The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China’s Land Survey
Abstract
:1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. The Research Object Has Changed from the Independence of the Urban and Rural Contexts to Their Integration
1.2.2. The Driving Mechanism Has Changed from the Factors Influencing Population and Land Use Change/Coverage to the Relationship between the Two
1.3. Theoretical Framework and Research Hypotheses
2. Materials and Methods
2.1. Study Area
2.2. Research Steps and Data Sources
2.3. Research Methods
2.3.1. Boston Consulting Group Matrix
2.3.2. Decoupling Model
2.3.3. Exploratory Spatial Data Analysis (ESDA) and Geodetector
3. Results
3.1. Mode of Evolution of Construction Land Use and Permanent Population
3.1.1. Urban Permanent Population
3.1.2. Rural Permanent Population
3.1.3. Urban Construction Land Use
3.1.4. Rural Construction Land Use
3.2. Decoupling Analysis between Construction Land Use and Permanent Population
3.2.1. Urban Decoupling Relationship
3.2.2. Rural Decoupling Relationship
3.2.3. Changing Trends in the Decoupling Relationships in Urban and Rural Areas
3.3. Driving Mechanisms of Construction Land Use, Permanent Population, and Their Relationship
3.3.1. Influencing Factors
3.3.2. Interaction Effects
3.3.3. Mechanism Analysis
4. Discussion
4.1. The Complex Relationship between Theoretical Logic and Practical Reality
4.2. Management and Government Enlightenment in Policy and Planning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
NO. | City | Urban Construction Land | Urban Permanent Population | ||||
---|---|---|---|---|---|---|---|
2009 | 2014 | 2019 | 2009 | 2014 | 2019 | ||
1 | Shanghai | 13.37 | 12.52 | 5.69 | 10.21 | 9.20 | 7.99 |
2 | Nanjing | 2.59 | 2.65 | 2.41 | 3.10 | 2.82 | 2.63 |
3 | Wuxi | 2.23 | 2.09 | 2.46 | 2.19 | 2.05 | 1.89 |
4 | Xuzhou | 1.79 | 1.77 | 2.09 | 2.22 | 2.17 | 2.19 |
5 | Changzhou | 1.72 | 1.76 | 1.53 | 1.42 | 1.37 | 1.29 |
6 | Suzhou (Jiangsu) | 4.63 | 4.65 | 5.18 | 3.24 | 3.32 | 3.08 |
7 | Nantong | 1.45 | 1.36 | 1.79 | 1.96 | 1.89 | 1.86 |
8 | Lianyungang | 1.21 | 1.20 | 0.98 | 1.01 | 1.08 | 1.07 |
9 | Huai’an | 1.07 | 1.17 | 1.11 | 1.08 | 1.16 | 1.17 |
10 | Yancheng | 1.32 | 1.26 | 1.60 | 1.81 | 1.79 | 1.74 |
11 | Yangzhou | 1.24 | 1.23 | 1.26 | 1.24 | 1.16 | 1.16 |
12 | Zhenjiang | 1.12 | 1.18 | 0.99 | 0.96 | 0.89 | 0.86 |
13 | Taizhou (Jiangsu) | 1.05 | 1.08 | 1.04 | 1.24 | 1.18 | 1.15 |
14 | Suqian | 0.93 | 0.96 | 1.14 | 0.93 | 1.10 | 1.12 |
15 | Hangzhou | 2.02 | 1.94 | 2.37 | 2.94 | 2.83 | 3.03 |
16 | Ningbo | 2.73 | 2.67 | 2.43 | 2.39 | 2.33 | 2.34 |
17 | Wenzhou | 1.35 | 1.27 | 1.26 | 2.56 | 2.58 | 2.44 |
18 | Jiaxing | 1.39 | 1.31 | 1.63 | 1.15 | 1.15 | 1.21 |
19 | Huzhou | 0.75 | 0.70 | 0.71 | 0.75 | 0.71 | 0.74 |
20 | Shaoxing | 1.32 | 1.29 | 1.24 | 1.41 | 1.30 | 1.29 |
21 | Jinhua | 1.54 | 1.49 | 1.40 | 1.59 | 1.46 | 1.44 |
22 | Quzhou | 0.55 | 0.62 | 0.53 | 0.48 | 0.44 | 0.50 |
23 | Zhoushan | 0.32 | 0.32 | 0.32 | 0.35 | 0.32 | 0.30 |
24 | Taizhou (Zhejiang) | 1.40 | 1.29 | 1.24 | 1.55 | 1.52 | 1.46 |
25 | Lishui | 0.39 | 0.44 | 0.41 | 0.50 | 0.50 | 0.52 |
26 | Hefei | 2.07 | 2.20 | 1.83 | 2.05 | 2.25 | 2.33 |
27 | Wuhu | 1.11 | 1.22 | 0.93 | 0.96 | 0.93 | 0.93 |
28 | Bengbu | 0.56 | 0.68 | 0.55 | 0.78 | 0.70 | 0.74 |
29 | Huainan | 0.40 | 0.49 | 0.50 | 0.77 | 0.68 | 0.85 |
30 | Ma’anshan | 0.76 | 0.76 | 0.54 | 0.79 | 0.60 | 0.61 |
31 | Huaibei | 0.45 | 0.50 | 0.40 | 0.60 | 0.55 | 0.56 |
32 | Tongling | 0.36 | 0.35 | 0.33 | 0.29 | 0.25 | 0.35 |
33 | Anqing | 0.94 | 1.04 | 0.45 | 1.06 | 0.96 | 0.88 |
34 | Huangshan | 0.37 | 0.43 | 0.30 | 0.29 | 0.27 | 0.28 |
35 | Chuzhou | 0.97 | 1.21 | 1.12 | 0.88 | 0.81 | 0.84 |
36 | Fuyang | 0.97 | 1.00 | 1.04 | 1.41 | 1.24 | 1.37 |
37 | Suzhou (Anhui) | 0.62 | 0.70 | 0.68 | 0.98 | 0.87 | 0.93 |
38 | Lu’an | 0.83 | 1.05 | 0.78 | 1.17 | 1.00 | 0.85 |
39 | Bozhou | 0.57 | 0.65 | 0.66 | 0.88 | 0.76 | 0.83 |
40 | Chizhou | 0.37 | 0.48 | 0.28 | 0.31 | 0.30 | 0.30 |
41 | Xuancheng | 0.69 | 0.79 | 0.66 | 0.58 | 0.54 | 0.56 |
42 | Jinan | 2.53 | 2.40 | 2.00 | 2.51 | 2.31 | 2.36 |
43 | Qingdao | 3.10 | 2.94 | 4.58 | 2.49 | 2.62 | 2.62 |
44 | Zibo | 1.45 | 1.38 | 1.13 | 0.95 | 1.28 | 1.26 |
45 | Zaozhuang | 0.74 | 0.70 | 0.67 | 0.69 | 0.83 | 0.87 |
46 | Dongying | 0.85 | 0.92 | 1.11 | 0.41 | 0.57 | 0.56 |
47 | Yantai | 2.10 | 2.05 | 2.12 | 1.62 | 1.74 | 1.74 |
48 | Weifang | 2.40 | 2.39 | 2.21 | 2.12 | 2.10 | 2.17 |
49 | Jining | 1.61 | 1.54 | 1.66 | 1.32 | 1.75 | 1.86 |
50 | Tai’an | 1.03 | 1.01 | 0.97 | 0.82 | 1.30 | 1.30 |
51 | Weihai | 0.96 | 0.90 | 0.94 | 0.64 | 0.73 | 0.73 |
52 | Rizhao | 0.74 | 0.72 | 0.74 | 0.53 | 0.64 | 0.67 |
53 | Linyi | 1.86 | 1.77 | 1.82 | 1.13 | 2.24 | 2.10 |
54 | Dezhou | 1.30 | 1.26 | 3.79 | 0.87 | 1.20 | 1.14 |
55 | Liaocheng | 1.02 | 0.95 | 1.06 | 0.89 | 1.10 | 1.20 |
56 | Binzhou | 0.85 | 0.88 | 1.09 | 0.55 | 0.85 | 0.85 |
57 | Heze | 1.07 | 1.06 | 4.98 | 0.96 | 1.54 | 1.66 |
58 | Zhengzhou | 2.28 | 2.58 | 2.59 | 2.49 | 2.71 | 2.88 |
59 | Kaifeng | 0.62 | 0.63 | 0.66 | 0.97 | 0.82 | 0.86 |
60 | Luoyang | 1.23 | 1.24 | 1.14 | 1.48 | 1.44 | 1.52 |
61 | Pingdingshan | 0.58 | 0.59 | 0.66 | 1.07 | 1.00 | 1.04 |
62 | Anyang | 0.70 | 0.75 | 0.80 | 1.06 | 0.97 | 1.03 |
63 | Hebi | 0.25 | 0.28 | 0.34 | 0.37 | 0.36 | 0.37 |
64 | Xinxiang | 1.18 | 1.15 | 1.06 | 1.18 | 1.15 | 1.19 |
65 | Jiaozuo | 0.81 | 0.78 | 0.76 | 0.84 | 0.80 | 0.82 |
66 | Puyang | 0.52 | 0.55 | 0.62 | 0.65 | 0.59 | 0.63 |
67 | Xuchang | 0.66 | 0.66 | 0.68 | 0.88 | 0.83 | 0.90 |
68 | Luohe | 0.45 | 0.47 | 0.44 | 0.51 | 0.50 | 0.54 |
69 | Sanmenxia | 0.42 | 0.45 | 0.37 | 0.53 | 0.48 | 0.49 |
70 | Nanyang | 1.30 | 1.27 | 1.24 | 1.93 | 1.67 | 1.78 |
71 | Shangqiu | 0.96 | 1.00 | 1.09 | 1.36 | 1.12 | 1.23 |
72 | Xinyang | 1.01 | 0.98 | 0.89 | 1.21 | 1.11 | 1.18 |
73 | Zhoukou | 0.88 | 0.93 | 0.89 | 1.54 | 1.35 | 1.43 |
74 | Zhumadian | 0.77 | 0.80 | 0.89 | 1.18 | 1.07 | 1.17 |
75 | Jiyuan | 0.25 | 0.25 | 0.20 | 0.18 | 0.17 | 0.18 |
NO. | City | Rural Construction Land | Rural Permanent Population | ||||
---|---|---|---|---|---|---|---|
2009 | 2014 | 2019 | 2009 | 2014 | 2019 | ||
1 | Shanghai | 2.85 | 2.79 | 1.11 | 1.25 | 1.49 | 1.82 |
2 | Nanjing | 1.03 | 0.97 | 0.83 | 0.16 | 0.93 | 0.92 |
3 | Wuxi | 0.97 | 1.02 | 0.71 | 0.22 | 0.98 | 0.97 |
4 | Xuzhou | 2.41 | 2.34 | 2.44 | 2.60 | 2.06 | 1.88 |
5 | Changzhou | 0.66 | 0.62 | 0.72 | 0.43 | 0.87 | 0.81 |
6 | Suzhou (Jiangsu) | 1.23 | 1.21 | 1.07 | 0.05 | 1.63 | 1.59 |
7 | Nantong | 2.28 | 2.36 | 2.58 | 1.92 | 1.67 | 1.50 |
8 | Lianyungang | 1.16 | 1.12 | 1.29 | 1.47 | 1.13 | 1.05 |
9 | Huai’an | 1.73 | 1.66 | 1.67 | 1.62 | 1.25 | 1.16 |
10 | Yancheng | 2.38 | 2.44 | 2.48 | 2.30 | 1.77 | 1.62 |
11 | Yangzhou | 1.11 | 1.10 | 1.08 | 1.10 | 1.03 | 0.93 |
12 | Zhenjiang | 0.63 | 0.60 | 0.69 | 0.42 | 0.62 | 0.57 |
13 | Taizhou (Jiangsu) | 1.06 | 1.08 | 1.20 | 1.31 | 1.09 | 0.99 |
14 | Suqian | 1.40 | 1.37 | 1.44 | 1.78 | 1.32 | 1.23 |
15 | Hangzhou | 1.29 | 1.42 | 1.39 | 0.60 | 0.28 | 1.43 |
16 | Ningbo | 0.97 | 1.06 | 1.17 | 0.56 | 0.20 | 1.45 |
17 | Wenzhou | 0.78 | 0.84 | 0.91 | 1.43 | 1.21 | 1.76 |
18 | Jiaxing | 0.96 | 0.99 | 0.97 | 0.59 | 0.46 | 1.00 |
19 | Huzhou | 0.75 | 0.82 | 0.97 | 0.57 | 0.56 | 0.70 |
20 | Shaoxing | 0.84 | 0.89 | 0.89 | 0.82 | 0.80 | 1.03 |
21 | Jinhua | 0.80 | 0.86 | 0.97 | 0.79 | 0.77 | 1.13 |
22 | Quzhou | 0.54 | 0.54 | 0.63 | 0.78 | 0.89 | 0.57 |
23 | Zhoushan | 0.18 | 0.21 | 0.24 | 0.15 | 0.13 | 0.24 |
24 | Taizhou (Zhejiang) | 0.81 | 0.86 | 0.93 | 1.39 | 1.41 | 1.43 |
25 | Lishui | 0.40 | 0.44 | 0.46 | 0.80 | 0.87 | 0.53 |
26 | Hefei | 1.65 | 1.67 | 1.59 | 1.39 | 1.40 | 1.24 |
27 | Wuhu | 0.75 | 0.83 | 0.90 | 0.63 | 0.84 | 0.81 |
28 | Bengbu | 1.03 | 0.97 | 1.03 | 0.85 | 0.94 | 0.91 |
29 | Huainan | 0.40 | 0.38 | 0.85 | 0.41 | 0.45 | 0.78 |
30 | Ma’anshan | 0.77 | 0.49 | 0.55 | 0.70 | 0.48 | 0.47 |
31 | Huaibei | 0.55 | 0.52 | 0.57 | 0.45 | 0.51 | 0.50 |
32 | Tongling | 0.14 | 0.14 | 0.49 | 0.09 | 0.09 | 0.45 |
33 | Anqing | 2.03 | 1.95 | 1.79 | 1.75 | 1.83 | 1.52 |
34 | Huangshan | 0.31 | 0.30 | 0.36 | 0.42 | 0.43 | 0.43 |
35 | Chuzhou | 1.94 | 1.78 | 1.85 | 1.20 | 1.23 | 1.21 |
36 | Fuyang | 2.62 | 2.55 | 2.83 | 2.78 | 2.89 | 2.94 |
37 | Suzhou (Anhui) | 2.12 | 2.04 | 2.22 | 1.87 | 2.03 | 2.05 |
38 | Lu’an | 2.46 | 2.35 | 2.08 | 1.89 | 1.98 | 1.65 |
39 | Bozhou | 1.88 | 1.79 | 1.95 | 1.68 | 1.90 | 1.95 |
40 | Chizhou | 0.52 | 0.50 | 0.56 | 0.41 | 0.42 | 0.43 |
41 | Xuancheng | 1.02 | 0.98 | 1.09 | 0.72 | 0.77 | 0.75 |
42 | Jinan | 1.57 | 1.58 | 1.68 | 1.23 | 1.75 | 1.65 |
43 | Qingdao | 1.44 | 1.58 | 0.53 | 1.41 | 1.69 | 1.58 |
44 | Zibo | 0.95 | 0.94 | 1.05 | 1.19 | 0.93 | 0.84 |
45 | Zaozhuang | 0.82 | 0.82 | 0.93 | 1.26 | 1.10 | 1.03 |
46 | Dongying | 0.69 | 0.76 | 0.70 | 0.52 | 0.45 | 0.43 |
47 | Yantai | 1.46 | 1.51 | 1.52 | 1.69 | 1.71 | 1.58 |
48 | Weifang | 2.12 | 2.12 | 2.53 | 2.28 | 2.53 | 2.27 |
49 | Jining | 1.70 | 1.69 | 1.92 | 2.86 | 2.42 | 2.16 |
50 | Tai’an | 1.23 | 1.23 | 1.35 | 1.97 | 1.48 | 1.37 |
51 | Weihai | 0.58 | 0.63 | 0.66 | 0.64 | 0.64 | 0.57 |
52 | Rizhao | 0.66 | 0.70 | 0.83 | 0.92 | 0.80 | 0.74 |
53 | Linyi | 2.89 | 2.91 | 3.38 | 4.08 | 2.91 | 3.23 |
54 | Dezhou | 1.86 | 1.88 | 0.35 | 1.99 | 1.70 | 1.73 |
55 | Liaocheng | 1.78 | 1.81 | 1.97 | 2.08 | 1.96 | 1.85 |
56 | Binzhou | 1.15 | 1.16 | 1.36 | 1.35 | 1.08 | 1.05 |
57 | Heze | 2.64 | 2.62 | 0.63 | 3.74 | 2.84 | 2.78 |
58 | Zhengzhou | 1.57 | 1.58 | 1.68 | 1.36 | 1.75 | 1.69 |
59 | Kaifeng | 1.27 | 1.28 | 1.41 | 1.40 | 1.54 | 1.46 |
60 | Luoyang | 1.57 | 1.63 | 1.71 | 1.77 | 1.94 | 1.82 |
61 | Pingdingshan | 1.13 | 1.17 | 1.31 | 1.41 | 1.53 | 1.44 |
62 | Anyang | 1.39 | 1.42 | 1.47 | 1.58 | 1.65 | 1.56 |
63 | Hebi | 0.34 | 0.37 | 0.36 | 0.36 | 0.44 | 0.40 |
64 | Xinxiang | 1.47 | 1.52 | 1.65 | 1.61 | 1.77 | 1.68 |
65 | Jiaozuo | 0.76 | 0.82 | 0.83 | 0.90 | 0.97 | 0.90 |
66 | Puyang | 0.96 | 0.96 | 1.03 | 1.12 | 1.30 | 1.23 |
67 | Xuchang | 1.11 | 1.15 | 1.22 | 1.30 | 1.39 | 1.31 |
68 | Luohe | 0.55 | 0.54 | 0.56 | 0.75 | 0.83 | 0.79 |
69 | Sanmenxia | 0.59 | 0.59 | 0.65 | 0.60 | 0.66 | 0.62 |
70 | Nanyang | 2.99 | 3.00 | 3.25 | 3.18 | 3.57 | 3.36 |
71 | Shangqiu | 2.70 | 2.65 | 2.84 | 2.57 | 2.72 | 2.59 |
72 | Xinyang | 3.07 | 3.04 | 3.20 | 2.21 | 2.23 | 2.11 |
73 | Zhoukou | 2.76 | 2.73 | 2.93 | 3.50 | 3.31 | 3.09 |
74 | Zhumadian | 2.63 | 2.60 | 2.76 | 2.69 | 2.60 | 2.51 |
75 | Jiyuan | 0.18 | 0.18 | 0.21 | 0.17 | 0.18 | 0.17 |
References
- Feygina, I. Social Justice and the Human-Environment Relationship: Common Systemic, Ideological, and Psychological Roots and Processes. Soc. Justice Res. 2013, 26, 363–381. [Google Scholar] [CrossRef]
- Wang, Y.C.; Huang, C.L.; Feng, Y.Y.; Gu, J. Evaluation of the Coordinated Relationship between Land Consumption Rate and Population Growth Rate in the Pearl River Delta based on the 2030 Sustainable Development Goals. Remote Sens. Technol. Appl. 2021, 36, 1168–1177. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, L.; Zhang, G.L.; Meng, L.J.; Pan, Z.H.; Lun, F.; An, P.L. Green-Depressing Cropping System: A Referential Land Use Practice for Fallow to Ensure a Harmonious Human-Land Relationship in the Farming-Pastoral Ecotone of Northern China. Land Use Policy 2021, 100, 104917. [Google Scholar] [CrossRef]
- Li, X.Y.; Yang, Y.; Liu, Y. Research progress in man-land relationship evolution and its resource-environment base in China. J. Geogr. Sci. 2017, 27, 899–924. [Google Scholar] [CrossRef] [Green Version]
- Zvoleff, A.; An, L. The Effect of Reciprocal Connections Between Demographic Decision Making and Land Use on Decadal Dynamics of Population and Land-Use Change. Ecol. Soc. 2014, 19, 31. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Van Vliet, J.; Debonne, N.; Pu, L.J.; Verburg, P.H. Settlement changes after peak population: Land system projections for China until 2050. Landsc. Urban Plan. 2021, 209, 104045. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Jiang, W.D.; Luo, J.J.; Zhang, X.L.; Skitmore, M. How Can Chinese Farmers’ Property Income Be Improved? A Population-Land Coupling Urbanization Mechanism. China World Econ. 2019, 27, 107–126. [Google Scholar] [CrossRef]
- Van Vliet, J.; Birch-Thomsen, T.; Gallardo, M.; Hemerijckx, L.M.; Hersperger, A.M.; Li, M.M.; Tumwesigye, S.; Twongyirwe, R.; van Rompaey, A. Bridging the Rural-Urban Dichotomy in Land Use Science. J. Land Use Sci. 2020, 15, 585–591. [Google Scholar] [CrossRef]
- Ningal, T.; Hartemink, A.E.; Bregt, A.K. Land Use Change and Population Growth in the Morobe Province of Papua New Guinea Between 1975 And 2000. J. Environ. Manag. 2008, 87, 117–124. [Google Scholar] [CrossRef]
- Marshall, J.D. Urban Land Area and Population Growth: A New Scaling Relationship for Metropolitan Expansion. Urban Stud. 2007, 44, 1889–1904. [Google Scholar] [CrossRef]
- Jiang, S.N.; Zhang, Z.K.; Ren, H.; Wei, G.E.; Xu, M.H.; Liu, B.L. Spatiotemporal Characteristics of Urban Land Expansion and Population Growth in Africa from 2001 to 2019: Evidence from Population Density Data. ISPRS Int. J. Geo-Inf. 2021, 10, 584. [Google Scholar] [CrossRef]
- Shan, L.; Jiang, Y.H.; Liu, C.C.; Zhang, J.; Zhang, G.H.; Cui, X.F. Conflict or Coordination? Spatiotemporal Coupling of Urban Population-Land Spatial Patterns and Ecological Efficiency. Front. Public Health 2022, 10, 890175. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; O’Neill, B. Different Spatiotemporal Patterns in Global Human Population and Built-Up Land. Earths Future 2021, 9, e2020EF001920. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Kong, X.S.; Jiang, P. Identification of the Human-Land Relationship Involved in the Urbanization of Rural Settlements in Wuhan City Circle, China. J. Rural. Stud. 2020, 77, 75–83. [Google Scholar] [CrossRef]
- Shi, L.N.; Wang, Y.S. Evolution characteristics and driving factors of negative decoupled rural residential land and resident population in the Yellow River Basin. Land Use Policy 2022, 109, 105685. [Google Scholar] [CrossRef]
- Biswas, G.; Sengupta, A. Assessment of Agricultural Prospects in Relation to Land Use Change and Population Pressure on A Spatiotemporal Framework. Environ. Sci. Pollut. Res. 2022, 29, 43267–43286. [Google Scholar] [CrossRef]
- Madu, I.A. Spatial Impacts of Rural Population Pressure on Agricultural Land Use in Nigeria. Appl. Spat. Anal. Policy 2012, 5, 123–135. [Google Scholar] [CrossRef]
- Chen, K.Q.; Long, H.L.; Liao, L.W.; Tu, S.S.; Li, T.T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 2020, 92, 104465. [Google Scholar] [CrossRef]
- Li, J.W.; Ye, Q.Q.; Chen, W.Q.; Kong, X.S.; Bi, Q.S.; Lu, J.; Cai, E.X.; Wei, H.J.; Feng, X.W.; Guo, Y.L. An Analysis Method of Quantitative Coupling Rationality between Urban-Rural Construction Land and Population: A Case Study of Henan Province in China. Land 2022, 11, 735. [Google Scholar] [CrossRef]
- Basse, R.M.; Charif, O.; Bodis, K. Spatial and temporal dimensions of land use change in cross border region of Luxembourg. Development of a hybrid approach integrating GIS, cellular automata and decision learning tree models. Appl. Geogr. 2016, 67, 94–108. [Google Scholar] [CrossRef]
- Kumar, S.; Merwade, V.; Rao, P.S.C.; Pijanowski, B.C. Characterizing Long-Term Land Use/Cover Change in the United States from 1850 to 2000 Using a Nonlinear Bi-analytical Model. Ambio 2013, 42, 285–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullanikkatil, D.; Palamuleni, L.; Ruhiiga, T. Assessment of land use change in Likangala River catchment, Malawi: A remote sensing and DPSIR approach. Appl. Geogr. 2016, 71, 9–23. [Google Scholar] [CrossRef]
- Palmer, B.J.; Hill, T.R.; Mcgregor, G.K.; Paterson, A.W. An Assessment of Coastal Development and Land Use Change Using the DPSIR Framework: Case Studies from the Eastern Cape, South Africa. Coast. Manag. 2011, 39, 158–174. [Google Scholar] [CrossRef]
- Coral, C.; Bokelmann, W.; Bonatti, M.; Carcamo, R.; Sieber, S. Agency and structure: A grounded theory approach to explain land-use change in the Mindo and western foothills of Pichincha, Ecuador. J. Land Use Sci. 2020, 15, 547–569. [Google Scholar] [CrossRef]
- Lubowski, R.N.; Plantinga, A.J.; Stavins, R.N. What Drives Land-Use Change in the United States? A National Analysis of Landowner Decisions. Land Econ. 2008, 84, 529–550. [Google Scholar] [CrossRef]
- Terama, E.; Clarke, E.; Rounsevell, M.D.A.; Fronzek, S.; Carter, T.R. Modelling population structure in the context of urban land use change in Europe. Reg. Environ. Change 2019, 19, 667–677. [Google Scholar] [CrossRef] [Green Version]
- Currit, N.; Easterling, W.E. Globalization and Population Drivers of Rural-Urban Land-Use Change in Chihuahua, Mexico. Land Use Policy 2009, 26, 535–544. [Google Scholar] [CrossRef]
- Fu, C.; Tu, X.Q. Research on the Spatiotemporal Characteristics Modes and Driving Factors of U A Construction Land Expansion in Jiangxi Under Rapid Urbanization. Fresenius Environ. Bull. 2022, 31, 1155–1171. [Google Scholar]
- Dong, O.Y.; Zhu, X.G.; Liu, X.G.; He, R.F.; Wan, Q. Spatial Differentiation and Driving Factor Analysis of Urban Construction Land Change in County-Level City of Guangxi, China. Land 2021, 10, 691. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, J.; Xu, Q.; Luo, X.L. Urban-rural spatial transformation process and influences from the perspective of land use: A case study of the Pearl River Delta Region. Habitat Int. 2020, 104, 102234. [Google Scholar] [CrossRef]
- Pareglio, S. The case for policy intervention in land use change: A critical assessment. Ital. J. Agron. 2013, 8, 217–223. [Google Scholar] [CrossRef]
- Li, S.; Wang, T.; Yan, C.Z. Assessing the Role of Policies on Land-Use/Cover Change from 1965 to 2015 in the Mu Us Sandy Land, Northern China. Sustainability 2017, 9, 1164. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W.H. National urban land-use/cover change since the beginning of the 21st century and its policy implications in China. Land Use Policy 2020, 97, 104747. [Google Scholar] [CrossRef]
- Luo, J.J.; Xing, X.S.; Wu, Y.Z.; Zhang, W.W.; Chen, R.S. Spatio-Temporal Analysis on Built-Up Land Expansion and Population Growth in the Yangtze River Delta Region, China: From A Coordination Perspective. Appl. Geogr. 2018, 96, 98–108. [Google Scholar] [CrossRef]
- Huang, L.J.; Yang, P.; Zhang, B.Q.; Hu, W.Y. Spatio-Temporal Coupling Characteristics and the Driving Mechanism of Population-Land-Industry Urbanization in the Yangtze River Economic Belt. Land 2021, 10, 400. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Brandt, M.; Rasmussen, K.; Fensholt, R. Accelerating Land Cover Change in West Africa Over Four Decades as Population Pressure Increased. Commun. Earth Environ. 2020, 1, 53. [Google Scholar] [CrossRef]
- Wellmann, T.; Schug, F.; Haase, D.; Pflugmacher, D.; Van der Linden, S. Green Growth? On The Relation Between Population Density, Land Use and Vegetation Cover Fractions in A City Using A 30-Years Landsat Time Series. Landsc. Urban Plan. 2020, 202, 103857. [Google Scholar] [CrossRef]
- Ouedraogo, I.; Tigabu, M.; Savadogo, P.; Compaore, H.; Oden, P.C.; Ouadba, J.M. Land Cover Change and Its Relation with Population Dynamics in Burkina Faso, West Africa. Land Degrad. Dev. 2010, 21, 453–462. [Google Scholar] [CrossRef]
- Yang, Y.; Li, X.; Dong, W.; Poon, P.H.J.; Hong, H.; He, Z.; Liu, Y. Assessing China’s Human-Environment Relationship. J. Geogr. Sci. 2019, 29, 1261–1282. [Google Scholar] [CrossRef] [Green Version]
- Nie, A.X.; Dong, Y.N.; Zuo, R.G. Construction Land Information Extraction and Expansion Analysis of Xiaogan City Using One-Class Support Vector Machine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3519–3532. [Google Scholar] [CrossRef]
- Kabanda, T.H. Using land cover, population, and night light data to assess urban expansion in Kimberley, South Africa. S. Afr. Geogr. J. 2022. [Google Scholar] [CrossRef]
- Tan, M.H.; Li, X.B.; Li, S.J.; Xin, L.J.; Wang, X.; Li, Q.; Li, W.; Li, Y.Y.; Xiang, W.L. Modeling Population Density Based on Nighttime Light Images and Land Use Data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of Urban Growth and Estimating Population Density Using Satellite Images of Nighttime Lights and Land-Use and Population Data. Gisci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Wen, L.J.; Chatalova, L.; Zhang, A.L. Can China’s unified construction land market mitigate urban land shortage? Evidence from Deqing and Nanhai, Eastern coastal China. Land Use Policy 2022, 115, 105996. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Gould, W.A.; Gonzalez, O.M.R. Land Development, Land Use, and Urban Sprawl in Puerto Rico Integrating Remote Sensing and Population Census Data. Landsc. Urban Plan. 2007, 79, 288–297. [Google Scholar] [CrossRef]
- Miao, Y.B.; Liu, J.J.; Wang, R.Y. Occupation of Cultivated Land for Urban-Rural Expansion in China: Evidence from National Land Survey 1996–2006. Land 2022, 10, 1378. [Google Scholar] [CrossRef]
- Liu, T.; Liu, H.; Qi, Y.J. Construction Land Expansion and Cultivated Land Protection in Urbanizing China: Insights from National Land Surveys, 1996–2006. Habitat Int. 2015, 46, 13–22. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, J.; Song, W.; Wang, F.F.; Gao, X.; Liu, L.; Dong, K.; Yang, D.Z. Decoupling Analysis between Rural Population Change and Rural Construction Land Changes in China. Land 2022, 11, 231. [Google Scholar] [CrossRef]
- Carruthers, J.I.; Mulligan, G.F. Land absorption in US metropolitan areas: Estimates and projections from regional adjustment models. Geogr. Anal. 2007, 39, 78–104. [Google Scholar] [CrossRef]
- Han, H.L.; Li, H. Coupling Coordination Evaluation between Population and Land Urbanization in Ha-Chang Urban Agglomeration. Sustainability 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, P.Y.; Hou, W. Land Use/Cover Change and Driving Forces in Southern Liaoning Province Since 1950s. Chin. Geogr. Sci. 2005, 15, 131–136. [Google Scholar] [CrossRef]
- Tomao, A.; Mattioli, W.; Fanfani, D.; Ferrara, C.; Quaranta, G.; Salvia, R.; Salvati, L. Economic Downturns and Land-Use Change: A Spatial Analysis of Urban Transformations in Rome (Italy) Using a Geographically Weighted Principal Component Analysis. Sustainability 2021, 13, 11293. [Google Scholar] [CrossRef]
- Du, D.N. The causal relationship between land urbanization quality and economic growth: Evidence from capital cities in China. Qual. Quant. 2017, 51, 2707–2723. [Google Scholar] [CrossRef]
- Cheng, J.; Zhao, J.M.; Zhu, D.L.; Zhang, H. Limits of Land Capitalization and Its Economic Effects: Evidence from China. Land 2021, 10, 1346. [Google Scholar] [CrossRef]
- Huang, D.X.; Chan, R.C.K. On ‘Land Finance’ in urban China: Theory and practice. Habitat Int. 2018, 75, 96–104. [Google Scholar] [CrossRef]
- Li, L.; Zhao, K.; Wang, X.; Zhao, S.; Liu, X.; Li, W. Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi. Land 2022, 11, 415. [Google Scholar] [CrossRef]
- Zhang, W.P.; Shi, P.J.; Tong, H.L. Research on Construction Land Use Benefit and the Coupling Coordination Relationship Based on a Three-Dimensional Frame Model-A Case Study in the Lanzhou-Xining Urban Agglomeration. Land 2022, 11, 460. [Google Scholar] [CrossRef]
- Wang, Y.C.; Huang, C.L.; Feng, Y.Y.; Zhao, M.Y.; Gu, J. Using Earth Observation for Monitoring SDG 11.3.1-Ratio of Land Consumption Rate to Population Growth Rate in Mainland China. Remote Sens. 2020, 12, 357. [Google Scholar] [CrossRef] [Green Version]
- Nicolau, R.; David, J.; Caetano, M.; Pereira, J.M.C. Ratio of Land Consumption Rate to Population Growth Rate-Analysis of Different Formulations Applied to Mainland Portugal. ISPRS Int. J. Geo-Inf. 2019, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Shi, Y.Y.; Duan, W.K.; Chen, A.Q.; Wang, N.; Hao, J.M. Spatiotemporal Decoupling of Population, Economy and Construction Land Changes in Hebei Province. Sustainability 2019, 11, 6794. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Shao, D.; Zhang, Z.H. Spatio-Temporal Evolution Dynamic, Effect and Governance Policy of Construction Land Use in Urban Agglomeration: Case Study of Yangtze River Delta, China. Sustainability 2022, 14, 6204. [Google Scholar] [CrossRef]
- Wang, C.C.; Liu, Y.F.; Kong, X.S.; Li, J.W. Spatiotemporal Decoupling between Population and Construction Land in Urban and Rural Hubei Province. Sustainability 2017, 9, 1258. [Google Scholar] [CrossRef] [Green Version]
- Qi, J.; Hu, M.; Han, B.; Zheng, J.; Wang, H. Decoupling Relationship between Industrial Land Expansion and Economic Development in China. Land 2022, 11, 1209. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Yan, Y.; Zhu, K.; Guan, C. Spatio-Temporal Evolution Characteristics and Influencing Factors of Urban Service-Industry Land in China. Land 2022, 11, 13. [Google Scholar] [CrossRef]
- Tapio, P. Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001. Transp. Policy 2005, 12, 137–151. [Google Scholar] [CrossRef] [Green Version]
- Longhofer, W.; Jorgenson, A. Decoupling reconsidered: Does world society integration influence the relationship between the environment and economic development? Soc. Sci. Res. 2017, 65, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, W.; Zhao, K.; Zhang, P. Change Characteristics and Multilevel Influencing Factors of Real Estate Inventory—Case Studies from 35 Key Cities in China. Land 2021, 10, 928. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, J.; Zhao, K.; Chen, H.; Zhao, S.; Li, W. Dynamics and Decoupling Analysis of Carbon Emissions from Construction Industry in China. Buildings 2022, 12, 257. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, S.; Zhang, P.; Zhou, Y.; Li, K. Dynamics and Driving Mechanism of Real Estate in China’s Small Cities: A Case Study of Gansu Province. Buildings 2022, 12, 1512. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sandoval, J.S.O.; Maimaitiyiming, M. Drivers of Land Cover and Land Use Changes in St. Louis Metropolitan Area Over the Past 40 Years Characterized by Remote Sensing and Census Population Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 161–174. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, K.; Zhang, P. Spatial Inequality in China’s Housing Market and the Driving Mechanism. Land 2021, 10, 841. [Google Scholar] [CrossRef]
- Li, W.; Zhang, P.; Zhao, K.; Zhao, S. The Geographical Distribution and Influencing Factors of COVID-19 in China. Trop. Med. Infect. Dis. 2022, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Luo, W. Analysis of Groundwater Nitrate Contamination in the Central Valley: Comparison of the Geodetector Method, Principal Component Analysis and Geographically Weighted Regression. ISPRS Int. J. Geo-Inf. 2017, 6, 297. [Google Scholar] [CrossRef] [Green Version]
- Polykretis, C.; Grillakis, M.G.; Argyriou, A.V.; Papadopoulos, N.; Alexakis, D.D. Integrating Multivariate (GeoDetector) and Bivariate (IV) Statistics for Hybrid Landslide Susceptibility Modeling: A Case of the Vicinity of Pinios Artificial Lake, Ilia, Greece. Land 2021, 10, 973. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, P.; Zhao, K.; Zhou, Y.; Zhao, S. A Dynamic Performance and Differentiation Management Policy for Urban Construction Land Use Change in Gansu, China. Land 2022, 11, 942. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, C.; Qi, J. The Key Factors Driving the Development of New Towns by Mother Cities and Regions: Evidence from China. ISPRS Int. J. Geo-Inf. 2021, 10, 223. [Google Scholar] [CrossRef]
- Xie, F.; Zhang, S.; Zhao, K.; Quan, F. Evolution Mode, Influencing Factors, and Socioeconomic Value of Urban Industrial Land Management in China. Land 2022, 11, 1580. [Google Scholar] [CrossRef]
- Li, M.; Hao, J.M.; Chen, L.; Gu, T.W.; Guan, Q.C.; Chen, A.Q. Decoupling of urban and rural construction land and population change in China at the prefectural level. Resour. Sci. 2019, 41, 1897–1910. [Google Scholar] [CrossRef]
- Sapena, M.; Ruiz, L.A. Analysis of Land Use/Land Cover Spatio-Temporal Metrics and Population Dynamics for Urban Growth Characterization. Comput. Environ. Urban Syst. 2018, 73, 27–39. [Google Scholar] [CrossRef]
- Qu, Y.B.; Zhan, L.Y.; Jiang, G.H.; Ma, W.Q.; Dong, X.Z. How to Address “Population Decline and Land Expansion (PDLE)” of Rural Residential Areas in the Process of Urbanization: A Comparative Regional Analysis of Human-Land Interaction in Shandong Province. Habitat Int. 2021, 117, 102441. [Google Scholar] [CrossRef]
- Luo, X.; Tong, Z.M.; Xie, Y.F.; An, R.; Yang, Z.C.; Liu, Y.F. Land Use Change under Population Migration and Its Implications for Human-Land Relationship. Land 2022, 11, 934. [Google Scholar] [CrossRef]
- Ning, Q.M.; Ouyang, X.; Liu, S.B. Spatio-Temporal Evolution and Quality Analysis of Construction Land in Urban Agglomerations in Central China. Front. Ecol. Evol. 2022, 10, 912127. [Google Scholar] [CrossRef]
- Liu, Y.L.; Cai, E.X.; Jing, Y.; Gong, J.; Wang, Z.Y. Analyzing the Decoupling between Rural-to-Urban Migrants and Urban Land Expansion in Hubei Province, China. Sustainability 2018, 10, 345. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Fang, C.L.; Li, Y.R. Spatio-temporal Analysis of Population and Construction Land Change in Urban and Rural China. J. Nat. Resour. 2014, 29, 1271–1281. [Google Scholar] [CrossRef]
- Liu, Y.L.; Luo, T.; Liu, Z.Q.; Kong, X.S.; Li, J.W.; Tan, R.H. A comparative analysis of urban and rural construction land use change and driving forces: Implications for urban-rural coordination development in Wuhan, Central China. Habitat Int. 2015, 47, 113–125. [Google Scholar] [CrossRef]
- Dong, G.L.; Zhang, W.X.; Xu, X.L.; Jia, K. Multi-Dimensional Feature Recognition and Policy Implications of Rural Human-Land Relationships in China. Land 2021, 10, 1086. [Google Scholar] [CrossRef]
- Dorninger, C.; Von Wehrden, H.; Krausmann, F.; Bruckner, M.; Feng, K.S.; Hubacek, K.; Erb, K.H.; Abson, D.J. The Effect of Industrialization and Globalization on Domestic Land-Use: A Global Resource Footprint Perspective. Glob. Environ. Change-Hum. Policy Dimens. 2021, 69, 102311. [Google Scholar] [CrossRef]
- Haase, D.; Kabisch, N.; Haase, A. Endless Urban Growth? On the Mismatch of Population, Household and Urban Land Area Growth and Its Effects on the Urban Debate. PLoS ONE 2013, 8, e66531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, M.J.; Xie, Y.W.; Cao, Q. Spatiotemporal Changes in Rural Settlement Land and Rural Population in the Middle Basin of the Heihe River, China. Sustainability 2016, 8, 614. [Google Scholar] [CrossRef]
- Bianchini, L.; Egidi, G.; Alhuseen, A.; Sateriano, A.; Cividino, S.; Clemente, M.; Imbrenda, V. Toward a Dualistic Growth? Population Increase and Land-Use Change in Rome, Italy. Land 2021, 10, 749. [Google Scholar] [CrossRef]
- Trubins, R. Land-use change in southern Sweden: Before and after decoupling. Land Use Policy 2013, 33, 161–169. [Google Scholar] [CrossRef]
- Srinivasan, V.; Seto, K.C.; Emerson, R.; Gorelick, S.M. The Impact of Urbanization on Water Vulnerability: A Coupled Human-Environment System Approach for Chennai, India. Glob. Environ. Change-Hum. Policy Dimens. 2013, 23, 229–239. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.M.; Zhang, R. Efficiency Analysis of Land Use and the Degree of Coupling Link between Population Growth and Global Built-Up Area in the Subregion of West Africa. Land 2022, 11, 847. [Google Scholar] [CrossRef]
- Simwanda, M.; Murayama, Y. Integrating Geospatial Techniques for Urban Land Use Classification in the Developing Sub-Saharan African City of Lusaka, Zambia. ISPRS Int. J. Geo-Inf. 2017, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Cai, E.X.; Liu, Y.L.; Li, J.W.; Chen, W.Q. Spatiotemporal Characteristics of Urban-Rural Construction Land Transition and Rural-Urban Migrants in Rapid-Urbanization Areas of Central China. J. Urban Plan. Dev. 2020, 146, 05019023. [Google Scholar] [CrossRef]
- Li, Y.J.; Kong, X.S.; Zhu, Z.Q. Multiscale Analysis of the Correlation Patterns Between the Urban Population and Construction Land in China. Sustain. Cities Soc. 2020, 61, 102326. [Google Scholar] [CrossRef]
- Fang, L.; Tian, C.H. Construction land quotas as a tool for managing urban expansion. Landsc. Urban Plan. 2020, 195, 103727. [Google Scholar] [CrossRef]
- Li, Y.N.; Cai, M.M.; Wu, K.Y.; Wei, J.C. Decoupling analysis of carbon emission from construction land in Shanghai. J. Clean. Prod. 2019, 210, 25–34. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Li, Y.Q.; Chen, Y.N.; Liu, S.R.; Yang, Q.Y. Spatiotemporal Heterogeneity of Urban Land Expansion and Urban Population Growth under New Urbanization: A Case Study of Chongqing. Int. J. Environ. Res. Public Health 2022, 19, 7792. [Google Scholar] [CrossRef] [PubMed]
Variables | No. | Code | Indicators | Implication |
---|---|---|---|---|
Dependent | 1 | Urban Decoupling Relationship in 2009–2014 | Performance | |
2 | Rural Decoupling Relationship in 2009–2014 | |||
3 | Urban Decoupling Relationship in 2009–2014 | |||
6 | Rural Decoupling Relationship in 2009–2014 | |||
Independent | 5 | Urbanization Rate | Urbanization | |
6 | Urban–Rural Resident Income Ratio | |||
7 | Per Capita GDP | Industrialization | ||
8 | Tertiary Industry Proportion | |||
9 | International Trade | Globalization | ||
10 | Foreign Direct Investment | |||
11 | Gross Domestic Product (GDP) | Demand | ||
12 | Government Revenue |
Type | Δα | Δβ | γ | Human–Land Relations |
---|---|---|---|---|
SD (4) | ≤0 | ≥0 | ≤0 | The best state, with a growing permanent population and decreasing construction land use; this shows that the population is liberated from dependence on land and that land use is efficient and intensive, serving as a benchmark for high-quality sustainable development in the region. |
WD (3) | >0 | >0 | (0, 0.8) | Both permanent population and construction land use are growing, and the former experiences more growth than the latter, with harmonious human–land relations. |
EC (2) | >0 | >0 | (0.8, 1.2) | The permanent population and construction land use grow simultaneously, and the population depends greatly on land, with reasonable human–land relations. |
END (1) | >0 | >0 | (1.2, +∞) | Both permanent population and construction land use are growing, and the former experiences less growth than the latter; this suggests a stage of incremental and extensive development, with low-efficiency land resource utilization and unreasonable human–land relations. |
RD (−1) | <0 | <0 | (1.2, +∞) | Both permanent population and construction land use are decreasing, and land use is decreasing faster than population; this suggests a shrinking development stage, with unhealthy and unsustainable human–land relations, despite high-level land use efficiency and intensity. |
RC (−2) | <0 | <0 | (0.8, 1.2) | The permanent population and construction land use are decreasing simultaneously, and the population is highly dependent on land, with unhealthy human–land relations. |
WND (−3) | <0 | <0 | (0, 0.8) | Both permanent population and construction land use are decreasing, and the former is decreasing faster than the latter; the impact of land reduction on population outflow produces a non-linear amplification effect, leading to unhealthy and unsustainable human–land relations. |
SND (−4) | >0 | <0 | <0 | The worst state, with a declining permanent population and growing construction land use, representing a serious waste of land resources and sharp conflicts between humans and land, resulting in unhealthy and unsustainable human–land relations. |
Indicators | Code | Urban | Rural | ||||||
---|---|---|---|---|---|---|---|---|---|
2009–2014 | 2014–2019 | 2009–2014 | 2014–2019 | ||||||
q | p | q | p | q | p | q | p | ||
Urbanization Rate | 0.1815 | 0.0357 | 0.0405 | 0.6397 | 0.0000 | 0.5180 | 0.0000 | ||
Urban–Rural Resident Income Ratio | 0.0808 | 0.0653 | 0.0172 | 0.2291 | 0.0101 | 0.1695 | 0.0483 | ||
Per Capita GDP | 0.2042 | 0.0091 | 0.1661 | 0.0123 | 0.2363 | 0.0081 | 0.2974 | 0.0000 | |
Tertiary Industry Proportion | 0.2569 | 0.0000 | 0.0496 | 0.0675 | 0.2010 | 0.0219 | 0.1152 | 0.0530 | |
International Trade | 0.2597 | 0.0040 | 0.0980 | 0.0376 | 0.2165 | 0.0145 | 0.2018 | 0.0097 | |
Foreign Direct Investment | 0.0200 | 0.1022 | 0.0749 | 0.1897 | 0.0305 | 0.2841 | 0.0000 | ||
Gross Domestic Product (GDP) | 0.3718 | 0.0000 | 0.2493 | 0.0050 | 0.0661 | 0.0361 | 0.3796 | 0.0000 | |
Government Revenue | 0.4000 | 0.0000 | 0.1373 | 0.0273 | 0.0779 | 0.0236 | 0.3899 | 0.0000 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
0.1815 | ||||||||
0.3062 | 0.0808 | |||||||
0.3235 | 0.2755 | 0.2042 | ||||||
0.5050 | 0.3448 | 0.6433 | 0.2569 | |||||
0.7422 | 0.4172 | 0.7519 | 0.5011 | 0.2597 | ||||
0.2169 | 0.1132 | 0.2584 | 0.3042 | 0.3177 | 0.0200 | |||
0.7803 | 0.5145 | 0.7744 | 0.6484 | 0.5611 | 0.5344 | 0.3718 | ||
0.7833 | 0.4974 | 0.8046 | 0.5450 | 0.5347 | 0.4436 | 0.4634 | 0.4000 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
0.6397 | ||||||||
0.8293 | 0.2291 | |||||||
0.7218 | 0.5532 | 0.2363 | ||||||
0.6908 | 0.5145 | 0.3908 | 0.2010 | |||||
0.7598 | 0.4640 | 0.4794 | 0.5176 | 0.2165 | ||||
0.8157 | 0.6682 | 0.6013 | 0.4615 | 0.5955 | 0.1897 | |||
0.7191 | 0.3719 | 0.3738 | 0.2350 | 0.3324 | 0.2612 | 0.0661 | ||
0.6798 | 0.3770 | 0.3514 | 0.2366 | 0.3564 | 0.2944 | 0.0919 | 0.0779 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
0.0405 | ||||||||
0.0713 | 0.0172 | |||||||
0.2290 | 0.2717 | 0.1661 | ||||||
0.0947 | 0.0990 | 0.2189 | 0.0496 | |||||
0.1564 | 0.1238 | 0.2752 | 0.1370 | 0.0980 | ||||
0.1621 | 0.1700 | 0.3200 | 0.1835 | 0.3776 | 0.1022 | |||
0.4479 | 0.3132 | 0.5085 | 0.3180 | 0.3616 | 0.4928 | 0.2493 | ||
0.1878 | 0.1812 | 0.3422 | 0.1905 | 0.1936 | 0.4450 | 0.3743 | 0.1373 |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | |
---|---|---|---|---|---|---|---|---|
0.5180 | ||||||||
0.7610 | 0.1695 | |||||||
0.6005 | 0.7035 | 0.2974 | ||||||
0.5717 | 0.4179 | 0.4584 | 0.1152 | |||||
0.6118 | 0.6069 | 0.5048 | 0.3156 | 0.2018 | ||||
0.6950 | 0.6625 | 0.5050 | 0.4587 | 0.3995 | 0.2841 | |||
0.5610 | 0.7210 | 0.5444 | 0.4633 | 0.4545 | 0.5122 | 0.3796 | ||
0.6464 | 0.6910 | 0.4449 | 0.5104 | 0.4829 | 0.5294 | 0.4360 | 0.3899 |
Indicators | Code | Urban | Rural | ||
---|---|---|---|---|---|
2009–2014 | 2014–2019 | 2009–2014 | 2014–2019 | ||
Urbanization Rate | 0.2984 | 0.1332 | 0.0923 | 0.1027 | |
Urban–Rural Resident Income Ratio | 0.2379 | 0.1387 | 0.2718 | 0.4221 | |
Per Capita GDP | 0.3003 | 0.1254 | 0.2272 | 0.2100 | |
Tertiary Industry Proportion | 0.2116 | 0.1118 | 0.2050 | 0.2987 | |
International Trade | 0.2510 | 0.1174 | 0.2487 | 0.2454 | |
Foreign Direct Investment | 0.2560 | 0.1794 | 0.2962 | 0.2217 | |
Gross Domestic Product (GDP) | 0.2092 | 0.1339 | 0.2403 | 0.1294 | |
Government Revenue | 0.1590 | 0.1192 | 0.2303 | 0.1264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Yao, D.; Shi, H.; Qu, K.; Tang, Y.; Zhao, K. The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China’s Land Survey. Land 2022, 11, 1721. https://doi.org/10.3390/land11101721
Zhu X, Yao D, Shi H, Qu K, Tang Y, Zhao K. The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China’s Land Survey. Land. 2022; 11(10):1721. https://doi.org/10.3390/land11101721
Chicago/Turabian StyleZhu, Xiao, Di Yao, Hanyue Shi, Kaichen Qu, Yuxiao Tang, and Kaixu Zhao. 2022. "The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China’s Land Survey" Land 11, no. 10: 1721. https://doi.org/10.3390/land11101721
APA StyleZhu, X., Yao, D., Shi, H., Qu, K., Tang, Y., & Zhao, K. (2022). The Evolution Mode and Driving Mechanisms of the Relationship between Construction Land Use and Permanent Population in Urban and Rural Contexts: Evidence from China’s Land Survey. Land, 11(10), 1721. https://doi.org/10.3390/land11101721