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Abstract: China’s rapid urbanization has been accompanied by serious urban sprawl. Instead of
measuring the physical urban boundaries (PUBs), most of existing studies in China rely on yearbook
statistics to describe the growth of urbanized area; therefore, the understanding of the actual form and
quantity of urban sprawl are restrained. As the statistical unit is generally at or above the county level,
these studies tend to omit the lower-level “larger towns”. This paper discusses the measurement of
urban sprawl and compactness using multi-source data on the GIS platform through the case study
of the Wen-Tai region in China. GlobeLand30 remote sensing image data, vector road network data,
NPP/VIIRS nighttime light data, and points of interest (POIs) data are adopted. The new method
enhances the identification of built-up areas in larger towns. Besides, the 2020s’ PUBs of this region,
data for 2010 and 2000 are retraced to assess the urban expansion rate, and two approaches are used
to discuss the urban growth pattern. Additionally, a compactness model is constructed from four
dimensions, i.e., the compactness of external contour, accessibility of road network, land-use intensity,
and functional diversity, by which a high-resolution visual analysis tool is created for the provincial
government to monitor urban sprawl.

Keywords: urbanization; physical urban boundary; urban sprawl; compactness; system of cities;
Wen-Tai region; China

1. Introduction

Urban development and urban sprawl in China have increased in concert with China’s
economic boom [1,2]. Urban sprawl is the “haphazard” or unplanned encroachment on non-
urban land of the city periphery, commonly seen in developing countries [3,4]. According
to the UN’s projections, the global urban population will double and the urban built-up
area will triple between 2000 and 2030 [5–7]. Moreover, the rapid urban sprawl has caused
serious social and environmental problems, e.g., the high consumption of resources and
energy, as well as loss of arable land and habitats [1,4,6,8,9]. Therefore, it is urgent to
quantitatively characterize and assess the regional or global urban sprawl to predict urban
growth trends and support relevant decision making, especially for regions undergoing
rapid urbanization in the future [6]. The UN 2030 Agenda for Sustainable Development
aims to end poverty in all of its forms in accordance with a UN vision that imagines a
world of respect for human rights and human dignity, the rule of law, justice, equality, and
non-discrimination. The land planning control of urban sprawling in the Chinese context
to conserve valuable farmland is definitely in line with the UN’s aspirations. Such control
highlights the significance of land boundaries.

Two major problems exist in the current research on urban sprawl in China. First,
modern Chinese cities are defined from the administrative perspective. However, cities
never constitute an independent administrative category, although they serve as capitals
of territorial units at different levels [10]. Researchers rely on statistical and aggregated
indicators in officially published yearbooks to understand the Chinese city system [11].
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China’s administrative divisions include the province-level, prefecture-level, county-level,
and township-level. Most studies focus on the county-level or above [7,12–14], and descrip-
tions of the township level are lacking. In many maritime provinces, e.g., Zhejiang and
Guangdong, there is a special type of township, namely the larger town. Larger towns
are townships not serving as the seat of government for the county, without a clear defi-
nition, usually with a resident population of 100,000 or more [15]. These larger towns are
perfectly suited as independent cities based on the definition of physical cities, but they are
subordinate to a higher level unit and are usually not treated independently. Consequently,
these towns playing a crucial role during urbanization may be neglected. Due to their
lower administrative level, rapid development status, complex urban–rural interaction, and
ambiguous urban–rural fringe [16], it is more difficult to measure their urban sprawl level.

The second problem also derives from the administrative management of Chinese
cities. The township jurisdiction contains both built-up and rural hinterland, and the
proportion of the built-up area is usually low. Nevertheless, traditional studies rely on
reported statistics that count the man-made surface area within the administrative boundary
rather than the built-up area within the same boundary. A portion of cities with backward
management do not have real-time updated data on built-up areas. Consequently, these
studies are limited by data sources, making it hard to describe the true sprawl level of urban
built-up areas accurately. As Lai et al. (2022) [17] has explained, without the boundary
delineation (Zoning), planning is not possible. There have been many recent studies
discussing methods for determining urban development boundaries [18,19], yet there has
been far less discussion of how the changing physical urban boundaries are identified.
Since the corresponding method has not yet formed a consensus, the Ministry of Natural
Resources of the People’s Republic of China just designated a “Code of Practice for Standard
Urban Built-up Area Delineation” in 2021 to serve the management of the preparation,
implementation, and supervision of urban planning.

Recently, Ying Long (2016) [11] and Shuang Ma et al. (2019) [20] proposed that newly
emerging big/open data can be used to identify the urban–rural divides and obtain informa-
tion on the physical territories of cities in China more easily. Their work has laid a basis for
the formulation of Chinese urbanization policies, and this paper will continue to advance
their research efforts by using multi-source data to improve the identification technology of
urban physical territories.

In this paper, the extraction of physical urban boundaries (PUBs) and the sprawl
measurement are performed in the Wen-Tai region, one of the most developed regions
in Zhejiang Province, China. It has seen rapid socioeconomic development in the last
two decades, accompanied by an extreme expansion of built-up areas [21]. Since built-
up area boundaries are not easily accessible, it is difficult for local authorities to make
cross-sectional comparisons of the sprawl level and thus tailor interventions. From the
perspective of planning assessment, local authorities need to obtain visual data on the
sprawl of urban built-up areas in this region to understand the urban growth pattern and
to launch appropriate initiatives.

The present paper aims to address the following questions: First, considering the
difficulty in obtaining accurate built-up area boundaries of low-level towns, could we
explore a reliable method for generating physical boundaries of towns using multi-source
data to support urban morphology studies? Second, cities in coastal regions of China
show rapid growth, while no comparative studies have been conducted to analyze the
contemporary urban sprawl for these towns quantitatively. Is it possible to calculate the
urban sprawl degree in the Wen-Tai region in the last 20 years by the above method? Third,
is it possible to include functional data to assess the compactness of larger towns in the
Wen-Tai region and to provide suggestions for future planning?
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2. Literature Review
2.1. The Meaning of Urban Boundaries in the Chinese Context and the Concept of Larger Town

The term “city” generally refers to the area within the administrative boundary in
the Chinese context. The hierarchy of administrative units is decentralized from the
province, prefecture, and county to the township. As the third level of administration,
659 administrative cities are officially recognized. The criteria for the recognition of Chinese
city change frequently and have multiple indicators. 100,000 people is a general standard.
For administrative cities, both built-up areas and a larger rural hinterland are under
jurisdiction. Therefore, it is important to clarify whether the discussion of city boundaries
concerns the administrative boundary of city jurisdiction or the boundary for its built-
up area. Precise identification of built-up areas in low-grade cities is not easy for the
existing planning administration in China. In 2021, the Ministry of Natural Resources of
the People’s Republic of China issued a new “Code of Practice for Standard Urban Built-up
Area Delineation” [22] to help planners determine the built-up area of some fast-growing
cities with a common standard.

Recently, Shuang Ma et al. (2019) [20] identified 1227 physical urban areas (PUAs) in
China, which were defined as entities with a geographic area ≥ 10 km2. Of these, 480 PUAs
were not within any administrative city and covered an area of 9820 km2, representing 16.2%
of the total area. They suggested that these PUAs, which are not included in administrative
cities, are overlooked in China’s statistics, and their identification was an important basis
for measuring the development of China’s small and medium-sized cities, determining
their development stage and contribution to the overall urbanization of the nation. A large
proportion of these “cities” are the larger towns discussed in this paper, which are within
the boundaries of higher administrative units but are separated from the downtowns
of these units. Numerous larger towns meet the criteria of cities in terms of economy,
population, and built-up area, which has received the attention of the Chinese government.

Zhejiang Province launched Central Town Cultivation Program in 2007 [23] to support
certain towns to become “central towns” to better coordinate urban and rural development
and transfer rural populations nearby. In 2010, Zhejiang further implemented the Small
City Fostering Plan [24] to select potential towns from the central towns. More policy and
funding support were targeted to develop them into small cities. Recently, Longgang, a
larger town in Zhejiang, has been successfully upgraded from township to “county level
city” in 2019. According to the China Township Comprehensive Competitiveness Report
2020 [25], Zhejiang Province boasted 13 of the top 100 towns in China, ranking only third
to Jiangsu Province and Guangdong Province. While Zhejiang had a land area of 1055 km2,
accounting for only 1.1% of China’s land area. In this paper, the Wen-Tai region was selected
as the subject occupied four of the top 100 towns.

2.2. PUB Extraction Method

As mentioned above, urban boundaries generally refer to administrative boundaries
for Chinese cities. In many cases, to obtain the PUBs, planners rely on specialized extraction
methods. Remote sensing imagery [26–28] and nighttime light imagery [29,30] have been
widely used and their corresponding methods are widely discussed. However, both
approaches have shortcomings.

In remote sensing images, because of the interspersion and similar spectral character-
istics of many built-up areas and bare city-edge land, it is easy to form hard-to-distinguish
mixed images on multi-spectral images [31]. Consequently, remote sensing images can
only distinguish the visual interpretation of urban areas, which may cause the misinter-
pretation of actual urban areas [32,33]. It is difficult to extract finer built-up areas from
low-resolution nighttime light data, such as DMSP/OLS and NPP/VIIRS nighttime light
data with resolutions of about 1 km and 500 m, respectively. Therefore, studies on built-up
area extraction based on nighttime light data are mainly on the national scale [34,35].

To improve the accuracy of boundary identification, the data output quality has been
improved by integrating multiple data [36,37]. Due to the differential boundaries identified
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by various methods, how to evaluate and correct these differences has become a challenge.
Notably, high-resolution vector data have also been used (e.g., open street map (OSM) road
networks and points of interest (POIs)) to extract PUBs [11,38]. Corresponding studies have
been used nationwide but have not yet emerged in lower administrative units, which may
be owing to the lack of integrity of such data.

2.3. Compact City Measurements

Sprawl and compactness are opposite concepts [3]. Controlling urban sprawl and
promoting the compactness of urban built-up areas are common goals of cities worldwide in
pursuing sustainable development. The methods of measuring urban compactness include
single-indicator measures, and multiple-indicator approaches. Single-indicator measures
are mostly used in early compactness measurement studies, such as Richardson index [39],
Cole index [40], Gibbs index [41], etc. They are mostly based on the morphological outline,
failing to cover the complex meaning for compactness. In recent studies, multi-indicators
tend to be used for measuring the urban compactness [42–44], with indicators including
population density, the continuity of urbanized land, the concentration of land, and mixed
land use. Compared with single-indicator measure, it can reflect the compactness of
cities in a more comprehensive and integrated way. The commonly used methods for
constructing indicator models include the analytic hierarchy process (AHP) [13], principal
component analysis (PCA) [45], entropy weight method (EWM) [46], etc. The indicator
matrix is constructed mostly considering economic functions [47,48] and morphological
contours [6,26]. These indicators usually reflect the characteristics of compactness as
described in theoretical studies: high density, mixed land use, intensive land development,
compact morphology, public transportation, and road network connectivity [49–53].

Case studies of compactness in China can be divided into system of cities studies
and big city studies. In system of cities studies, local statistical yearbook data are mostly
used to quantify the economic function dimension, and the analysis unit corresponds to
the administrative unit so that economic function indicators (e.g., GDP and population)
can be directly called for analysis [47,54]. Nevertheless, this type of study cannot reflect
the influence of spatial morphological factors and cannot produce direct guidance for
spatial planning.

In the studies of big cities, land-cover remote sensing images are generally em-
ployed [6,26], and studies based on multi-source open data have also emerged. For instance,
Wenze Yue et al. (2020) [55] collected data from 106 big cities across China for comparison.
They mainly used Landsat remote sensing image data and local statistical yearbook data to
comprehensively measure the sprawl of big cities in three dimensions: economic efficiency,
population density, and spatial pattern.

Neither of the above two case study approaches can be directly applied to the issues
in this study for two reasons. First, the administrative cities in China are much larger in
scope than PUAs. Data at the township level often include the vast surrounding rural
hinterland, while data for the built-up areas of towns are difficult to isolated from the
administrative unit. Second, metropolitan areas generally expand outward from a distinct
core and their morphological change is easy to grasp. In contrast, the larger towns involved
in this study expand in multiple ways, including expansion from the old urban core, the
merging of several cores, the spillover of administrative boundaries, and administrative
boundary adjustments.

The emergence of new Internet data certainly addressed this challenge. New Internet
data, such as POIs and OSM road networks, allow for a detailed analysis of the functional
and spatial structure of regions and even blocks, owing to their high resolution and large
volume [37]. Preliminary studies have emerged using these data in compactness assessment.
For instance, Ting Lan et al. (2021) [56] used POIs data to assess the functional compactness
of blocks, and Chang Xia et al. (2020) [57] employed data from Dianping (the Chinese
equivalent of Yelp) records to reflect the area vitality. Although these studies are for big
cities, this type of methods is also useful for studies of larger towns.
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3. Study Site and Data Sources
3.1. Study Site

This study selected the coastal region of Wen-Tai, Zhejiang Province, China, as an
empirical case. This region is dominated by hilly terrain and is abundant in marine, mudflat,
and tourism resources and basically consists of two prefecture-level cities (Figure 1a).
According to the 2011–2020 Urban System Planning of Zhejiang Province, the Wen-Tai
region is listed among the three major systems of cities in Zhejiang, with a spatial extent of
27◦05′–29◦20′ N and 120◦06′–121◦94′ E1.
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The study area encompassed 17 county-level administrative districts at three levels of
urbanization degree. Among them, the municipal districts of Wenzhou and Taizhou show
the highest degree of urbanization; the six county-level cities of Yueqing, Rui’an, Longgang,
Wenling, Linhai, and Yuhuan present a medium degree of region-wide urbanization; the
four county units of Cangnan, Pingyang, Sanmen, and Yongjia have the lowest degree of
region-wide urbanization (Figure 1b).

The next level of these 17 county-level administrative districts is the designated town
or subdistrict. There are 254 units in this study area, which are divided into three categories
according to their urbanization level: the first category is the subdistricts in municipal
districts and county-level cities or Chengguan towns (capital of the county); the second
category is small cities fostering towns and central towns; the third category is ordinary
towns. Figure 1c provides a visual representation of this classification; a redder color
indicates a higher level of urbanization. As a reminder, the more urbanized township units
generally have much smaller areas than the less urbanized ones.

3.2. Data Sources

This study used GlobeLand30 remote sensing image data, vector road network data,
NPP/VIIRS nighttime light data, and POIs data. The first two were mainly used for
boundary extraction, while the latter two were utilized for compactness assessment.

3.2.1. GlobeLand30 Remote Sensing Image Data

GlobeLand30 (Figure 2a) is a data product covering global land, developed by the
China Geological Survey. It includes 10 land cover types, namely water bodies, wetlands,
artificial surfaces, croplands, forests, shrublands, grasslands, and barren lands [58]. This
study used the GlobeLand30 datasets of 2000, 2010, and 2020, from which the artificial
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surface data were extracted as build-up area coverage data to study the change in expansion
rate across the years.
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3.2.2. Vector Road Network Data

This study used OSM (Figure 2b) vector road network data acquired in March 2022.
OSM is an open-source map supplier, providing free and easily accessible digital map
resources, and is currently the most popular volunteered geographic information (VGI) with
a complete road network for urbanized lands [59]. However, the later research will show
that OSM data omit certain major streets in certain towns, which need manual verification.

3.2.3. NPP/VIIRS Nighttime Light Data

NPP/VIIRS nighttime light data (Figure 2c) represent visible light (e.g., city lights,
fishing fleet lights, and fires) captured by remote sensing satellites under cloud-free condi-
tions at night. These data derive from the National Geoscience Data Center of the National
Oceanic and Atmospheric Administration (NOAA/NGDC). The raw nighttime light data
are disturbed by clouds, stray light, fires, and other transient light, which can be reduced
using annual integrated data [56]. Therefore, this study employed the annual integrated
data for 2020.

3.2.4. POIs Data

POIs data (Figure 2d) are zero-dimensional elements involving specific real-world
locations, such as historical sites, landmarks, public service facilities, stores, schools, and
restaurants [56]. The data used in this study were crawled from a Chinese mapping website
AMap in 2020. Then they were filtered and classified into 14 major categories based on
the broad category classification of AMap POIs: food and beverage services, scenic spots,
public facilities, companies and enterprises, shopping services, financial and insurance
services, scientific, educational, and cultural services, transportation services, business
housing, living services, sports and leisure services, health care services, government
agencies, and services for social organizations and accommodation.

4. Method
4.1. PUB Extraction with Two Types of Data

This study used vector road network data to compensate for the shortcomings of
remote sensing images and extract more reliable PUBs. Ying Long (2016) [11] performed
the spatial aggregation of vector road network intersections to extract PUBs across China.
Shuang Ma et al. (2019) [20] used community units to conduct the secondary correction
of the boundaries extracted from remote sensing image data. Based on the two studies,
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this paper proposed a novel method for PUB extraction. With the flow chart shown in
Figure 3, this method consisted of four steps. The first step was the processing of remote
sensing images. The man-made surface was extracted in the GlobeLand30 2020 dataset and
then transformed into vector data. The second step was the processing of the vector road
network. Highways were first removed, and two-lane roads were converted to single lanes.
Then dangling roads and independent roads were removed by topology processing. Finally,
the road network was interrupted at intersections. The third step was block aggregation.
First, the vector road network was converted into blocks, and then the blocks containing at
least 50% of the artificial surface were selected. Subsequently, the blocks were aggregated
using ArcGIS 10.6 with a threshold of 300 m. The fourth step was to select spatial clusters
with a continuous solid area greater than 1.5 km2 as the PUBs of the Wen-Tai region.
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Threshold setting is the key to identifying physical territories, and the threshold value
varies with diverse research situations [20]. This study set the threshold based on the
smallest PUA of the central towns and small cities. The first round of calculation indicated
that Dajing was the smallest central town with a 1.0 km2 entity area, and 119 PUAs were
identified with this value, essentially covering the built-up areas of three types of towns:
districts, small cities, and central towns. Moreover, the built-up areas of 29 ordinary
towns were also identified. According to the comparison of the satellite map with the
identified PUAs, the identified PUAs of six towns, namely, Mayu, Dajing, Qiaoxia, Zeguo,
Baishuiyang, and Jiantiao, were significantly smaller than the actual built-up areas. The
reason is that the missing road networks in the OSM cause the missing edge blocks and
requires manual supplementation of the absent data. Then, the second round of calculation
showed that Dajing was still the smallest central town with an entity area of 1.5 km2, and
95 PUAs were identified with this threshold. Some ordinary towns also presented the size
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of larger towns, such as Furong, Pengjie, and Yishan (Figure 4), with their size exceeding
the threshold condition according to the satellite map.
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In this section, the Liubai district in Yueqing county-level city was selected for testing,
and the differences in the extracted PUB boundaries in this paper were compared with
those by the methods of Ying Long (2016) [11] and Shuang Ma et al. (2019) [20] (Table 1).
The Liubai district consists of two neighboring towns, which has double cores and cross-
administrative boundary. From the Yueqing Municipal Master Plan (2013–2030) [60], the
superior planning encourages the integrated development of the two towns. As shown
in Table 1, in Long’s method, the threshold setting is too subjective and the identified
boundary is too small compared with the actual built-up area, failing to reflect the vision of
merging the two towns. Long’s study mostly applies to the national scale and shows poor
identification accuracy at the larger town level. Ma’s method reflects the administrative
elements but neglects the urban spatial structure. Compared with the methods of Long
and Ma, this study used blocks as the basic identification unit of the urban system, which
showed relatively higher extraction accuracy at the larger town level and fitted better with
the spatial structure of the town. Consequently, the method proposed in this study appears
a better performance than the other two methods in terms of larger towns.

Table 1. Comparison of different PUB extraction methods.

Publication Data Method Boundary (Liubai District) Annotation

Ying Long
(2016) [11] Vector network

A city is defined as “a spatial
cluster with a minimum of
100 road/street junctions
within a 300 m distance

threshold.”
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4.2. A Longitudinal Study of Urban Expansion

Statistics showed the tremendous expansion of built-up areas in Zhejiang cities and
towns in the past 20 years. Since the PUBs of towns are not easily available, it is extremely
challenging for the planning department to conduct cross-sectional comparisons of such
expansion. From the perspective of planning assessment, government departments need to
obtain visual data on the expansion dynamics of built-up areas of towns in the region to
understand the urban growth law and implement proper interventions.

Considering the public availability of GlobeLand30 data for 2000, 2010, and 2020
and the virtually unchanged constructed road network, we can use the latest OSM road
networks, combined with remote sensing images from 2000 and 2010, to obtain the ap-
proximate historical PUBs. In this way, the expansion rate of larger towns can be further
calculated, and the expansion rate of larger towns in the Wen-Tai region can be compared
horizontally. For the PUBs in 2000 and 2010, this study still used 1.5 km2 as the threshold
for extraction.

4.3. Measurement Framework for Urban Compactness

This study proposes to create a new compactness index by incorporating multidimen-
sional aspects of compactness. Considering the availability of data sources and relevant
literature findings, four dimensions are selected: the compactness of external contour, the
accessibility of road network, land-use intensity, and functional diversity. Entropy weight
method (EWM) was used to construct this compactness index.

4.3.1. Compactness of External Contour

Richardson index (RI) and Cole index (CI) are widely used for measuring the compact-
ness of the external urban contour. Both are calculated as follows:

RI =
2
√
πA

P
(1)

where A and P are the area and perimeter of PUA, respectively.

CI =
A
A′

(2)

where A is the area of PUA, and A′ is the area of the smallest external circle of PUA.
RI and CI are both classical compactness indicators, and their values represent different

aspects of the compactness for different types of settlements. Therefore, both indicators
are included in this measurement framework. Figure 5 gives an example of six abstract
settlements to demonstrate the attributes of these two indicators. The six settlements
have the same area, and in terms of perimeter, (c) is the same as (d), (e) is the same as (f).
Therefore, their RI values are decreasing from left to right. However, the external contour of
(f) is obviously more disperse than that of (e). The CI value of (f) is indeed the lowest, which
means the area of outer tangent circle variable in the formula of CI is crucial. However,
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from the ranking of CI values, (c) > (b) = (d). As an elongated settlement, the compactness
of (b) should be higher than the scattered development of (c) and (d). Therefore, the RI
value which can represent this feature is a good complement to their value of CI.
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4.3.2. Accessibility of Road Network

The idea of compact cities is that all urban functions are within walkable distances
to reduce the traffic consumption of each visitor and resident, and space syntax is widely
applied in measuring the accessibility of neighborhoods [53]. In this regard, this study used
the sDNA (spatial design network analysis) model developed by Cardiff University, UK, to
assess the accessibility of each town [61], expressed as follows:

ACx =
n

∑
i=1

BtAR(x)i
Li

∑n
i=1 Li

(3)

where ACx is the accessibility of a certain urban settlement within radius x, while BtAR(x)i
is the betweenness centrality of a line segment in an angular analysis within radius x. Since
the values of line elements need to be assigned to the settlement in which they are located,
we used the mean value of BtAR(x)i for these lines weighted by length. The radii x chose in
this paper are 800 m and 5000 m, n is the total number of street segments within the urban
area, and Li is the length of a street segment. In the Figure 6 below, it can be seen that for
the same settlement, the accessibility expressed by the two radii differ sig-nificantly. In
general, settlements with small blocks have higher AC values within radius 800 m, while
the settlements which have better connection with the surrounding areas have higher AC
values within radius 5000 m.

4.3.3. Land Use Intensity

Urban land use intensity refers to the degree of land development in urban areas,
as a term widely used in urban planning and design, landscape analysis, and land use
management. It has a strong and complex relationship with the sustainability of society [57].
In this study, the indicator nighttime light intensity (NLI) was used to characterize the land
use intensity, calculated as follows:

NLI =
S
A

(4)

where A is the area of PUA, and S is the sum of the brightness values of the lights within
the PUA at night.
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4.3.4. Functional Diversity

The intensity of human activities in the region is maximized by increasing the regional
functional diversity to accommodate people’s daily activities in the area. In this study,
the indicators POIs density (PD) and POIs mixed index (PMI) are used to characterize the
functional diversity of PUAs, as calculated as follows:

PD =
P
A

(5)

where A denotes the area of PUA, and P denotes the number of POIs within the PUA.

PMI =
∑m

j=1 ∑n
i=1−xij ln xij

m
(6)

The formula for calculating PMI in this study refers to the algorithm of the Shannon
index. First, a 100 m × 100 m sampling point was constructed in the study area, then the
POIs mixing index within the 200 m buffer of the sampling point was calculated. Finally,
the average POIs mixture index of the points was obtained. j represents the sampling point
number; m is the number of sampling points; i is the POIs category number within the
sampling point buffer; n is the total number of POIs categories within the sampling point
buffer; and xij is the proportion of POIs in category i.

We give an example to illustrate the algorithm of PMI. Figure 7a shows the example
of POIs and town. In Figure 7b, we construct 100 m × 100 m grids and calculate the SI
(Shannon index) of each grid. SI = −∑ Pi × ln Pi. Pi is the proportion of the ith functional
type. In Figure 7c, PMI is equal to the mean value of Shannon indexes of all grids.
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4.3.5. Statistical Analysis

We standardized all indicators, which were all positive, with the following standard-
ization formula:

Cnormalize =
C−Cmin

Cmax −Cmin
(7)

C denotes an individual observation of an indicator, normalized to a value limited
between 0 and 1. We then determined the weights for each indicator using the EWM, an
objective weighting method for measuring value dispersion. A larger dispersion means
a more obvious change in measurements, which may provide more information. These
measurements have higher weights when calculating the level of compactness [46].

5. Results
5.1. Results of the Identification of PUAs for 2000–2020

Table 2 shows the descriptive statistics of the identified PUAs in the Wen-Tai region
for 2000, 2010, and 2020. The total PUAs identified for 2000, 2010, and 2020 were 290.3 km2,
521.1 km2, and 904.0 km2, respectively. The rate of expansion from 2000 to 2010 was 79.5%,
with an area growth rate of 23.1 km2/year. In contrast, the expansion rate for 2010–2020
was 73.5%, with an area growth rate of 38.3 km2/year. The expansion rate in these two
periods was basically consistent, with the first decade slightly higher than the second
decade. However, the urban area growth was extremely rapid in the second decade, about
1.66 times greater than that of the first decade.

Table 2. Statistical description of the Wen-Tai region.

Year Number Total
Area/km2

Mean
Area/km2

Standard
Deviation/km2 Maximum/km2

2000 46 290.3 6.3 9.1 54.6
2010 54 521.1 9.7 14.9 71.8
2020 95 904.0 9.5 16.2 100.0

Figure 8 provides a visual representation of the identified three stages of PUAs with
administrative hierarchy information overlaid in the background. As can be found, the
expansion of PUAs in Wenzhou and Taizhou downtown was the most obvious. The visual-
ization of the physical cities in 2020 showed a spatial development pattern with Wenzhou
and Taizhou downtowns as the two urban cores, around which county downtowns and
larger towns expanded, indirectly promoting the construction of many ordinary towns and
new coastal zones. This was highly consistent with the multi-level town system of Wen-Tai
in 2011–2020 Urban System Planning of Zhejiang Province [62], and the identification
results were satisfactory.
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5.2. Expansion Rate of PUAs Based on County Level

Since many new PUAs emerged during the two decades, it is difficult to compare
the expansion rate for PUAs per se. In this subsection, the expansion rate of PUAs was
measured based on county units to achieve a cross-sectional comparison. It should be
noted that the Wenzhou downtown includes four districts equivalent to county units, while
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the Taizhou downtown encompasses three. However, these districts are often cognitively
part of a whole and thus were combined in the following analysis. Additionally, Longgang
City has been merged into its original territory Cangnan County due to its short period of
independence. Therefore, the following analysis was carried for the two downtowns and
the nine county units.

Table 3 shows the area of PUAs identified by different county units and the expansion
rate, which is visualized as presented in Figure 9. In Figure 9a, it can be seen that the
PUAs identified in Wenzhou and Taizhou downtowns were the largest, totaling 187.0 and
178.7 km2, respectively, followed by the county-level cities of Wenling, Yueqing, Rui’an, and
Linhai. In contrast, Pingyang, Yongjia, and Sanmen counties had the poorest physical area,
and the size of the physical area identified in the county unit was generally consistent with
the urbanization levels. Figure 9b shows that for all county-level units, the new area in the
latter decade was larger than that in the former decade. Even for the four county-level units,
namely Wenling, Yueqing, Pingyang, and Sanmen, the proportion of the new area growth
exceeded 50% in the latter decade, implying that urbanization was mainly concentrated in
the latter decade.

Figure 9c shows the 10- and 20-year expansion rates calculated using the total built-up
area in 2000 as the base, with fluctuations of 149–375% and 220–775%, respectively. The
huge fluctuation was induced by the low base and significant urbanization of some counties
in the last 20 years. Figure 9d shows the expansion rate of the two decades separately.
In the first decade, Sanmen and Pingyang showed the highest rate of 275.0% and 127.6%
but the least new area of 7.7 and 7.4 km2, respectively. Their faster expansion resulted
from their lower bases in 2000. In the second decade, Pingyang and Wenling presented the
highest rates of 145.5% and 141.6%, respectively. Among them, Pingyang had an additional
area of merely 19.2 km2 due to its low base, below the average level of the research units.
In contrast, Wenling had an additional area of 64 km2, third only to Wenzhou and Taizhou
downtowns, with relatively serious expansion.

The dashed line in Figure 9d indicates the average expansion rate of the 11 analyzed
units in the first and second decades. During the two phases, units can be classified into
four categories by comparing their expansion values with the average: 1. High–High:
Pingyang, Sanmen, and Wenling. These units saw an above-average expansion in both
phases and were the key governance targets. 2. Low–High: Yueqing and Linhai. The
above-average expansion in the latter decade of this category of units tended to accelerate
and was a critical concern. 3. High–Low: Taizhou, Yongjia, and Yuhuan. Such units had
above-average expansion in the first decade, and their rapid urbanization was mainly
accomplished in the first decade. 4. Low–Low: Wenzhou, Rui’an, and Cangnan. Such units
had a below-average level of expansion in both phases and grew relatively intensively in
the last 20 years.

Table 3. Statistical description of PUAs in different counties.

County Unit
Area in

2000/km2
Area in

2010/km2
Area in

2020/km2

2000–2010 2010–2020
New

Area/km2
Expansion

Rate
New

Area/km2
Expansion

Rate

Taizhou downtown 55.3 114.4 178.7 59.1 106.90% 64.3 56.20%
Sanmen 2.8 10.5 21.7 7.7 275.00% 11.2 106.70%
Linhai 19.9 34.9 66.7 15 75.40% 31.8 91.10%

Wenling 23.9 45.2 109.2 21.3 89.10% 64 141.60%
Yuhuan 15 32 52.9 17 113.30% 20.9 65.30%

Wenzhou downtown 78.1 120.8 187 42.7 54.70% 66.2 54.80%
Yueqing 26.1 46.8 96.8 20.7 79.30% 50 106.80%
Yongjia 9.4 18.6 27.9 9.2 97.90% 9.3 50.00%
Rui’an 33.3 49.6 73.4 16.3 48.90% 23.8 48.00%

Pingyang 5.8 13.2 32.4 7.4 127.60% 19.2 145.50%
Cangnan 20.7 35.2 57.3 14.5 70.00% 22.1 62.80%
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5.3. Expansion Rate of PUAs Examined by Different Administrative Type

Next, we examined the differences in the expansion patterns of different types of towns.
Taking PUAs as the analysis object, we classified them into three categories according to
their types of township units: Type A was subdistricts and Chengguan towns, receiving
the most financial resources; Type B was small cities and central towns, obtaining an
average amount of resources; Type C was ordinary townships with the least resources.
Two cases required special treatment before analysis: (1) Due to the huge changes in the
township system in the Wen-Tai region during the last two decades, certain townships
merged or upgraded to subdistricts are hard to trace. Therefore, this study categorized
PUAs according to the administrative divisions in 2020. (2) Some PUAs grow across
administrative boundaries. For this reason, administrative boundaries were used to divide
them into parts, and only the area and number of parts belonging to each type of PUAs
were counted (thus, the number of PUAs may be fractional). Table 4 indicates that the
number of PUAs across categories gradually increased, indirectly reflecting an integrated
development of the system of cities in the Wen-Tai region.
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Table 4. Statistical description of PUAs for settlements by different categories.

Year Category Number Total
Area/km2

Mean
Area/km2

Number of
Cross-Category City

2000

Type A 21.5 208.9 9.7

2
Type B 20 71.3 3.6
Type C 4.5 10 2.2
Total 46 290.3 6.3

2010

Type A 22.5 372.7 16.6

3
Type B 22.5 116.9 5.2
Type C 9 31.5 3.5
Total 54 521.1 9.7

2020

Type A 39.8 596.3 15

8
Type B 32.3 222.6 6.9
Type C 22.8 85.1 3.7
Total 95 904 9.5

Figure 10a,b displayed that the total area followed the order of Type A > Type B > Type C
on three time slices, and a large discrepancy existed between areas of different types of
township units. The area percentage of the three types of township units did not change
obviously; the area percentage of Type A remained at about 70%, slightly decreasing in
three years; the area percentage of Type B maintained at about 24%, showing a trend of
first decrease and then increase; the area percentage of Type C was elevated, occupying 9%
in 2020, exerting a marked influence. Figure 10c exhibits the change in the mean area of the
three types of physical towns. The mean area of Type A was much larger than that of Type B
and Type C, consistent with the resource input of the three types of cities. The mean area of
Type A represented a significant enhancement during 2000–2010 but a slight decline during
2010–2020, which was found to be related to the emergence of numerous independent
new zones in 2020 after examining the data. Within the administrative boundary of the
subdistricts and Chengguan towns, new zones were developed away from the original
urban core and not merged into a whole, thus pulling down the mean values.
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5.4. Measure the Compactness of System of Cities in Wen-Tai Region

This section investigates the 95 PUAs identified in 2020. EWM was used to construct a
weight matrix (Table 5) to measure the compactness of urban areas. Urban compactness took
values from 0.06 to 0.78, and a higher value indicated a more compact city development.
Based on the natural breakpoint method, urban areas could be classified into five categories
of highest compactness, higher compactness, medium compactness, lower compactness,
and lowest compactness, with the numbers of 10, 20, 25, 24, and 16, respectively. Through
ArcGIS 10.6, the compactness was assigned to PUAs, which were visually classified to
obtain the spatial distribution of compactness in the system of cities of the Wen-Tai region
in 2020 (Figure 11).

Figure 11 shows the marked geographical differences in the distribution of urban
compactness. Specifically, PUAs with high compactness were concentrated in Wenzhou
City, mostly found in long-established and relatively developed downtowns, central towns,
and small cities. In contrast, PUAs with low compactness were mostly found in Taizhou
City, mostly distributed in new coastal zones.

To deeply evaluate the compactness of the PUAs in the Wen-Tai region, we evaluated
each of the five types of PUAs from seven compactness indicators, namely RI, CI, AC800,
AC5000, NLI, PD, and PMI. The average values of each indicator for each type of urban
area are shown in Table 6, according to which the corresponding radar chart can be drawn
(Figure 12).

Table 5. Weights of compactness measurements.

Dimension Indicator Weight

External profile index RI 0.087
CI 0.076

Accessibility of road network
AC800 0.209
AC5000 0.288

Land use intensity NLI 0.066

Functional diversity PD 0.208
PMI 0.066

Table 6. The average value of each indicator for the five types of PUAs.

Category RI CI AC800 AC5000 NLI PD FMI

Highest compactness 0.48 0.45 0.54 0.56 0.69 0.73 0.82
Higher compactness 0.43 0.45 0.27 0.21 0.53 0.66 0.81

Medium compactness 0.45 0.41 0.17 0.13 0.46 0.34 0.62
Lower compactness 0.48 0.42 0.10 0.10 0.35 0.14 0.45
Lowest compactness 0.53 0.32 0.04 0.03 0.26 0.05 0.22

The seven compactness indicators generally tended to decrease with decreasing com-
pactness, indirectly indicating a degree of linear correlation between indicators. Neverthe-
less, the variation degree varied among the indicators. The results (Figure 12) showed that
among the five types of PUAs, the two indicators of shape contour compactness, i.e., RI
and CI, did not differ much, and the RI of low-compact urban areas was the highest; in
the two indicators of road network accessibility, i.e., AC800 and AC5000, the data showed
an approximate power-law distribution; in the indicator of land use intensity, NLI, the
data nearly showed an arithmetic sequence distribution; in the two indicators of functional
diversity, i.e., PD and PMI, the values were found to differ little between cities of highest
compactness and higher compactness.
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6. Discussion
6.1. Discussion of the Results

“Sprawl” can represent both the state of a city at a given moment (i.e., the antonym
of compactness) and a dynamic process over time [55], of which only one aspect was
measured in many studies [4,26,45]. This study measures both aspects simultaneously to
describe the complex urban sprawl in a comprehensive manner.

The expansion rate indicates that the Wen-Tai region has experienced a high-rate
sprawl in the last 20 years, consistent with the findings of Zhonghao Zhang et al. (2017) [21].
Moreover, the sprawl pattern differs in 2000–2010 and in 2010–2020. In the first decade, Type
A PUAs (subdistricts and Chengguan towns) are the main force of urban sprawl, serving
as the center of spreading in all directions and occupying most development resources. In
the second decade, Type A PUAs still contribute the most to the expansion area, mostly
in the form of independent new coastal zones; Type B PUAs (small cities and central
towns) emerge abundantly and grow rapidly, while ordinary townships also gradually
emerge as a new force of urban sprawl. Comparing these two periods, obvious changes
are found in urban development strategies, closely related to the Central Town Cultivation
Program [23] introduced in 2007 and the Small City Fostering Plan [24] implemented in
2010 in Zhejiang. The two projects aim to optimize the spatial layout of urban and rural
areas and relieve the development pressure of large- and medium-sized cities. Then the
coordinated development of large, medium, and small cities is expected to be achieved,
and the integrated development of urban and rural areas can be promoted. However, this
has indirectly accelerated urban sprawl, causing irreversible damage to natural ecosystems,
such as farmland and mudflats.

According to the radar plot of compactness indicators for the five sub-sets of PUAs,
the differences among highly compact and lowly compact urban areas are not marked in
morphological contours but in the internal functional structures, such as road network
accessibility and functional diversity, which is highly consistent with the finding from
the study of Wenze Yue et al. (2020) [55]. Additionally, many low-density urban areas
mostly belong to new coastal zones far away from the urban centers and therefore far
away from the public facilities in the urban cores, resulting in the lack of vitality in these
areas. Moreover, the new coastal zones are not built according to the standard of “short
blocks” [63], and most of them are gated industrial areas, which both lead to poor road
network accessibility.

6.2. Policy Implication

Ineffective urban planning is often considered an important factor of urban sprawl in
China. Therefore, it is crucial to control urban growth boundaries and develop scientific
and reasonable planning strategies [64]. This study can provide relevant knowledge for the
policy making of urban planning in the Wen-Tai region.

First, we continue to deepen the spatial accuracy of the boundary identification based
on the research of Ying Long (2016) [11] and Shuang Ma et al. (2019) [20] and make the
method applicable to the feature of larger towns. The generated full-region PUA visualiza-
tion drawings and data can allow local government to monitor and assess the sprawl of
larger towns more accurately, and to identify areas requiring extra intervention accordingly.

Next, our measurements directly correspond to the administrative units of townships
and counties and focus on the PUA growth across administrative units. On this basis, the
provincial government can further coordinate the management of administrative units and
system of cities.

Again, our objective data can remind the government that the built-up area in the
Wen-Tai region has expanded dramatically over the past 20 years. Some counties with an
expansion rate larger than average should be monitored seriously.

Eventually, the compactness measurement consists of four dimensions: the compact-
ness of external contour, the accessibility of road network, land-use intensity, and functional
diversity, and their visualization can provide ideas for individual cities to analyze the causes
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of problems and further develop targeted optimization strategies. Figure 13 takes some
PUAs in Rui’an City as examples to show the differences between indicators from the four
dimensions. Specifically, for the Rui’an-Tangxia district, the overall compactness is higher,
but the morphological contour index and road network accessibility are poor. There is still
much room for improvement, such as completing the road network structure and filling in
the vacant plots in the district. The Feiyun subdistrict is superior in all indicators and needs
to maintain the advantage of high compactness. The two new zones have low road network
accessibility and functional diversity; moreover, they are far from the urban core and not
accessible to the city’s well-developed public service facilities, and thus their compactness
interventions are most challenging.
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6.3. Limitations and Future Research

This study extracted the PUBs and proposed a compact index in the Wen-Tai region,
while three limitations are as follows. First, since the size of larger towns is much smaller
than that of big cities and their urban growth patterns are varied, the identification of PUBs
for a longitudinal study is extremely difficult. Although the boundary extraction method
used in this study is scientific and reasonable, the actual cases tests show certain shrinking
PUAs, which is due to the identification error of the GlobeLand30 datasets. Moreover, the
OSM data are incomplete in some towns, resulting in a much smaller scale of the extracted
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boundaries than the actual size. Therefore, a manual calibration step is required during
the identification [65]. Second, in the sprawl measurement, the lack of high-resolution
historical population data leads to the fact that only the land expansion rate can be assessed.
Finally, during the compactness measurement, nighttime light data are used to characterize
land use intensity. However, due to the limitation of human activities and the protection of
cultural heritage, nighttime light may not reflect the true intensity of human activities in
some areas, possibly introducing bias to the study results [56].

In the future, we plan to expand the scope of our research to the entire Zhejiang
Province and even China to deeply explore the influence of terrain and environmental
factors such as mountainous, plains, and seashores on urban sprawl to explore the key
factors of urban sprawl.

7. Conclusions

The Chinese government attaches great importance to the goal of “compact, intensive,
efficient, and green development” and advocates “scientific planning of urban space” [66].
This paper develops a new PUB extraction method based on the research of Ying Long
(2016) [11] and Shuang Ma et al. (2019) [20] using OSM vector road network data and
GlobeLand30 remote sensing image data. Furthermore, multi-source data are used, and
a cross-sectional comparison of the built-up area expansion rate and the compactness of
different types of PUAs in the Wen-Tai region is calculated. The main research findings are
as follows:

(1) The extraction of PUAs shows that with the threshold of 1.5 km2, there are 46, 54,
and 95 PUAs, with areas of 290.3, 521.1, and 904.0 km2 in 2000, 2010, and 2020, respectively.
The expansion rate varies widely with the types of towns, and the more financial support
was provided, the higher the expansion rate.

(2) By comparing the administrative boundaries and the location of real physical cities,
it is proved that across boundary growth become increasingly common over the past two
decades, which suggests the current integrated system of cities development principle is
appropriate.

(3) The sprawl pattern of 2000–2010 differs from that of 2010–2020. The urban expan-
sion in first decade mainly focus on the municipal and county downtowns, while in the
second decade, expansion of larger towns and new coastal zones become the new growth
pillar. This shift of growth pattern is due to the top-down force of provincial government,
i.e., the larger town cultivation policies.

(4) By the compactness index, we divided the PUAs in Wen-Tai region into five
clusters according to the cross-sectional data set in 2020. Compared with high compact
cities, low compact cities have obvious disadvantages in internal functional structures, such
as road network accessibility and functional diversity, and little difference in morphological
contours. In addition, the new coastal zones are less compact, partly due to its short opening
years, which remains to be tested over time. In future development and construction,
emphasis should be placed on brownfields regeneration and the efficient improvement of
land use per unit instead of the expansion and new zone construction which threaten the
Earth and the future well-being of humankind.
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2011–2020 Urban System Planning of Zhejiang Province because they are far from the sea.
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