The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers
Abstract
:1. Introduction
2. Material and Methods
2.1. Area of Study
2.2. System Dynamics
2.3. The Aquacoast Model
2.4. Data Sources, Model Calibration and Validation
2.5. Risks of Degradation and Desertification
- (1)
- Selecting the parameters for specifying the simulated scenarios. We chose a climate-related parameter, “average rainfall recharge” (Supplementary Table S1 in SM), and a farm profitability parameter, “revenue per hectare” (Supplementary Table S1 in SM).
- (2)
- Assuming probability distributions for the parameters selected in (1): a log-normal distribution for “average rainfall recharge”, and a normal distribution, for “revenue per hectare” (see Section S2 in Supplementary Materials).
- (3)
- Specifying a high number of simulation scenarios, each of them considering a different combination of values for the selected parameters. All the parameter values are independently sampled from parameter probability distribution. A total of 200 scenarios were specified in this case.
- (4)
- Selecting model variables that serve as indicators of the state of degradation of the system. We chose “Groundwater salinity” as indicator of the groundwater quality of groundwater, and “Water imported annually” as indicator of the scarcity of water resources in the basin.
- (5)
- Simulating the model under every scenario specified in (3) for a simulation period long enough for the whole system to reach equilibrium [80], and the values of the indicators at that point (“end-values”) were recorded. A 50-year simulation period allowed the system ample time to reach equilibrium (Figure 3).
- (6)
- Calculating the percentage of scenarios in which the indicator end values are above degradation or desertification thresholds. This percentage is the estimated risk for the case study. In this case, we considered a threshold of 40 dS m−1 for “Groundwater salinity”. A value above this threshold indicates that seawater intrusion affects the whole aquifer all year round (see Section 2.3). Since estimating the maximum amount of water that could potentially be transferred to the GSB is quite difficult due to the climatic, physical, technical or/and economic reasons influencing it, we considered two tentative thresholds for “Water imported annually”: 1.5 Mm3 yr−1, which is the amount of water annually imported at present, and 3 Mm3 yr−1, which doubles it.
3. Results
3.1. Trajectories under the Default Scenario
3.2. “What-If” Analyses
3.3. Risks of Degradation and Desertification in the GSB
4. Discussion
4.1. Degradation of Water Resources and Desertification
4.2. SD as a Suitable Tool to Help Achieve Land Degradation Neutrality
4.3. On the Adequacy of the Proposed Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Margat, J.; van der Gun, J. Groundwater around the World; CRC Press (Taylor & Francis): Boca Raton, FL, USA, 2013; ISBN 9780203772140. [Google Scholar]
- Foster, S.S.D.; Chilton, P.J. Groundwater: The processes and global significance of aquifer degradation. Philos. Trans. R. Soc. London Ser. B-Biol. Sci. 2003, 358, 1957–1972. [Google Scholar] [CrossRef] [PubMed]
- Vaux, H. Groundwater under stress: The importance of management. Environ. Earth Sci. 2011, 62, 19–23. [Google Scholar] [CrossRef]
- FAO. UN Progress on Level of Water Stress: Global Status and Acceleration Needs for SDG Indicator 6.4.2; FAO: Rome, Italy, 2021. [Google Scholar]
- Bierkens, M.F.P.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019, 14, 063002. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Synthesis Report; FAO: Rome, Italy, 2021. [Google Scholar]
- Smith, M.; Cross, K.; Paden, M.; Laban, P. Spring—Managing Groundwater Sustainably; IUCN: Gland, Switzerland, 2016; ISBN 978-2-8317-1789-0. [Google Scholar]
- FAO. The State of Food and Agriculture 2020—Overcoming Water Challenges in Agriculture; FAO: Rome, Italy, 2020. [Google Scholar]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Gleeson, T.; Cuthbert, M.; Ferguson, G.; Perrone, D. Global Groundwater Sustainability, Resources, and Systems in the Anthropocene. Annu. Rev. Earth Planet. Sci. 2020, 48, 431–463. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ferguson, G. The hidden crisis beneath our feet. Science 2021, 372, 344–345. [Google Scholar] [CrossRef]
- Voss, K.A.; Famiglietti, J.S.; Lo, M.; De Linage, C.; Rodell, M.; Swenson, S.C. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 2013, 49, 904–914. [Google Scholar] [CrossRef]
- Scanlon, B.; Faunt, C.; Longuevergne, L.; Reedy, R.; Alley, W.; McGuire, V.; Mcmahon, P. Groundwater Depletion and Sustainability of Irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D. Global groundwater wells at risk of running dry. Science 2021, 372, 418–421. [Google Scholar] [CrossRef]
- Döll, P.; Fiedler, K. Global-scale modeling of groundwater recharge. Hydrol. Earth Syst. Sci. 2008, 12, 863–885. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.; Ravi, S.; Runyan, C. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Guirado, E.; Maestre, F.T. Desertifying deserts. Nat. Sustain. 2020, 3, 572–575. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M.; et al. Freshwater Salinization Syndrome: From Emerging Global Problem to Managing Risks; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 154, ISBN 0123456789. [Google Scholar]
- Alfarrah, N.; Walraevens, K. Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 2018, 10, 143. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; del Barrio, G.; Sanjuán, M.E.; Guirado, E.; Maestre, F.T. Desertification in Spain: A Sound Diagnosis without Solutions and New Scenarios. Land 2022, 11, 272. [Google Scholar] [CrossRef]
- Hernández, M.; Morote, A.F. Evolución de los sistemas agrarios mediterráneos intensivos. Uso del agua y de la tierra (2000–2016). In El Regadío en el Mediterráneo Español. Una Aproximación Multidimensional; Garrido, A., Pérez-Pastor, A., Eds.; Cajamar: Almería, Spain, 2019; pp. 35–75. [Google Scholar]
- De Stefano, L.; Martínez-Cortina, L.; Chico, D. An overview of groundwater resources in Spain. In Water, Agriculture and the Environment in Spain: Can We Square the Circle? Llamas, R., De Stefano, L., Eds.; Fundación Botín: Santander, Spain, 2012; pp. 87–104. ISBN 9780203096123. [Google Scholar]
- Puigdefábregas, J.; Mendizábal, T. Perspectives on desertification: Western Mediterranean. J. Arid Environ. 1998, 39, 209–224. [Google Scholar] [CrossRef]
- Antonelli, M.; Basile, L.; Gagliardi, F.; Isernia, P. Land Use Policy The future of the Mediterranean agri-food systems: Trends and perspectives from a Delphi survey. Land Use Policy 2022, 120, 106263. [Google Scholar] [CrossRef]
- De Stefano, L.; Fornés, J.M.; López-Geta, J.A.; Villarroya, F. Groundwater use in Spain: An overview in light of the EU Water Framework Directive. Int. J. Water Resour. Dev. 2015, 31, 640–656. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. IPCC Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
- Custodio, E.; Andreu-Rodes, J.M.; Aragón, R.; Estrela, T.; Ferrer, J.; García-Aróstegui, J.L.; Manzano, M.; Rodríguez-Hernández, L.; Sahuquillo, A.; del Villar, A. Groundwater intensive use and mining in south-eastern peninsular Spain: Hydrogeological, economic and social aspects. Sci. Total Environ. 2016, 559, 302–316. [Google Scholar] [CrossRef]
- Hernández-Mora, N.; Martínez Cortina, L.; Llamas, R.; Custodio, E. Groundwater issues in Southern EU Member States. In Spain Country Report Groundwater in the Southern Member States of the European Union: An Assessment of Current Knowledge and Future Prospects; Country report for Spain; European Union: Madrid, Spain, 2007. [Google Scholar]
- Murillo, J.M.; Vega, L. Groundwater and protected natural areas in spain. The hydrogeological characterization of national parks. Bol. Geol. Min. 2019, 130, 549–592. [Google Scholar]
- Alcalá, F.J.; Martín-Martín, M.; Guerrera, F.; Martínez-Valderrama, J.; Robles-Marín, P. A feasible methodology for groundwater resource modelling for sustainable use in sparse-data drylands: Application to the Amtoudi Oasis in the northern Sahara. Sci. Total Environ. 2018, 630, 1246–1257. [Google Scholar] [CrossRef] [PubMed]
- MAGRAMA. Programa de Acción Nacional contra la Desertificación. Madrid; Ministerio de Agricultura y Medio Ambiente: Madrid, Spain, 2008. [Google Scholar]
- MITERD. Estrategia Nacional de Lucha Contra la Desertificación en España; MITERD: Madrid, Spain, 2022. [Google Scholar]
- Sivapalan, M.; Blöschl, G. Time scale interactions and the coevolution of humans and water. Water Resour. Res. 2015, 51, 6988–7022. [Google Scholar] [CrossRef]
- Wheater, H.S.; Gober, P. Water security and the science agenda. Water Resour. Res. 2015, 51, 5406–5424. [Google Scholar] [CrossRef]
- Forrester, J.W. Industrial Dynamics; The MIT Press: Cambridge, UK, 1961. [Google Scholar]
- Martínez-Valderrama, J.; Ibáñez, J.; Gartzia, R.; Alcalá, F.J. Dinámica de Sistemas para comprender los procesos de desertificación. Ecosistemas 2021, 30, 2091. [Google Scholar]
- Costanza, R. Ecological Economics: Reintegrating the Study of Humans and Nature. Ecol. Appl. 1996, 6, 978–990. [Google Scholar] [CrossRef]
- Reynolds, J.F.; Stafford Smith, D.M. Do humans cause deserts? In Global Desertification: Do Humans Cause Deserts? Dahlem Workshop Report 88; Reynolds, J.F., Stafford Smith, D.M., Eds.; Dahlem University Press: Berlin, Germany, 2002; pp. 1–21. [Google Scholar]
- Maestre, F.T. Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science 2012, 214, 214–218. [Google Scholar] [CrossRef]
- Vetter, S. Rangelands at equilibrium and non-equilibrium: Recent developments in the debate. J. Arid Environ. 2005, 62, 321–341. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Del Barrio, G.; Sanjuán, M.E.; Alcalá, F.J.; Martínez-Vicente, S.; Ruiz, A.; Puigdefábregas, J. Present and future of desertification in Spain: Implementation of a surveillance system to prevent land degradation. Sci. Total Environ. 2016, 563–564, 169–178. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística Contabilidad Nacional Anual de España: Agregados por Rama de Actividad. Available online: https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177056&menu=resultados&idp=1254735576581 (accessed on 20 May 2022).
- Matarán Ruiz, A. Environmental Efficiency of Greenhouse Agriculture in the Coast of Granada (Spain): Towards New Planning and Management Criteria. Open Environ. Sci. 2008, 2, 114–123. [Google Scholar] [CrossRef]
- IGME (Instituto Geológico Minero de España); Junta de Andalucía. Acuíferos de la costa Granadina. In Atlas Hidrogeológico de Andalucía; Junta de Andalucia: Sevilla, Spain, 1998; pp. 168–171. [Google Scholar]
- Calvache, M.L. Acuíferos detríticos de la costa de Granada. In Aportaciones al Conocimiento de los Acuíferos Andaluces. Libro Homenaje a Manuel del Valle Cardenete; Rubi Campos, J.C., López Geta, J.A., Eds.; IGME, CHG, Instituto del Agua de Andalucía, Diputación Provincial de Granada: Madrid, Spain, 2002; pp. 425–444. [Google Scholar]
- Calvache, M.L.; Pulido-Bosch, A. Effects of geology and human activity on the dynamics of salt-water intrusion in three coastal aquifers in Southern Spain. Environ. Geol. 1997, 30, 215–223. [Google Scholar] [CrossRef]
- Pulido-Leboeuf, P. Seawater intrusion and associated processes in a small coastal complex aquifer (Castell de Ferro, Spain). Appl. Geochem. 2004, 19, 1517–1527. [Google Scholar] [CrossRef]
- Junta de Andalucía. Consejería de Medio Ambiente. Ciclo de Planificación Hidrológica 2015/2021. Plan Hidrológico. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas, Anejo II. Inventario de Recursos Hídricos; Junta de Andalucía: Sevilla, Spain, 2016. [Google Scholar]
- Benavente, J.; Fernández-Rubio, R.; Almócija, C. Hidrogeología de los acuíferos del sector oriental de la costa de Granada. In Proceedings of the Los Acuíferos Costeros de Andalucía Oriental: TIAC’88; López Geta, J.A., Ramos González, G., Fernández Rubio, R., Eds.; Almuñecar: Granada, Spain, 1988; pp. 171–208. [Google Scholar]
- Alcalá, F.J.; Custodio, E. Natural uncertainty of spatial average aquifer recharge through atmospheric chloride mass balance in continental Spain. J. Hydrol. 2015, 524, 642–661. [Google Scholar] [CrossRef]
- Junta de Andalucía. Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas. Revisión de Tercer Ciclo (2021–2027). Apéndice 2. Fichas de Caracterización Adicional de las Masas de Agua Subterránea; Junta de Andalucía: Sevilla, Spain, 2021. [Google Scholar]
- IGME Hydrogeological Map of Spain, scale 1:200,000; Sheet no 83, Granada–Málaga. Available online: https://info.igme.es/cartografiadigital/tematica/Hidrogeologico200.aspx (accessed on 23 May 2022).
- Fernández Ales, R.; Martín, A.; Ortega, F.; Ales, E.E. Recent changes in landscape structure and function un a mediterranean region of SW Spain (1950–1984). Landsc. Ecol. 1992, 7, 3–18. [Google Scholar] [CrossRef]
- Aguilera, F.B.; Matarán, A.R.; Pérez, R.C.; Valenzuela, L.M.M. Simulating Greenhouse Growth in Urban Zoning on the Coast of Granada (Spain) BT. In Modelling Environmental Dynamics: Advances in Geomatic Solutions; Paegelow, M., Olmedo, M.T.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 269–295. ISBN 978-3-540-68498-5. [Google Scholar]
- Sánchez-Picón, A.; Aznar-Sánchez, J.A.; García-Latorre, J. Economic cycles and environmental crisis in arid southeastern Spain. A historical perspective. J. Arid Environ. 2011, 75, 1360–1367. [Google Scholar] [CrossRef]
- Tout, D. The Horticulture Industry of Almería Province, Spain. Geogr. J. 1990, 156, 304–312. [Google Scholar] [CrossRef]
- Wolosin, R.T. El Milagro De Almeria, Espana: A Political Ecology of Landscape Change and Greenhouse Agriculture; University of Montana: Missoula, MT, USA, 2008. [Google Scholar]
- Matarán Ruiz, A. La Valoración Ambiental-Territorial de las Agriculturas de Regadío en el Litoral Mediterráneo: El Caso de Granada; University of Granada: Granada, Spain, 2005. [Google Scholar]
- Junta de Andalucía. Cartografía de Invernaderos en Almería, Granada y Málaga, Año 2019; Junta de Andalucía: Sevilla, Spain, 2019. [Google Scholar]
- Pérez-Mesa, J.C.; Aballay, L.; Serrano-Arcos, M.; Sánchez-Fernández, R. Analysis of Intermodal Transport Potentials for Vegetables Export from Southeast Spain. Sustainability 2020, 12, 8502. [Google Scholar] [CrossRef]
- Benavente, J. Consecuencias de la sobreexplotación en el acuífero costero de la rabla de Gualchos (Granada). In Proceedings of the IV Simposium Nacional de Hidrogeología, Palma de Mallorca, Spain, 5–9 October 1987; pp. 685–696. [Google Scholar]
- Calvache, M.L. Simulación Matemática del Contacto Agua Dulce-Agua Salada en Algunos Acuíferos de la Costa del Sol; Universidad de Granada: Granada, Spain, 1991. [Google Scholar]
- De Stefano, L.; Lopez-Gunn, E. Unauthorized groundwater use: Institutional, social and ethical considerations. Water Policy 2012, 14, 147–160. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Martínez-Pagán, P.; Paz, M.C.; Navarro, M.; Pérez-Cuevas, J.; Domingo, F. Combining of MASW and GPR Imaging and Hydrogeological Surveys for the Groundwater Resource Evaluation in a Coastal Urban Area in Southern Spain. Appl. Sci. 2021, 11, 3154. [Google Scholar] [CrossRef]
- WWF. Manual de Buenas Prácticas de Riego; WWF: Madrid, Spain, 2009. [Google Scholar]
- Navarrete, M. Un Conflicto Entre Comunidades deja sin riego los Invernaderos de Castell. Ideal 2014. Available online: https://www.ideal.es/granada/costa/201409/22/conflicto-entre-comunidades-deja-20140921233214.html?ref=https%3A%2F%2Fwww.google.com%2F (accessed on 30 July 2022).
- Fernández, R. Agua de Rules a Través de la Contraviesa. Granada Hoy 2016. Available online: https://www.granadahoy.com/granada/Agua-Rules-traves-Contraviesa_0_1020798290.html (accessed on 30 July 2022).
- Fernández Motril, R. Sos: La Costa Oriental Agoniza sin Agua para Regar sus Cultivos. Granada Hoy. 2014. Available online: https://www.granadahoy.com/granada/Sos-Costa-oriental-agoniza-cultivos_0_845615819.html (accessed on 30 July 2022).
- Paul, C.; Techen, A.K.; Robinson, J.S.; Helming, K. Rebound effects in agricultural land and soil management: Review and analytical framework. J. Clean. Prod. 2019, 227, 1054–1067. [Google Scholar] [CrossRef]
- Phan, T.D.; Bertone, E.; Stewart, R.A. Critical review of system dynamics modelling applications for water resources planning and management. Clean. Environ. Syst. 2021, 2, 100031. [Google Scholar] [CrossRef]
- Aracil, J. Introducción a la Dinámica de Sistemas; Alianza Editorial: Spain, Madrid, 1986. [Google Scholar]
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Mc Graw Hill: New York, NY, USA, 2000; ISBN 0-07-231135-5. [Google Scholar]
- Akhavan, A.; Gonçalves, P. Managing the trade-off between groundwater resources and large-scale agriculture: The case of pistachio production in Iran. Syst. Dyn. Rev. 2021, 37, 155–196. [Google Scholar] [CrossRef]
- Martínez Fernández, J.; Selma, M.A.E. The dynamics of water scarcity on irrigated landscapes: Mazarrón and Aguilas in south-eastern Spain. Syst. Dyn. Rev. 2004, 20, 117–137. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibañez, J.; Alcalá, F.J.; Dominguez, A.; Yassin, M.; Puigdefábregas, J. The use of a hydrological-economic model to assess sustainability in groundwater-dependent agriculture in drylands. J. Hydrol. 2011, 402, 80–91. [Google Scholar] [CrossRef]
- De Wit, M.; Crookes, D.J. Improved decision-making on irrigation farming in arid zones using a system dynamics model. S. Afr. J. Sci. 2013, 109, 1–8. [Google Scholar] [CrossRef]
- Alcalá, F.J.; Martínez-Valderrama, J.; Robles-Marín, P.; Guerrera, F.; Martín-Martín, M.; Raffaelli, G.; de León, J.T.; Asebriy, L. A hydrological-economic model for sustainable groundwater use in sparse-data drylands: Application to the Amtoudi Oasis in southern Morocco, northern Sahara. Sci. Total Environ. 2015, 537, 309–322. [Google Scholar] [CrossRef]
- Martinez-Valderrama, J.; Ibáñez, J.; Alcalá, F.J. AQUACOAST: A Simulation Tool to Explore Coastal Groundwater and Irrigation Farming Interactions. Sci. Program. 2020, 20, 9092829. [Google Scholar] [CrossRef]
- Ibáñez, J.; Martínez-Valderrama, J.; Puigdefábregas, J. Assessing desertification risk using system stability condition analysis. Ecol. Modell. 2008, 213, 180–190. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Mathematical Biology; Dover Publications: New York, NY, USA, 1956. [Google Scholar]
- Volterra, V. Variations and fluctuations of the number of individuals in animal species living together. In Animal Ecology; Chapman, B.M., Ed.; McGraw-Hill: New York, NY, USA, 1931; pp. 409–448. [Google Scholar]
- Noy-Meir, I. Stability of grazing systems: An application of predator-prey graphs. J. Ecol. 1975, 63, 459–481. [Google Scholar] [CrossRef]
- Rosenzweig, M.L.; MacArthur, R.H. Graphical representation and stability conditions of predator-prey interactions. Am. Nat. 1963, 97, 209–223. [Google Scholar] [CrossRef]
- Junta de Andalucía Observatorio de Precios y Mercados [Price and Market Observatory]. Available online: https://www.juntadeandalucia.es/agriculturaypesca/observatorio/servlet/FrontController?ec=default (accessed on 2 February 2020).
- Valenzuela Montes, L.M.; Matarán Ruiz, A. Environmental indicators to evaluate spatial and water planning in the coast of Granada (Spain). Land Use Policy 2008, 25, 95–105. [Google Scholar] [CrossRef]
- INE (Instituto Nacional de Estadística) Estadística sobre el Suministro y Saneamiento del Agua. Año 2018. Available online: https://www.ine.es/prensa/essa_2018.pdf (accessed on 15 June 2022).
- Government of Spain, Ministry of Industry, Trade and Tourism. Precio neto de la Electricidad para uso Doméstico y uso Industrial. Available online: https://www.mincotur.gob.es/es-es/IndicadoresyEstadisticas/BoletinEstadistico/Energ%C3%ADa%20y%20emisiones/4_12.pdf (accessed on 15 June 2022).
- Cajamar Análisis de Campaña Hortofrutícola de Almería [Analysis of the Fruit and Vegetable Season in Almeria]. 2001–2022. Available online: https://www.publicacionescajamar.es/series-tematicas/informes-coyuntura-analisis-de-campana/pagina/1 (accessed on 20 April 2022).
- Valera, D.; Molina, D.; Belmonte, J.; López, A. Greenhouse Agriculture in Almeria. A Comprenhensive Techno-Economic Analysis; Cajamar: Almeria, Spain, 2016. [Google Scholar]
- Samper, J. Apuntes sobre acuíferos costeros. Hidrol. Subterranea 2013. Available online: https://www.docsity.com/es/acuiferos-costeros-hidrologia-subterranea-apuntes/155449/ (accessed on 15 February 2021).
- CottonInfo Fundamentals of Energy Use in Water Pumping; Australian Government, Department of Industry and Science: Narrabri, Australia, 2015.
- Perry, G.L.W.; Millington, J.D.A. Spatial modelling of succession-disturbance dynamics in forest ecosystems: Concepts and examples. Perspect. Plant Ecol. Evol. Syst. 2008, 9, 191–210. [Google Scholar] [CrossRef]
- Sterman, J. All models are wrong: Reflections on becoming a systems scientist. Syst. Dyn. Rev. 2002, 18, 501–531. [Google Scholar] [CrossRef]
- Martínez-Valderrama, J.; Ibáñez, J.; Alcalá, F.J.; Martínez, S. SAT: A Software for Assessing the Risk of Desertification in Spain. Sci. Program. 2020, 2020, 7563928. [Google Scholar] [CrossRef]
- Junta de Andalucia. El Clima de Andalucía en el Siglo XXI. Escenarios Locales de Cambio Climático de Andalucía. Resultados. Actualización al 4o Informe del Grupo Intergubernamental de Expertos Sobre el Cambio Climático; Junta de Andalucia: Sevilla, Spain, 2014. [Google Scholar]
- EFEAgro La Electricidad y los Abonos Dispararon los Costes Agrícolas en 2021 2022. 2022. Available online: https://efeagro.com/la-electricidad-abonos-2021/ (accessed on 21 May 2022).
- Madueño, J.J. El precio de las frutas y las verduras ha subido un 35% en el último año. ABC Andal. 2022. Available online: https://sevilla.abc.es/andalucia/malaga/sevi-precio-frutas-y-verduras-subido-35-por-ciento-ultimo-202203152032_noticia.html (accessed on 30 July 2022).
- Reynolds, J.F. Desertification is a prisoner of history: An essay on why young scientists should care. Ecosistemas 2021, 30, 2302. [Google Scholar] [CrossRef]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Prince, S.D. A model of regional primary production for use with coarse resolution satellite data. Int. J. Remote Sens. 1991, 12, 1313–1330. [Google Scholar] [CrossRef]
- del Barrio, G.; Puigdefabregas, J.; Sanjuan, M.E.; Stellmes, M.; Ruiz, A. Assessment and monitoring of land condition in the Iberian Peninsula, 1989–2000. Remote Sens. Environ. 2010, 114, 1817–1832. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE Measurements of Mass Variability in the Earth System. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed]
- Zaitchik, B.F.; Rodell, M.; Reichle, R.H. Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin. J. Hydrometeorol. 2008, 9, 535–548. [Google Scholar] [CrossRef]
- Cowie, A.L.; Orr, B.J.; Castillo Sanchez, V.M.; Chasek, P.; Crossman, N.D.; Erlewein, A.; Louwagie, G.; Maron, M.; Metternicht, G.I.; Minelli, S.; et al. Land in balance: The scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 2018, 79, 25–35. [Google Scholar] [CrossRef]
- UNCCD. Report of the Conference of the Parties on Its Twelfth Session, Held in Ankara from 12 to 23 October 2015. Part Two: Actions Taken by the Conference of the Parties at Its Twelfth Session; ICCD/ COP(12)/20/Add; UNCCD: Bonn, Germany, 2015. [Google Scholar]
- Safriel, U. Land degradation neutrality (LDN) in drylands and beyond—Where has it come from and where does it go. Silva Fenn. 2017, 51, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Grainger, A. Is Land Degradation Neutrality feasible in dry areas? J. Arid Environ. 2015, 112, 14–24. [Google Scholar] [CrossRef]
- Mainguet, M.; Da Silva, G.G. Desertification and drylands development: What can be done? L. Degrad. Dev. 1998, 9, 375–382. [Google Scholar] [CrossRef]
- Kratli, S. Valuing Variability; International Institute for Environment and Development: London, UK, 2015; ISBN 9781784311575. [Google Scholar]
- UN. Global Drylands: A UN System-Wide Response; UN: San Francisco, CA, USA, 2011. [Google Scholar]
- Molle, F. Why enough is never enough: The societal determinants of river basin closure. Int. J. Water Resour. Dev. 2008, 24, 217–226. [Google Scholar] [CrossRef]
- Mysiak, J.; Gómez, C.M. Water Pricing and Taxes: An Introduction. In Use of Economic Instruments in Water Policy; Lago, M., Mysiak, J., Gómez, C.M., Delacámara, G., Maziotis, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 15–20. ISBN 9783319182872. [Google Scholar]
- Nabhan, G.P.; Riordan, E.C.; Monti, L.; Rea, A.M.; Wilder, B.T.; Ezcurra, E.; Mabry, J.B.; Aronson, J.; Barron-Gafford, G.A.; García, J.M.; et al. An Aridamerican model for agriculture in a hotter, water scarce world. Plants People Planet 2020, 2, 627–639. [Google Scholar] [CrossRef]
- Mukherji, A. Political ecology of groundwater: The contrasting case of water-abundant West Bengal and water-scarce Gujarat, India. Hydrogeol. J. 2006, 14, 392–406. [Google Scholar] [CrossRef]
- Oxley, T.; McIntosh, B.S.; Winder, N.; Mulligan, M.; Engelen, G. Integrated modelling and decision-support tools: A Mediterranean example. Environ. Model. Softw. 2004, 19, 999–1010. [Google Scholar] [CrossRef]
- Evans, M.R.; Grimm, V.; Johst, K.; Knuuttila, T.; de Langhe, R.; Lessells, C.M.; Merz, M.; O’Malley, M.A.; Orzack, S.H.; Weisberg, M.; et al. Do simple models lead to generality in ecology? Trends Ecol. Evol. 2013, 28, 578–583. [Google Scholar] [CrossRef]
- Vrba, J.; Hirata, R.; Girman, J.; Haie, N.; Lipponen, A.; Neupane, B.; Shah, T.; Wallin, B. Groundwater Resources Sustainability Indicators. In Proceedings of the International Symposium on Groundwater Sustainability (ISGWAS), Alicante, Spain, 24–27 January 2006; pp. 33–52. [Google Scholar]
- Jakeman, A.J.; Letcher, R.A. Integrated assessment and modelling: Features, principles and examples for catchment management. Environ. Model. Softw. 2003, 18, 491–501. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydro-economic models: Concepts, design, applications, and future prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibáñez, J.; Gartzia, R.; Alcalá, F.J.; Martínez-Valderrama, J. The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers. Land 2022, 11, 1626. https://doi.org/10.3390/land11101626
Ibáñez J, Gartzia R, Alcalá FJ, Martínez-Valderrama J. The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers. Land. 2022; 11(10):1626. https://doi.org/10.3390/land11101626
Chicago/Turabian StyleIbáñez, Javier, Rolando Gartzia, Francisco Javier Alcalá, and Jaime Martínez-Valderrama. 2022. "The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers" Land 11, no. 10: 1626. https://doi.org/10.3390/land11101626
APA StyleIbáñez, J., Gartzia, R., Alcalá, F. J., & Martínez-Valderrama, J. (2022). The Importance of Prevention in Tackling Desertification: An Approach to Anticipate Risks of Degradation in Coastal Aquifers. Land, 11(10), 1626. https://doi.org/10.3390/land11101626