, Shandong, Hubei, Guizhou, Yunnan, and Qinghai consumed
water with low-level efficiency. To alleviate their water shortage, they had urgent needs
to absorb information, technology, and the experience of water management from other
regions [37]. Accordingly, the low-AWUE provinces would receive more spillover effects of
water use efficiency from high-AWUE regions, resulting in the value of in-degree mostly in
low-AWUE areas being higher than the value of out-degree.

Beijing and Shanghai are highly developed cities and have a high average value of
AWUE. However, their agricultural outputs are significantly smaller than in other areas.
Hebei has replaced Beijing’s network functionality and has provided many resources for
developing the Beijing-Tianjin-Hebei region [60]. Shanghai’s network functionality was also
replaced by Jiangsu [38]. For Inner Mongolia and Liaoning, their crop yield and economic
output are high, and their agricultural water use efficiency is at the middle level. However,
they are located in northern China and face severe water shortages. Correspondingly, it
is more challenging to improve their water use efficiency, resulting in fewer connections
between these provinces and others in AWUE.
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Fujian, Jiangxi, Qinghai, Hebei, Shandong, Guizhou, Jiangsu, Xinjiang, and Hei-
longjiang had high betweenness centrality, playing the role of a “bridge” to promote the
dissemination of information, experience, knowledge, and technology concerning water
use efficiency in the network. Most of the above provinces are major agricultural pro-
duction regions. Generally, major grain-producing provinces are more sensitive to water
shortages and are willing to adopt new management strategies and technology to improve
agricultural water use efficiency [61]. For example, Jiangxi and Xinjiang are the primary
agricultural production areas in China, and there is great demand for agricultural water.
Xinjiang is even located in arid northwestern China. The two provinces are pilot regions
for water rights trading. They have accumulated rich experience in water saving and
constructed an advanced platform for the exchange and communication of water resource
information [62]. They could assume the role of a bridge to promote the interactions of
AWUE in other provinces.

Provinces in the net spillover block were mainly major grain-producing areas or had
high levels of AUWE. They always possessed an advanced agricultural water management
capacity and could drive the whole spatial correlation network, such as Inner Mongolia and
Shanghai. Provinces within the middle level of AWUE mainly belonged to the bidirectional
spillover block, which could receive spillover effects from other areas to improve AWUE
and send helpful knowledge and information to others. Members in the agent block
were more complex, including nodes with a high value, median value, and low value
of AWUE. Therefore, this block can serve as a transfer station for agricultural water use
efficiency information.

5. Conclusions

Affected by global climate change and water shortages, food security continues to
be challenged. Improving agricultural water use efficiency and increasing the outputs of
per unit water usage are essential to guarantee global food security. This article used the
undesirable super-efficiency SBM model to measure the AWUE of 30 provinces in China
from 2000 to 2019. Then, we investigated the spatial correlation of provincial AWUE with
the social network analysis (SNA) method. The results found that:
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(1) The overall agricultural water use efficiency in China was inefficient, and there
is still great potential to improve it. The focus of sustainable agricultural water resource
management included the broad application of water-saving technology and strict control
of water pollution.

(2) All the provinces had experienced increasing AWUE in the past 20 years, but with
apparent gaps. The growth rate of AWUE experienced a slight increase first and then a
substantial increase. Provinces with higher AWUE were primarily located in the east, while
the lower-AWUE areas were located in central and western China.

(3) There was a strong spatial correlation in provincial AWUE in China, presenting a
typical network structure. It was necessary to manage water resources from a system and
network perspective and improve coordinated agricultural water use efficiency.

(4) Fujian, Hebei, Jiangsu, Jilin, Shandong, Hubei, Guizhou, Yunnan, and Qinghai
had high centrality in the network. Improvement in AWUE should pay more attention
to the province with high centrality in the network and promote the spillover effects of
agricultural water utilization between different regions.

(5) The nodes and links in the network were highly concentrated in the net spillover
block, bidirectional spillover block, and agent block. We should focus on the driving role
of the net spillover block, which is the power source of the improvement in AWUE in the
whole network. Moreover, it is needed to strengthen the transmission of the bidirectional
spillover block and agent block to promote the coordinated development of AWUE.

Therefore, when formulating relevant measures and policies to improve agricultural
water use efficiency, they must pay attention to the spatial correlation of water resource
utilization in different provinces to promote the common improvement in water use
efficiency in all provinces.
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