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Abstract: Rich in history and culture, heritage sites often evoke stirring emotions and memories. We
analyzed historical poetry using grounded theory and high-frequency word and semantic analysis
to construct historic landscape images (HLIs) of the West Lake UNESCO World Heritage Site in
Hangzhou, China. GPS trajectory data were used to identify hot and cold tourist spots and understand
the site’s intra-attraction tourist behaviors (IATBs). Finally, we analyzed the HLI–IATB relationship.
We found that the tourist distribution was uneven, and different attractions had different visitor
behaviors. Our findings should inform future heritage site management—and neighboring cities—
about the benefits of using HLIs to predict attraction visitors’ behaviors and leveraging those insights
to optimize multiple-attraction sites proportionally. Such projections can provide new perspectives
for heritage studies, landscape planning, and tourism image-making.

Keywords: historic landscape images; intra-attraction tourist behaviors; GPS; big data; world heritage sites

1. Introduction

Cultural tourism plays a crucial role in social and economic development. Heritage
resources increasingly drive cultural tourism [1,2]. Heritage sites can have cultural, histori-
cal, scientific, or other significant elements [3]. Most visitors to heritage sites are seeking a
“historical heritage experience” [4]. However, their expectations differ widely. Therefore,
understanding tourists’ preconceptions about the heritage sites they plan to visit is vital for
successful heritage management.

Although heritage sites are closely related to history, it is unclear how history might af-
fect future tourism trends. We wondered whether exposure to images of historic landscape
images (HLIs) might influence tourists’ travel plans, decisions, and behaviors. If so, it could
help predict future heritage site tourism trends, facilitate tourism management, provide
valuable cultural content for product development and marketing of heritage tourism, and
enhance tourism’s economic benefits.

This study explored the association between HLIs and intra-attraction tourist behaviors
(IATBs), and used HLIs to predict possible future tourist behaviors. This study describes how
HLIs could be used to enhance the tourism experience and help heritage tourism management
predict visitors’ behaviors. We also discuss future considerations and implications.

1.1. Destination Images

An image is a visual impression or an individual’s perception of an environment. The
term “image” was introduced by Kevin Lynch (1918), who pioneered studying the elements
of urban space in terms of sensory forms in his five-year investigation of how observers
absorb information about cities. He emphasized the importance of a city’s legibility (the ease
with which people can discern a city’s patterns and landmarks) and imageability (how easily
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a physical object, word, or environment evokes a mental image) and how images form
memory spaces. Images capture an individual’s perspective and the interplay between the
elements in the overall understanding of a setting [5].

The study of destination images can help us understand the role the images of a
city play in attracting tourists [6]. According to some researchers, destination images
are made up of both cognitive and affective images [7]; some studies demonstrate the
hierarchical integration process of creating a destination image using machine learning
to explore destination images and cultural identity from the perspective of linguistic
landscapes [8,9]. Other researchers have analyzed destination images from the perspective
of textual information through combinatorial analysis [10], using text mining to track
changes in travel destination images [11], and the analysis of word frequencies and co-
occurrence networks through online travelogues [12].

Heritage landscapes are rich in historical and cultural relics that frequently feature
in destination images. Representations of the physical and cultural landscapes evoke
emotional responses in the human brain through direct or indirect sensory inputs. Many
have a special significance to the beholders derived from historical influences or experiences
of nature, culture, and aesthetics. We can obtain HLIs using historical texts to advance our
understanding of heritage site elements in modern landscapes.

1.2. Tourists’ Spatio-Temporal Behaviors

Analyzing tourists’ spatio-temporal behaviors has become a popular research topic
for scholars in multidisciplinary fields. Tourists’ spatio-temporal behaviors include inter-
destination and intra-attraction movement and can be measured using various scales [13–15].
The present study examined IATBs.

Initial research on IATBs focused on spatio-temporality and mobility [16,17]. These
studies demonstrated the degree of spatial concentration among tourists and time spent in
different destinations. Some scholars have studied tourists’ movement patterns, reflecting
their chosen routes and points of interest with geometric models [18,19]. Tourist move-
ment patterns can be structured by nodes (focal points and thematically related clusters
of attractions, accommodations, infrastructure, and services) [20] that are connected by
paths (channels through which people move). This concept follows the environmental
elements of Lynch’s (1960) city image [5]. The classification of nodes can be used to indicate
a destination’s attractiveness [21].

Using the geographical concept of spatio-temporal paths, some researchers have
interpreted tourists’ behavioral patterns by combining quantitative and qualitative methods
in terms of temporal behavioral factors, spatial behavioral factors, activity selection factors,
and path characteristics [22–24]. Others have shown that destination images influence
visitor behaviors [25]. However, the interaction between tourists and attractions during
visits is still under-researched [26].

1.3. Big Data GPS Technology and Spatio-Temporal Behavior

Studying IATB requires detailed data on visitors’ behaviors. However, traditional
data acquisition methods (e.g., telephone surveys, on-site surveys, etc.) can be time- and
energy-consuming, inaccurate, and limited [27]. Studies of mobility within destinations
have gradually increased with the development of new tracking technologies such as the
global positioning system (GPS) [28]. Big data GPS technology has many advantages when
applied to spatio-temporal behavioral tourist activities. For example, it can objectively and
accurately track and record individual tourists’ spatio-temporal paths [29], which is nearly
impossible using tourists’ subjective evaluations [30]. GPS technology and big data analysis
enable comparisons between subjective and objective visitor behaviors, broadening the
scope of academic investigations and contributing to heritage site optimization.

GPS trackers can record tourists’ trajectories as points in space-time, providing precise
spatial and temporal data about their trips [31]. Another useful new technological tool in
such investigations is geographic information system (GIS) databases. The combination of
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GPS and GIS analyses can significantly improve the visualization of tourists’ movements
as well [32]. Some scholars have collected GPS data using mobile devices and analyzed the
clustering of tourists’ trajectories to determine their behavior patterns [33]. Shoval (2008)
used a 10 × 10 m grid to show tourist trajectory clusters to demonstrate tourists’ spatial
distribution density at different periods [34]. Summarizing the connections between each
part of each visitor’s dwell grid can reveal the spatial relationships of the landscape [35].

GPS devices cannot directly collect personal or trip information (e.g., age, gender,
trip mode, trip purpose). However, combining GPS data with traditional surveys (e.g.,
trip/activity diaries, mental or cognitive maps, etc.) can more fully capture detailed
behaviors [31]. In China, big data GPS technology has been used to study IATB [36]. Other
research has analyzed tourist travel activities and spatio-temporal behavior patterns using
data mining heuristics [37], highlighting the effectiveness of this method. These studies
show that visualization and clustering studies of IATB based on big data and GPS are
essential to investigations of tourists’ spatio-temporal behaviors.

This study aimed to understand the relationship between HLIs and IATBs and its
implications. We considered three research questions:

1. How are the HLIs of heritage sites perceived?
2. How do HLIs explain visitors’ spatio-temporal behaviors?
3. What are the implications of HLIs for the future of heritage tourism management and

urban development?

2. Materials and Methods
2.1. Study Area

West Lake, a UNESCO World Heritage Site, is divided into nine scenic areas with
287 sites on 3322.88 ha. The lake surface is 559.30 ha. The site is surrounded on three sides
by mountains and connected to the city on the other. West Lake evolved from a lagoon
around 220 BC. Between the 9th and 12th centuries, officials added West Lake’s main
artificial features, including embankments, hills, temples, pagodas, pavilions, gardens,
and trees, and constructed two causeways and three islands (Figure 1). Its best-known
points of interest, the “Ten Poetically Named Scenic Places”, are named for poems from
the mid-13th century and represent an idealized classical landscape with humans and
the environment in perfect harmony. By combining rich history and culture with natural
beauty, the West Lake heritage site has created a unique landscape image, named the
“Poetic and Picturesque Landscape” by UNESCO. West Lake can be seen as a cultural
image and a visible and symbolic expression of the human–environment relationship that
has developed over thousands of years. The memorable historical associations found in
many of its sites, its high visitor traffic, and its visitors’ diverse spatio-temporal behavior
make the West Lake heritage site an ideal case study.
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Figure 1. Map of West Lake. Subgraph (a): location of West Lake in China. Subgraph (b): 287 attrac-
tions at West Lake. 

2.2. Analytical Framework  
Figure 2 illustrates this study’s research framework. 

 
Figure 2. Schematic diagram of the research method. 

  

Figure 1. Map of West Lake. Subgraph (a): location of West Lake in China. Subgraph (b): 287 attractions
at West Lake.

2.2. Analytical Framework

Figure 2 illustrates this study’s research framework.
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2.3. Data Collection
2.3.1. Historic Landscape Images

Using grounded theory (see Section 2.4.1) as our framework and relevant ancient
poetry as our study material, we defined West Lake’s HLIs using the ROST CM6 software,
which can perform high-frequency word, semantic network, and sentiment analyses on
text passages. Ancient Chinese poems are cognitive expressions that typically use subtle
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descriptions of environmental landscapes, culture, and emotions, making them suitable for
interpreting historic landscapes. West Lake was built from the Tang to the Qing Dynasty
(618–1911); therefore, we collected poems from All Tang Poems (Tang Dynasty), All Song
Lyrics (Song Dynasty), West Lake Excursions (Ming Dynasty), and Selected Poems and Lyrics of
West Lake (Qing Dynasty). The poems mentioned 59 of the heritage site’s 287 attractions
(Figure 3). Therefore, we considered them relevant for HLIs. We coded the 59 attractions
by scenic area from A to I (Table A1).
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Figure 3. Fifty-nine attractions with HLIs in the nine scenic areas of the West Lake heritage site.

We corrected all the texts for obvious errors (content recording errors, punctuation
errors, spelling errors, etc.) and deleted duplicate and irrelevant content. We collected
1131 poems, extracted 3993 landscape image terms, and then randomly selected two-thirds
of the sample for coding analysis and model construction. We reserved the remaining
one-third of the sample for theoretical saturation tests.

The texts were analyzed sentence-by-sentence to ensure validity and rigor and avoid
textual bias caused by differences in cognition and expression between historical poetry and
modern Chinese. The texts used earlier versions of Chinese, with multiple morphological
word variations compared with modern Chinese. Therefore, we first standardized the
texts using manual recognition before importing them into the ROST CM6.0 software
for word-frequency analysis. The ROST CM6.0 software is a humanities digital research
tool developed by Prof. Yang Shen of Wuhan University in China to calculate frequency
statistics for text passages and perform cluster and semantic network analyses [38].

We created content clusters for the text—for example, by uniformly replacing the
words “flower”, “grass”, “willow”, “peach”, “laurel”, “cypress”, and “lotus” with the
word “plant”—for ROST CM6.0 processing. First, we created a custom dictionary of
words specific to an attraction. Second, we filtered out irrelevant words such as pronouns
and prepositions. Finally, we extracted high-frequency words and analyzed the semantic
networks in the text content.
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2.3.2. Intra-Attraction Tourist Behaviors

We collected GPS tracking data from 2bulu.com and foooooot.com, China’s leading
outdoor resource-sharing websites. Web page-recognition rules were created to enable
standardized information extraction to handle the complexity of the underlying trajectories
when browsing publicly available web pages and stored the visible information in a
structured manner.

A Python script was written to crawl the West Lake trajectories voluntarily shared
by tourists from March 2019 to September 2021. Despite the reduced number of tourist
trips following the COVID-19 outbreak in 2020, we found 1203 datapoints. The appropriate
ethics review board approved the study design.

To prevent information errors and clean trajectory data, we designed an extraction-
storage scheme rule to isolate valid trajectory information (Figure 4).
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The first step was removing low-quality trajectories, including those that were too
short or repetitive. The second step involved using the Pandas software to calculate the
time spent between two points on the same trajectory. The calculations used the absolute
value of the difference between two adjacent points, which we obtained as follows:

d =
n

∑
i=2

2
√
(x1 − xi−1)

2 + (yi − yi−1)
2 (1)

The third step was removing outliers. Our field survey of the tourists’ behaviors
at West Lake using a tachymeter to locate two adjacent trajectory points with the GPS
tracking data captured by the network revealed that the time tourists spent between two
trajectory points when walking or driving was generally less than 60 s (excepting special
circumstances), and the action distance was less than 50 m. Therefore, we considered times
spent between two points of more than 60 s or distances between two points of more than
50 m anomalies and removed them. In the fourth step, we imported the processed data
into ArcGIS and deleted points outside the study area.

Of the 1203 trajectory datapoints collected, we used 920 valid trajectories for this study,
including 1,277,777 valid GPS points (valid percentage 76.4%). Table 1 shows example data.
The attribute information for each point included the route number, the sequence number
of the point in the route, longitude, latitude, dwell time, the distance between two points,
and speed.
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Table 1. Data Attribute Information.

Number N Longitude Latitude Dwell Time Distance/m Speed/m/s

0 1 117.987288 30.004529 0 0.000 0.000
1 1 117.987170 30.004541 12 13.136 1.095
2 1 117.987063 30.004610 10 12.431 1.243
4 1 117.986925 30.004704 4 3.205 0.801
5 1 117.986848 30.004662 18 8.838 0.491

. . . . . . . . . . . . . . . . . . . . .
241 99 117.982672 30.004618 8 6.359 0.795
242 99 117.982701 30.004514 8 6.312 0.789
243 99 117.982709 30.004416 14 5.190 0.371
244 99 117.982752 30.004322 8 6.849 0.856
245 99 117.982786 30.004228 10 6.192 0.619

Source: http://www.foooooot.com/ and https://www.2bulu.com/ (accessed on 30 September 2021).

2.4. Data Analysis
2.4.1. HLI Identification and Construction

We used grounded theory as our framework for analyzing the processed textual mate-
rials. Grounded theory is a qualitative research method that systematically summarizes
primary materials and constructs substantive theories from the bottom up. The approach
encodes the collected material in three formal stages (open coding, axial coding, and se-
lective coding) to find the core categories that reflect the essence of things and construct
relevant social concepts [39]. Three-stage coding requires extensive information collection
because a theory cannot be formed until there are no more different classes and theoretical
saturation and completeness are reached.

The first data coding step in the process of grounded theory research is open coding:
the researchers review the textual materials word by word, extract the codes, and perform
cluster analysis. After text preprocessing, comparisons, and analyses, we obtained 1131
ancient poetry texts describing West Lake. We proposed 3993 codes for analysis and
model construction and generated several initial categories. Table 2 shows some of the
original materials and the coding process. Table 3 shows the extracted initial categories
and frequencies.

Table 2. Original Materials and Coding Process.

Attractions Original
Materials Source Code Initial

Category

Lingering Snow on
Broken Bridge

(A1)

The bridge embankment is lush
with smoke and willows, and the

dewy grass looks like a skirt.
(
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Clouds, Lake 

Three Pools Mirroring the Moon (A14) 

The stars are sinking into the river, 
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Table 3. Extracted Initial Categories and Frequencies.

Initial
Category Frequency Initial

Category Frequency Initial
Category Frequency Initial

Category Frequency

Plant 431 Peak 78 Snow 30 Music 14
Building 271 Religion 67 Shadow 30 Stars 13

Lake 235 River 65 Fragrance 29 Residence 12
Mountain 230 Boat 65 Celebrity 27 City 11

Feast 203 Sound 64 Dream 26 Grave 11
Fowl 175 Spring 63 Country 24 Farmland 11

Infrastructure 167 Visitor 60 Fame 20 Valley 11
Cloud 158 Smog 59 Wonderland 19 Stream 10
Wind 145 Autumn 58 Emotion 17 Tour 10
Myth 144 Beast 54 Fog 17 Village 9
Goods 123 Sun 58 Palace 15 Seclusion 9
Moon 101 Spring 53 Cave 15 Summer 8
Rock 96 Sea 49 Wells 14 Food 8

Waves 93 Sky 47 Road 14 Fire 6
Rain 82 Forest 40 Island 14 War 5

Axial coding determines the potential logical relationships between categories and
uncovers the main ones. We sorted the logical relationships between the codes, grouping
the initial categories with similar attributes under the same main category so their contents
did not overlap. We defined 17 main categories (Table 4). For example, “Mountain”, “Peak”,
“Valley”, and “Cave” fell under Mountain Resources, whereas “Forest”, “Plant”, “Fowl”,
and “Beast” were Biological Resources.

Table 4. Main HLI categories.

Number Main Category Initial Category

1 Mountain Resources Mountain, Peak, Valley, Cave
2 Biological Resources Forest, Plant, Fowl, Beast
3 Meteorological Resources Wind, Smog, Rain, Cloud, Fog, Snow
4 Astronomical Resources Sky, Sun, Moon, Stars, Shadow
5 Water Resources Lake, Sea, River, Spring, Waves, Stream, Island
6 Seasonality Spring, Summer, Autumn
7 Myth and Legend Myth, Wonderland
8 Traditional Chinese Culture Celebrity, Religion, Custom, Seclusion
9 Emotional Expression Emotion

10 Imagination Association Dream
11 Traditional Architecture Building, Residence, Palace
12 Infrastructure Infrastructure, Road
13 Sightseeing Feast, Visitor, Tour
14 Auditory Landscape Sound, Music

15 Production and Living Boat, Goods, Food, Fire, Farmland, City, Grave,
Village, Wells

16 Political Factors Country, War, Fame
17 Olfactory Landscape Fragrance

Selective coding explores further relationships among the main categories and gener-
ates core categories that are overarching, stable, and regular. We organized the 17 main
categories into 5 core categories (Table 5). The main categories of Mountain, Biological, Me-
teorological, Astronomical, Water Resources, and Seasonality comprised the core category
of Natural Resources. The Natural Resources category had more frequent mentions than
the other categories, making it a core category of West Lake’s HLIs. The main categories of
Traditional Architecture and Infrastructure fell into the core category of Building Facilities,
the second-most important HLI category. The core category of Behavioral Interaction
included the main categories of Sightseeing, Production and Living, and Political Factors,
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and foregrounded the rich forms of entertainment and diverse daily life experienced at
West Lake. The Myth and Legend core category included Myth and Wonderland. The
Traditional Chinese Culture core category included Celebrity, Religion, Custom, and Seclu-
sion. These two core categories reflected some of West Lake’s unique image and cultural
characteristics. Emotional Expression, Imaginative Association, Auditory Landscape, and
Olfactory Landscape represented the subjective feelings formed by landscape appreciation
and comprised the core category of Aesthetic Activity, an important part of landscape
touring. These five core categories together formed West Lake’s HLIs.

Table 5. Core HLI Categories and subcategories.

Core Category Main Category Frequency

Natural Resources
Mountain Resources, Biological Resources,

Meteorological Resources, Astronomical Resources,
Water Resources, Seasonality

2518

Building Facilities Traditional Architecture, Infrastructure 479
Behavioral Interaction Sightseeing, Production and Living, Political Factors 580

Cultural Characteristics Myth and Legend, Traditional Chinese Culture 266

Aesthetic Activity Emotional Expression, Imagination Association,
Auditory Landscape, Olfactory Landscape 150

We used the remaining one-third of the sample for recoding and categorization to
verify that we had achieved theoretical saturation. The results showed that the theoretical
categories in the current model had been richly developed. No new theoretical categories
and relationships emerged, and no new constituent factors were generated within the five
core categories, supporting our theoretical construction of the HLIs.

2.4.2. Construction of IATBs

The construction of IATBs involved four steps (Figure 5).
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First, we placed the spatial data on a grid. Each GPS track comprises a sequence of
points with spatio-temporal coordinates. As the information collected from the GPS points
did not allow us to determine tourists’ dwell status directly, we plotted the spatial data to
facilitate visualization and statistics using a specific grid size [40]. Grid statistics rely on
GPS track points rather than track lines, allowing for a rapid aggregation of information
such as the number of visitors, length of dwell, and geotagging [36]. Converting the spatial
data into a grid can significantly reduce errors arising from the influence of a user’s mobile
device on open GPS data, making it easier to analyze the coupled features and geospatial
data [41]. To delineate the trajectories in detail, we set the grid to 10 × 10 m. We used
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the distribution of the trajectory points within the grid to determine the tourists’ dwell
behavior in different spaces.

Second, we linked the data’s attribute information. We converted the GPX file of the
preprocessed GPS data into elements and imported it into GIS to generate XY coordinates.
We then imported the coordinate-converted track data into ArcGIS for extraction and
analysis. We imported the attribute information for the location track points and track data
into the grid, including the route number, the sequence number of the point in the route,
longitude, latitude, dwell time, the distance between two points, and speed information,
because these attributes reflected the tourists’ behaviors.

Third, we visualized the data’s geographic features. To improve the visualization, we
used the Feature to Point tool in ArcGIS to extract each grid’s centroids to facilitate kernel
density and identify hotspots where visitors passed by or congregated, places where the
average dwell was longer, and areas of interest to visitors.

Fourth, we used the Points to Line tool in GIS to convert the GPS track points into track
lines to determine the number of tracks associated with each attraction. We also generated
GPS point density and line density from the GPS track points and lines to produce a
precise visualization.

2.4.3. Correlation and Regression Analysis

After completing separate analyses of HLIs and IATBs, we combined the correla-
tion and regression analysis results using IBM SPSS Statistics for Windows, Version 23.0
(IBM Corp., Armonk, NY, USA) to gain a deeper understanding of the associations and
interactions between the components.

The Spearman correlation coefficient is a nonparametric indicator used to measure
the linear correlation between two variables. We used the Kolmogorov–Smirnov (K–S) test
to demonstrate that neither variable had a normal distribution. The value of Spearman’s
correlation coefficient was between −1 and 1. A value of 1 indicates a perfectly positive
correlation between two variables; a value of −1 indicates a perfectly negative correlation;
and a value of 0 indicates no correlation. We verified the results’ significance with the
two-tailed p-value test. Generally, p-values < 0.05 are deemed statistically significant. We
calculated the values as follows:

ρ =
∑i(xi − x)(yi − y)√

∑i(xi − x)2 ∑i(yi − y)2
(2)

3. Results
3.1. HLIs and Word Frequency

We ultimately categorized the different HLI codes into five core categories: Natural
Resources, Building Facilities, Behavioral Interaction, Cultural Characteristics, and Aes-
thetic Activity. The first two core categories pointed to the physical elements that were
preconditions for forming HLIs; the remaining three pointed to the metaphysical elements
that represented the distinctive characteristics of the HLIs. We proposed a structural model
of HLIs comprising these five core categories from these findings (Figure 6). The word
frequencies for the different attractions (Figure 7) revealed that the richness of the HLIs
was positively proportional to word frequency.
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3.2. Visitor Distribution

The GIS visualization based on the GPS data revealed the tourists’ density distribution
in West Lake, allowing us to examine their behaviors. We made a precise visualization of
the GPS data (Figure 8) that showed that the GPS points almost covered the attractions
of West Lake. However, the density distribution was uneven, with pronounced hot and
cold spots. The GPS point and line density analyses showed roughly the same hot and
cold spots.
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We generated another GPS kernel density map of West Lake (Figure 9). The ten attractions
with the highest density were A1, H1, A11, A18, A2, A5, A10, C4, G5, and B7. Six of these
were associated with the scenic area designated Group A. This finding confirmed that the
attractions near the lake had more visits and were more popular among tourists.

Land 2022, 11, 1643 12 of 20 
 

and cold spots. The GPS point and line density analyses showed roughly the same hot 
and cold spots.  

 
Figure 8. GPS visualization. 

We generated another GPS kernel density map of West Lake (Figure 9). The ten at-
tractions with the highest density were A1, H1, A11, A18, A2, A5, A10, C4, G5, and B7. Six 
of these were associated with the scenic area designated Group A. This finding confirmed 
that the attractions near the lake had more visits and were more popular among tourists. 

 
Figure 9. West Lake GPS dwell density.



Land 2022, 11, 1643 13 of 20

3.3. Correlations between IATBs and HLIs

We calculated the number of visitor paths, visitor dwell time, average visitor dwell
time, and tour speed within each attraction to determine whether IATB was affected by the
HLIs. We conducted four regression analyses with HLIs as the independent variable, with
the number of visitor paths, visitor dwell time, average visitor dwell time, and tour speed
as the dependent variables.

3.3.1. Visitor Paths

Using HLIs (x) as the independent variable and the number of visitor paths (y1) as
the dependent variable for linear regression analysis, we obtained the model equation
as follows:

y1 = 24.581 + 0.294 x (3)

The model R-squared value was 0.168; HLIs explained 16.8% of the variation in the
number of tourist tour paths. The model passed the F-test (F = 11.529, p = 0.001 < 0.01),
indicating that the HLIs significantly, positively influenced the visitors’ path selection.

3.3.2. Visitor Dwell Time

Visitor dwell time refers to the areas where visitors tarry the longest. These high-value
areas included A1, A13, A2, A5, H1, and G5. Using HLIs (x) as the independent variable
and tourist dwell time in minutes (y2) as the dependent variable for linear regression
analysis, we obtained the model equation as follows:

y2 = 38.247 + 0.658 x (4)

The model R-squared value was 0.132. The HLIs explained 13.2% of the variation in
visitor dwell time. The model passed the F-test (F = 8.701, p = 0.005 < 0.01), indicating that
the HLIs significantly, positively influenced visitor dwell time.

3.3.3. Average Visitor Dwell Time

To eliminate the effect of the number of visitors on dwell time, we calculated the average
visitor dwell time to identify the places where visitors tarried the longest. We used HLIs (x) as
the independent variable and the average visitor dwell time in seconds (y3) as the dependent
variable for linear regression analysis, obtaining the following model equation:

y3 = 8.207 − 0.003 x (5)

The model did not pass the F-test (F = 0.172, p = 0.679 > 0.01), indicating that the HLIs
did not have a meaningful relationship with the average length of visitors’ stays and the
correlation between the two was weak.

3.3.4. Tour Speed

Using HLIs (x) as the independent variable and tour speed (y4) as the dependent
variable for linear regression analysis, we obtained the model equation as follows:

y4 = 1.357 + 0.004 x (6)

The model did not pass the F-test (F = 0.256, p = 0.615 > 0.01), indicating that the HLIs
did not have a meaningful relationship with tour speed and the correlation between the
two was weak.

The results of the four regressions showed that the HLIs had a significant, positive
effect on the number of visitor paths and visitor dwell time (Figure 10), but no significant
effect on average visitor dwell time or tour speed.
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Figure 10. Model of the relationship between the number of visitor paths (G1), visitor dwell time (G2),
and the HLIs.

We calculated the number of visitor paths for each West Lake attraction (Figure 11).
The lakefront area had the most visitor paths and the densest visitor flow. The attractions
with historical buildings and cultural relics had more visitor paths and a more dispersed
visitor flow. The hilly area had the fewest visitor paths. In general, the tourists’ travel
behaviors were heterogeneous. The tourists usually chose only one route and could visit all
the attractions because of West Lake’s size. Therefore, they generally tarried longer at the
most popular attractions. Though a flow of people passed through the cold spots, their visit
times were relatively short and scattered, indicating that they considered those attractions
less appealing.

Land 2022, 11, 1643 14 of 20 
 

 
Figure 10. Model of the relationship between the number of visitor paths (G1), visitor dwell time 
(G2), and the HLIs. 

We calculated the number of visitor paths for each West Lake attraction (Figure 11). 
The lakefront area had the most visitor paths and the densest visitor flow. The attractions 
with historical buildings and cultural relics had more visitor paths and a more dispersed 
visitor flow. The hilly area had the fewest visitor paths. In general, the tourists’ travel 
behaviors were heterogeneous. The tourists usually chose only one route and could visit 
all the attractions because of West Lake’s size. Therefore, they generally tarried longer at 
the most popular attractions. Though a flow of people passed through the cold spots, their 
visit times were relatively short and scattered, indicating that they considered those at-
tractions less appealing. 

 
Figure 11. The number of visitor paths for each West Lake attraction. Figure 11. The number of visitor paths for each West Lake attraction.

We drew a scatterplot of the number of visitor paths among the West Lake attractions
(Figure 12). We found some interesting features when we combined that with information
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such as the dwell density. The scatterplot distribution can be divided into three kinds
of clusters. The first (I) is high IATBs with high HLIs, the crucial feature observed by
this study. The second (II) is low IATBs with high HLIs, including the attractions D3,
E5, E6, A6, and A14. In ancient times, the first three of these attractions were important
political and economic sites; however, they are no longer politically significant, and their
management and maintenance are insufficient, thus, people rarely visit them now. The last
two attractions are located in the middle of the lake, making them difficult to detect by
GPS; therefore, their visitors’ spatio-temporal behaviors were not fully recorded. The third
kind of cluster (III) is high IATBs with low HLIs, as demonstrated by attraction H1, which
is on a major traffic route in a mountainous area; therefore, many tourists pass through it.
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4. Discussion
4.1. Influence of HLIs on IATBs

The combination of ancient poems and other literary works with landscapes is not
accidental; it is a successful, time-tested form of aesthetic interaction [42]. The descriptions
of the landscape images in ancient poems and the emotional reactions and reflections of the
researchers during their visits provided suitable materials for analyzing the scenic images.
Our study took a qualitative approach, applying grounded theory to the analysis of poems
about the heritage site, constructing a structural model of HLIs through a three-level data
coding process with academic significance.

Our study examined how HLIs influence IATBs. Previous studies have mainly fo-
cused on time, speed, and season as explanations for different spatio-temporal behaviors
among visitors [36]; however, our findings suggested that HLIs can be a powerful and
meaningful predictor of such behavior. Gaining a more robust understanding of IATBs
could help improve tourism. Our study revealed uneven patterns in the West Lake tourists’
spatio-temporal behaviors. The differences in their behaviors for the different attractions
suggest that site managers should not promote all the attractions with an equal amount
of effort. Using HLIs as an indicator, combined with GPS tracking data that accurately
displays visitors’ spatio-temporal behaviors, offers a new perspective that could further our
understanding of IATBs at modern attractions and help site managers and administrators
make targeted site-development recommendations.

The lakefront area of the West Lake heritage site had the highest HLIs and the most
visitors. That highlights the importance of expanding the lakefront rest area and its infras-
tructure while ensuring that the natural waters are not polluted, and the beautiful scenery is
maintained. The historical buildings and cultural relics around the lake have a moderate level
of HLIs that make them attractive to tourists, easing the crowded situation at the lakefront
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attractions. The HLIs are lower in the hilly area. We recommend adding attractive service
facilities specific to the mountains for these less-crowded attractions to encourage more people
to visit them, reducing the burden on the more popular attractions. In addition to the HLIs,
we found a link between visitor behaviors and the major roads. Therefore, management needs
to understand the distribution of routes and enhance the marketing of attractions around the
major roads. The site managers could further strengthen their site management and promote
sustainable development of future tourism by emphasizing HLIs.

4.2. HLIs Are an Influential Predictor of Future Tourism Trends for Heritage

Exploring tourists’ spatio-temporal behavior with emerging modern landscape char-
acteristics is common. However, this study suggests that visitor behaviors also depend
on historical factors. We propose using HLIs to predict future tourism trends for her-
itage sites, creating a bridge to the future that can inform management targeting, tourism
development, and promotion decisions. Managers can use HLIs as a theme for tourism
marketing to create a poetic city image that blends the old and the new. Linking a city’s
image with the desire to “assert the future” can attract even more tourists, stimulate cultural
consumption, and promote urban development. Creating and marketing new images for
cities can improve their competitive position in attracting or retaining resources [43]. This
could help Hangzhou compete more effectively with China’s other “new first-tier cities”
(e.g., Nanjing, Chengdu). This approach could be applied to other regions with HLIs and
provide managers with meaningful lessons for urban planning and marketing to enhance
their cities’ images.

4.3. Limitations and Future Research

One, this study focused on the West Lake Heritage Site in Hangzhou, China, which
offers both natural and cultural attractions in a unique landscape. Our results might differ
from those for other heritage sites featuring different elements. Future research should
examine the differences in visitor behaviors across multiple types and scales of destinations
over a long period. Two, we took the HLIs we constructed for our study directly from
ancient Chinese poetry; these could be considered in combination with other elements in
the future. Digital access to ancient poems could increase the sample size. Three, uniform
encoding might have oversimplified the data. For example, we uniformly replaced the
words “flower”, “grass”, “willow”, “peach”, “laurel”, “cypress”, and “lotus” with the word
“plant”. This simplification might have made the attribute analysis of attractions flawed.
Ideally, the coding should be finer grained. Four, some of the data in our study, such as the
GPS data from the central lake, were difficult to obtain. Thus, the visitors’ spatio-temporal
behaviors might not have been wholly recorded, partially affecting the study’s results. Five,
the promotion of the “Ten Poetically Named Scenic Places”, on websites such as Instagram
and Weibo might have led to an increase in the number of visitors to those specific West
Lake attractions, partially affecting the study’s results. User generated content (UGC), such
as that found on Weibo and Instagram, promotes attractions, which in turn influences visitor
behavior. UGC recommendations for attractions follow certain principles. For example,
they highlight attractions with good historical and cultural views. We believe that these
attractions are accompanied by a high HLI. On this basis, HLIs have limitations, although
they can still explain a part of tourists’ behavior. UGC provides tourists with basic factual
information about tourism products and destinations, increasing their understanding of
the destination [44]. Additionally, UGC affects the willingness to choose a destination,
consumer perceptions and travel decisions [45], and tourist loyalty [46]. The consideration
of UGC can be increased in the future by conducting a multifactor regression analysis.
Six, it was not possible to collect information on the tourists’ emotions through open GPS
track data, which limited the identification of causality and the further classification of
tourists [47]. Future studies should select or configure data combined from multiple sources.
Photo-taking behaviors often accompany open trajectory data. Future studies could use
geo-tagged photos to determine well-being and mental health.
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5. Conclusions

This study constructed a concept of HLIs by extracting images from ancient poems to un-
derstand the differences in visitors’ IATBs at the West Lake Heritage Site. Our structural model
of HLIs comprised five core categories: Natural Resources, Building Facilities, Behavioral
Interaction, Cultural Characteristics, and Aesthetic Activity. We designed an extraction-storage
scheme to collect GPS trajectory information about the visitors’ IATBs: visitor paths, visitor
dwell time, average visitor dwell time, and tour speed. We found that the visitor distribution
was extremely uneven, and different attractions had different visitor behaviors. The GIS
analysis also identified West Lake’s cold and hot spots, indicating which attractions were
most popular; we offered recommendations for these spots. The various attractions’ locations
within the immense park led to extreme behavioral variability, with high visitation in the lake
area, medium in the crossover area, and low in the mountainous areas.

Our exploration of the significance of historical factors for modern landscapes presents
a framework for a holistic approach to heritage site management and tourism in general.
We linked theory and practice using images to study historic landscapes, a reverse process
to capture features of interest, and an open framework for processing GPS data to estab-
lish correlations between HLIs and IATBs. Our findings should inform future heritage
site management—and neighboring cities—about the benefits of using HLIs to predict
attraction visitors’ behaviors and leveraging those insights to optimize multiple-attraction
sites proportionally. Such projections can provide new perspectives for heritage studies,
landscape planning, and tourism image-making.
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Appendix A

Table A1. Fifty-nine attractions with HLIs in West Lake.

Serial
Number Scenic Areas Scenic Area

Number
Attractions

Number Attractions

[1]

Lakefront A

A1 Lingering Snow on Broken Bridge
[2] A2 Xiling Printing House
[3] A3 Sizhao Pavilion
[4] A4 Crane in Plum
[5] A5 Su Causeway in the Morning of Spring
[6] A6 Mid-Lake Pavilion
[7] A7 Orioles Singing in the Willows
[8] A8 Evening Bell Ringing at Nanping Hill
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Table A1. Cont.

Serial
Number Scenic Areas Scenic Area

Number
Attractions

Number Attractions

[9] A9 Leifeng Pagoda in Evening Glow
[10] A10 MAO’s Home Port
[11] A11 Viewing Fish at Flowery Pond
[12] A12 Breeze-ruffled Lotus at Winding Garden
[13] A13 Autumn Moon over the Calm Lake
[14] A14 Three Pools Mirroring the Moon
[15] A15 Twin Peaks Piercing the Cloud
[16]

North Hill B

B1 Zhiguo Temple
[17] B2 Manao Temple
[18] B3 Wanghu Building
[19] B4 Precious Stone Hill Floating in Rosy Cloud
[20] B5 Precious Stone Hill Statue
[21] B6 Baoyun Temple
[22] B7 Ge Ling Chao
[23] B8 Site of Zhaolan Temple
[24] B9 Purple Cloud Cave
[25] B10 Tomb of Niuhao
[26]

Tiger Spring and
Longjing Well C

C1 Stone House Cave
[27] C2 Water Music Cave
[28] C3 Haze at Sunset Cave
[29] C4 Longjing Well with Tea
[30] C5 Eight Sights of Longjing Well
[31] C6 Tiger Spring
[32]

Qiantang River D
D1 Nine Creeks and Eighteen Gullies

[33] D2 Liuhe Pagoda
[34] D3 Nine Streams to Watch The Tide
[35]

Phoenix Hill E

E1 Ci Yunling Statues
[36] E2 Denon Temple
[37] E3 Tomb of Wuhanyue
[38] E4 Myriad Pines Academy
[39] E5 Southern Song Dynasty Imperial City Site
[40] E6 Fantian Temple Heritage Park
[41]

Botanical Garden F
F1 Zhangxian Tomb

[42] F2 Jade Spring
[43] F3 Appreciate Plum Blossoms in Lingfeng Hill
[44]

Lingzhu G

G1 Clock Sinking in Hejian River
[45] G2 Peak That Flew from Afar
[46] G3 Cold Spring Pavilion
[47] G4 North Peak
[48] G5 Lingyin Temple
[49] G6 Mengxie Pavilion
[50] G7 Cuiwei Pavilion
[51] G8 Yongfu Temple
[52] G9 Stone with Three Lifetimes
[53] G10 Fajing Temple
[54] G11 Faxi Temple
[55] Color Clouds H H1 Color Clouds Hill
[56]

Wu Mountain I

I1 Three-Thatched-Hut Temple
[57] I2 Clouds Living and Pine’s Sound
[58] I3 Chenghuang Temple
[59] I4 Qingyi Cave
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