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Abstract: Soil salinity is a negative impact of climate change, and it is a significant problem for
the coastal region of Bangladesh, which has been increasing in the last four decades. The issue of
soil salinity substantially limits the agricultural crop production in coastal areas. Therefore, a soil
salinity assessment is essential for proper land-use planning in agricultural crop production. This
research was carried out to determine the soil salinity area with different salinity levels in Barguna
Sadar Upazila (sub-district). The remote sensing technique, which is a potentially quick yet effective
method for the soil salinity estimation in data-scarce conditions, was applied. The methodology
employed the Landsat 8 OLI dataset along with nine soil salinity indices to develop a soil salinity
map. The maps were from Soil Resource Development Institute (SRDI), and low NDVI value (−0.01
to 0.48) was produced using satellite images illustrate the extent of the soil salinity for the study area.
However, nine linear regressions, which were made between the pixel value of the satellite-based
generated map and ground truth soil salinity data, that is, the EC value, indicate a maximum R2 value
for the salinity index SI 7 = G × R/B, representing a value of 0.022. This minimal R2 value indicates
a negligible relationship between the ground EC value and the pixel value of the salinity index
generated map, inferring that the indices are not sufficient to assess the soil salinity. Nonetheless, this
research’s findings offer a guide for researchers to investigate alternative geospatial approaches for
this geophysical condition.

Keywords: soil salinity; coastal region; remote sensing; electrical conductivity; salinity index

1. Introduction

Bangladesh’s coastal areas are hydrologically and geomorphologically dominated by
the Bay of Bengal and Ganges Brahmaputra Meghna (GBM) river system. The coastal zone
covers 47,201 km2, or 32 percent of the country’s surface, and it comprises 19 districts.
The coastal area accommodates 35 million people or 29% of the country’s population.
Jessore, Narail, Gopalganj, Shariatpur, Chandpur, Satkhira, Khulna, Bagerhat, Pirozpur,
Jhalakati, Barguna, Barisal, Patuakhali, Bhola, Lakshmipur, Noakhali, Feni, Chittagong, and
Cox’s Bazar comprise the 19 coastal districts of Bangladesh [1,2]. Bangladesh is one of the
most vulnerable countries to the impacts of climate change. Various natural disasters and
hazards, including intense rainfall, cyclones, regular flooding, thunderstorms, tornadoes,
storm surges, salinity intrusion, and others, have become predominant in this country, and
the intensity of these disasters has been rising in the coastal regions [3,4].

The most common and potential effect of climate change includes sea-level rise which
causes the inundation of low-lying areas, the development of soil salinity which is caused
by saltwater intrusion, and wetland loss. Globally, roughly 600 million residents in the
coastal low-elevation regions are impacted by growing salinization [5,6]. According to
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recent studies, the sea levels may rise by one meter or more during the twenty-first century
and this is linked to climate change, thereby leading to adverse impacts on one billion
people by 2100 [7–12]. Bangladesh is one of the nations that is most at risk from a predicted
sea-level increase which is induced by climate change. In addition, many studies assert that
climate change alarmingly raises the level of the soil salinity in coastal Bangladesh [13–15].

Due to the entrance of saltwater, agricultural cropland is severely affected, thereby
reducing the agrarian crop production rates. Mangrove forests and fisheries of the coastal
zone are also at risk of incurring damage from salinization [15–20]. Because of its re-
markable effects on agriculture, coastal ecosystems, infrastructure, aquaculture, and the
availability of fresh water for domestic and commercial usage, rising salinity from saltwater
intrusion that is caused by climate change may be the greatest danger to the livelihoods
and public health of coastal inhabitants. Recent studies show that by 2050, climate change
could significantly alter the river salinity in Bangladesh’s southwest coastal region [21].
These modifications are anticipated to cause a lack of water for irrigating dry-season crops,
considerable alterations in the coastal aquatic ecosystems, and significant drinking water
shortages in coastal metropolitan areas [21].

Consequently, understanding soil salinity’s physical and economic implications and
planning strategic adaptation measures will be essential for the long-term growth of and
poverty reduction in the nations with susceptible coastal regions [12]. Therefore, it is
necessary to check and monitor the soil salinity in coastal Bangladesh continuously. This
would also help the policymakers and the government to take appropriate measures to
address climate change issues to improve public health.

The coastal area accounts for more than 30% of Bangladesh’s cultivable land. These
regions’ proximity to the ocean, low-land topography, the meeting of the mighty Ganges,
Brahmaputra, and Meghna rivers, decreased upstream freshwater supplies, and delicate
agro-ecosystems make them even more sensitive to the effects of climate change. Different
soil salinity levels already affect about 37% of the cultivable coastal land [22]. The Soil
Resource Development Institute (SRDI), at the Ministry of Agriculture, reported that around
2.86 million hectares of coastal and off-shore land are affected by the varying levels of
salinity, including 1.056 million hectares of arable land [22].

In 2009, the current geographic distribution of the saline soils was examined utilizing
reconnaissance soil survey techniques and various base materials such as aerial images, a
toposheet, Upazila soil, a landform map, a previously published soil salinity map, and so
on. Soil salinity affects 1.056 million hectares of coastal land from a total area of 1.689 mil-
lion hectares. About 0.328, 0.274, 0.189, 0.161, and 0.101 million hectares of land are affected
by soil that is very slightly saline (S1), slightly saline (S2), moderately saline (S3), intensely
saline (S4), and very strongly saline (S5), respectively. More recently, salinity has affected
the land areas in the Barisal Satkhira, Borguna, Pirojpur, Jessore, Jhalakathi, Narail, Patu-
akhali, Madaripur, and Gopalganj districts, thereby reducing their agricultural production
significantly. Table 1 compares the soil salinity in the coastal areas during the last four
decades from 1973 to 2009. A comparison of the salt-affected site from 1973 to 2009 has
revealed that during the period, over 0.223 million ha (26.7 percent) of new land had been
impacted by varying degrees of salinity (Table 2). It was also discovered that throughout
the last nine years, from 2000 to 2009, approximately 35,440 hectares of new land had been
affected by varying degrees of salinity [22].

Table 1. Soil salinity-affected areas in the coastal region between 1973 and 2009 [22].

The Total Area
Affected by Soil

Salinity (×103 ha)

Different Soil Salinity Classes and Areas (×103 ha)

S1
2.0–4.0 dS/m

S2
4.1–8.0 dS/m

S3
−16.0 dS/m

S4
>16 dS/m

1973 2000 2009 1973 2000 2009 1973 2000 2009 1973 2000 2009 1973 2000 2009

833.45 1020.75 1056.26 287.37 289.76 328.43 426.43 307.20 274.22 79.75 336.58 351.69 39.90 87.14 101.92
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Table 2. Increase in soil salinity salt-affected area from 1973 to 2009 [22].

Period 2000–2009 (×103 ha) Period 1973–2009 (×103 ha)

35.51 (3.5%) 222.81 (26.7%)

According to the Soil Resource Development Institute (SRDI) [22], the leading causes
of increased soil salinity in the topsoils of the coastal region are expected to be as a re-
sult of irregular rainfall, the withdrawal of fresh river water from upstream, the faulty
management of sluice gates and polders, the introduction of brackish water from shrimp
cultivation, the regular saline tidal water flooding of unprotected areas, and the capillary
rise of soluble salts.

Soil salinity harms the coastal ecology’s health since it affects the soil’s health and
vegetation. Moreover, it is a significant threat to the growth and development of the
plants. Agricultural crop production has been decreasing with the changing of the cropping
patterns in coastal areas over the years as a consequence of soil salinity. Plant growth
is hampered by salts, which increase the soil osmotic pressure and impede the normal
nutrition uptake by plants from the ground. The water deficit or osmotic pressure that
is caused by the soil salinity clarifies that salt concentration plays a role in reducing the
capacity of a crop plant to uptake the soil water.

Consequently, the plant growth process becomes slow when the soil contains a high
salt concentration. Munns et al. also observed that the osmotic effect of soil salinity renders
changes in the plant’s metabolic process, which often resemble the wilting that is caused by
water deficiency [23]. Furthermore, salinity stress inhibits the growth of the plant due to
there being imbalances in the nutritional uptake and specific ion toxicity for the plant [24]
or a combination of these variables [24,25]. Indeed, the effects of salinity on the plant’s
growth are time-dependent, which means that the intensity of the salinity effect varies with
the growth stage of the plants; Munns et al. devised a two-stage model to demonstrate
how the growth stage of plant is affected by salinity [26]. The initial step is rapid, wherein
the growth slowing that occurs is attributed to the emergence of the water shortage. The
second stage, which is very sluggish, is caused by the accumulation of lethal amounts of
salts in the shoot. Flexas et al. observed that salinity impacts photosynthesis by reducing
the CO2 availability due to diffusion constraints and lowering the photosynthetic pigment
content [27–30].

Along with the significance of rising soil salinity, soil health, the prime determining
factor of crop cultivation in coastal areas, has decreased over the years. Consequently, the
soil salinity area determination and the mapping of it could be essential for an appropriate
land-use planning and agricultural policy to be made to enhance the crop production.

A soil salinity assessment through a remote sensing analysis using satellite data is very
convenient, effective, and sustainable in situations where the field data are scarce. Generally,
a soil salinity determination through a field measurement process and a laboratory analysis
is time-consuming and expensive; it poses the challenge of an extensive area examination.
Thus, a remote sensing analysis could be an innovative problem-solving technique that
is used to overcome these constraints for a soil salinity assessment. Traditionally, the
measurement of the soil salinity involves the collection of soil samples, their processing, and
a laboratory analysis to determine the concentration of the solutes or electrical conductivity
(EC). However, these methodologies are expensive and time-consuming since intensive
sampling is required to assess the area’s geographic variability [31,32]. Ghabour and Daels
observed that a soil salinity determination has traditionally taken time [31]. However, the
remote sensing methods provide more efficient and cost-effective tools for estimating and
mapping the soil salinity. In addition, when it is compared to the conventional methods,
the remote sensing technique is faster, and it is easier to create and update the spatial maps
with information [32–35]. Integrating remote sensing data and processes with geographic
information systems (GIS) is beneficial since GIS displays the spatial distribution of salinity



Land 2022, 11, 1784 4 of 18

and its related environmental dangers, and mapping soil salinity has become a simple
operation over the past three decades [36–38].

The reflectance that comes from various soil types that are concentrated with multiple
degrees of salinity is very sensitive to the electromagnetic spectrum wavelengths in the
near-infrared (NIR) to shortwave infrared (SWIR) range [39]. Remote sensing technology
has recently become popular for assessing and monitoring the level of soil salinity, as
salty soil provides a higher reflectance in the visible and infrared range [32,40,41]. The
production of a soil salinity map could be based on estimating a range of soil salinity
indicators using the satellite data from Landsat 5, Landsat 7, and Landsat 8 [42]. The
remote sensing-based comprehensive land surface factor system (CLSFS) (which comprises
four factors—spectral information, the ecological indices, the spatial location, and the land
cover) [43] along with CLSFS (comprising—the salinity index, the heat and moisture index,
the spectral value, the vegetation index, the spatial location, and the land cover) could
achieve the significant result in terms of soil salinity mapping [44].

Observing and identifying the spatial area distribution of the salt-affected area is
possible with the use of satellite imagery. Furthermore, satellite data and remote sensing
techniques can also likely assess the temporal soil salinity changes and the soil salinity
dynamics over the period that is studied. If a model is generated for a particular area, it
is possible to use that model to analyze the soil salinity for the other part of the country.
Bangladesh’s Soil Resource Development Institute (SRDI) performs soil salinity assessments
through field surveys and laboratory analyses, which are time-consuming and challenging.
Hence, this research aims to determine the spatial and aerial distribution of the land area
that is affected by various degrees of soil salinity through remote sensing techniques for
the achievement of improved analytical measures.

2. Materials and Methods
2.1. Study Area

The research was carried out in Barghuna Sadar Upazila (sub-district) in the Barguna
District, which is situated in the coastal region of Bangladesh, as illustrated in Figure 1. The
study area covers 454.39 square kilometers, and it is located between the latitudes 21◦58′

and 22◦15′ north and the longitudes of 89◦59′ and 90◦14′ east. It is bordered on the north
by Betagi, Mirzaganj, and Patuakhali Sadar Upazilas, on the south by the Bay of Bengal
and Amtali Upazila, on the east by Patharghata and Bamna Upazilas, and on the west by
Patharghata and Bamna Upazilas. Soil salinity is a salient feature in the study area, where
most of the land area is highly affected by various degrees of soil salinity. Around 60% of
the population is involved in the agriculture sector. The range of crops that growing in this
are rice, green gram, groundnut, kheshari, and some vegetables which are the main crops
(Barguna Sadar Upazila, Bangladesh National Portal, n.d.9).

2.2. Datasets

Two types of datasets were used in this research.

(1) Landsat 8 OLI satellite data were used to develop a salinity map which was down-
loaded from the United States Geological Survey (USGS). The path and row that were
used in USGS to download the image are 137 and 44, respectively. The cloud cover
was less than 10 percent.

(2) For the ground truth data, a printed map was collected from the Soil Resource De-
velopment Institute (SRDI), Ministry of Agriculture. The map illustrates the various
point locations with the soil salinity data and the electrical conductivity (EC) value.
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Figure 1. Study area—Barguna Sadar Upazila.

2.3. Methodology
2.3.1. Land Use–Land Cover Classification

The Land Use–Land Cover (LULC) classification was performed for the spatial iden-
tification and categorizing the various components of the earth’s surface, such as the
vegetation, the agriculture, the water bodies, and the urban areas. The extent of these
components also can be determined in hectares from the LULC map. The LULC classifi-
cation was performed in Google Earth Engine Platform (GEE), a cloud-based computing
platform with a machine learning algorithm. GEE is going to be a popular tool for spatial
data analysis. According to past studies, GEE has been used in various fields, including
agriculture, forestry, economics, and medicine [45,46]. The Landsat 8 datasets that were
utilized in assembling the map comprise—the Landsat 8 Collection 1 Tier 1 calibrated
top-of-atmosphere (TOA) reflectance with a cloud cover of less than 10% for May 2017. The
process began with loading the study area (ROI) and satellite data and clipping the data for
the ROI. Then, the training data was collected with the collection of many sample points
followed by assembly of all of the sample points. Finally, a smile cart classifier was utilized
to classify the image, and an accuracy assessment was performed using a confusion matrix,
and a 93.72% accuracy was determined [16]. The final map was exported for its use in
the ArcGIS environment to calculate the areas with different classes as per a supervised
classification. The entire process followed the Figure 2.
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2.3.2. Normalized Difference Vegetation Index (NDVI)

The normalized differential vegetation index (NDVI) [47] is a widely used indicator
that measures the amount and quality of the vegetation on a given ground surface. Studies



Land 2022, 11, 1784 6 of 18

have shown that the NDVI can distinguish between the vegetation types, including savan-
nah, dense forest, non-forest, and agricultural fields. Moreover, it determines whether a
forest is evergreen or seasonal [48]. It can also be used to estimate a variety of vegetation
properties, such as the chlorophyll concentration in leaves [49], the biomass [50], the Leaf
Area Index (LAI) [51], the plant productivity [52], the plant stress [53] and the fractional
vegetation cover [54].

The value of the NDVI ranges from −1 to +1; the higher the NDVI value is, then the
higher the vegetation concentration in the landscape is. A negative NDVI index value
generally denotes the non-green areas, such as deserts, water, rivers, and built-up regions,
whereas a positive number denotes the green areas [55]. The NDVI value can also be
used to assess the health condition of plant and vegetation communities. This is due to
the expectation that healthy plant communities would have higher NDVI values than
unhealthy plants would. The NDVI map was generated using Landsat 8 OLI with 30 m
spatial resolution, which was downloaded from https://earthexplorer.usgs.gov/ in 25
May 2017.

The NDVI was calculated as in Equation (1)

NDVI =
NIR [Band 5]− RED [Band 4]
NIR [Band 5] + RED [Band 4]

(1)

where NIR [Band 5] and RED [Band 4] represent the near-infrared and the red band of
Landsat 8 OLI products, correspondingly.

2.3.3. Satellite Data-Based Soil Salinity Map Preparation and Regression Analysis

The Landsat 8 OLI data was downloaded from Earth Explorer, United States Geologi-
cal Survey (USGS) (https://earthexplorer.usgs.gov/) in 25 May 2017. The path and row
were 137 and 44, respectively, with there being less than 10 percent cloud cover. First, atmo-
spheric and radiometric corrections were applied to the Landsat 8 satellite images through
ArcGIS 10.7. This preprocessing is performed to lessen the atmospheric perturbations
and radiometric distortions that are produced by aerosols, clouds, and other atmospheric
particles [56]. The atmospheric correction of the satellite image is necessary to determine
the actual surface reflectance value to recover the data accurately as the influence of the
absorption of water vapor is substantial for the TM/ETM + near-infrared (IR) channels in
the Landsat satellite images [57]. Then, these corrected bands were extracted to obtain the
study area using the ‘extract by mask’ function in ArcGIS. Thereafter, the salinity indices
were estimated through a raster calculator in ArcGIS to produce a salinity map with dif-
ferent salinity classes (Table 3) based on assigning relevant pixel values to the EC values.
Finally, a linear regression analysis was carried out to determine the relationship between
the ground EC measurements and the satellite image index values.

Table 3. Five soil salinity classes and their effect on plants [58].

Salinity Class EC (ds/m) Level of Salinity Effects on Plants

Non-saline 0–2 Negligible effects on plants.

Slightly saline 2–4 Reduction of crop yield for susceptible plants.

Moderately saline 4–8 Affect a wide variety of plants and limit their yield.

Highly saline 8–16 Only salinity-resistant crops can survive.

Extremely saline >16 Most of the plants cannot grow up. Only a few highly
resistant crops survive.

Nine soil salinity indices were applied to the satellite images from 2017 to develop
salinity maps for Barguna Sadar Upazila. These included five salinity classes (non-salty,
slightly salty, moderately salty, highly saline, and extremely saline). The salinity indices

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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that were used to create the maps are listed in Table 4. Accordingly, the nine-soil salinity
map was generated based on the satellite data.

Table 4. Various Salinity Indices (SI) used to develop soil salinity map.

Salinity Index (SI) Description References

SI 1 =
√

B2∗B4
B2 = Blue (Band 2)
B4 = Red (Band 4) [59]

SI 2 =
√

B3∗B4
B3 = Green (Band 3)
B4 = Red (Band 4) [59]

SI 3 =
√
(B3)2 + (B4)2 + (B5)2

B3 = Green (Band 3)
B4 = Red (Band 4)
B5 = Near Infrared (Band 5)

[60]

SI 4 =
√
(B3)2 + (B4)2 B3 = Green (Band 3)

B4 = Red (Band 4) [60]

SI 5 =
√
(B4)2 + (B5)2 B4 = Red (Band 4)

B5 = Near Infrared (Band 5) [59]

NDSI = R−NIR
R+NIR

NDSI =
Normalized Differential Salinity Index
R = Red, NIR = Near Infrared

[59]

SI 6 =
SWIR−1∗SWIR−2 – SWIR−2∗SWIR−2

SWIR−1
SWIR = Short-Wave Infrared [61]

SI 7 = G ∗ R
B G = Green Band, R = Red Band [61]

SI 8 = R ∗ NIR
G

R = Red Band, NIR = Near Infrared,
G = Green Band [62]

The ground truth soil salinity (EC value) data were collected from the Soil Resource
Development Institute (SRDI), Ministry of Agriculture, Bangladesh, as a printed map
[Figure 3a] showing the 85 locations of the soil sampling points. The soil salinity, which
is shown in the printed map, involves examining the soils’ physical properties through
collecting the soil sample, drying, and estimating the EC values through a laboratory
chemical analysis. These data were acquired from April to May 2017. Each point location
represents the ground soil salinity and the EC values with various ranges. These field
measurements are required to create a relationship between satellite image-derived salinity
indices and the field data of the EC value. First, this printed map was scanned, and this
step was followed by the digitization one. Next, the digitized map was georeferenced using
WGS 1984 UTM 46 N, and lastly, a point shapefile was produced, as shown in Figure 1. All
of these processes were carried out using ArcGIS 10.7 software (Esri, Redlands, California,
USA; www.esri.com/software/arcgis, accessed on 8 October 2022).

Next, the pixel values from the salinity indices generated map was extracted using
the spatial analyst tool for each point of the EC values in the point shape, thereby giving
each EC value a unique pixel value. For this purpose, 85 points locations were considered.
This process was carried out for all of the salinity indies. It implies that all of the EC values
of the point shapefile have corresponding pixel values for all of the indices. Finally, the
following linear regression was carried out for all of the salinity indices maps using the
obtained EC and the pixel values to observe the relationship between the pixel and the
ground EC values. Accordingly, a nine-linear regression chart was generated with the
R2 values. Notably, if there was a good correlation between these values for a specific
salinity index, then the salinity map could be produced for different times and places using
a specific index calculation.

www.esri.com/software/arcgis
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3. Results
3.1. Land Use–Land Cover (LULC) Classification

The LULC map classification encompasses five categories: water, forest, agriculture,
built environment (which includes urban areas, shores, bare areas, and roads), and villages
(comprising homes, trees, and rural roads) (Figure 4). The area of these categories is
determined in hectares with the water cover encompassing 7639.02 ha, the forest area
encompassing 350.73 ha, the agricultural land encompassing 18,514.53 ha, the built-up area
encompassing 3258.63 ha, and the villages encompassing 9657.72 hectares, respectively.
Half of the Barguna Sadar represents agricultural land, representing 46.97% of the total area.
The other classes contain viz water, forests, built-environments, and villages, occupying
19.38%, 0.89%, 8.27%, and 24.5% of the areas, individually.
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3.2. Normalized Difference Vegetation Index (NDVI)

The NDVI is a vegetation index that is used to calculate the state of the vegetation
for a particular area. The NDVI values range from −1 to +1, whereby a negative value
indicates water and cloud, a positive value with near zero refers to bare land, and a higher
value ranges from sparse vegetation (0.1–0.5) to dense vegetation (0.6 or above) [47]. It
implies that the higher the value of the greenness of the vegetation, then the higher the
NDVI value will be. The results from the NDVI map indicate that the value ranges from
−0.01 to 0.48, which is lower than the standard value is. It is also found that the NDVI
value for the significant area is much lower than 0.48, indicating that the site has no or a
poor amount of vegetation (Figure 5).
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3.3. Satellite-Based Soil Salinity Maps and Regression Charts

Nine soil salinity maps were generated using the nine soil salinity indices, which are
given below in Figure 6a–i.

The results of the linear regression between the salinity indices value and the corre-
sponding reflectance value are illustrated below in Table 5 and Figure 7.

Table 5. Linear regression analysis results for nine different salinity indices.

Salinity Index (SI) Index Range Date of Satellite Image Number of Samples R2

SI 1 =
√

B2∗B4 0.095–0.4 25 May 2017 85 0.0208

SI 2 =
√

B3∗B4 0.084–0.41 25 May 2017 85 0.021

SI 3 =√
(B3)2 + (B4)2 + (B5)2 0.17–0.83 25 May 2017 85 0.00006

SI 4 =
√
(B3)2 + (B4)2 0.12–0.59 25 May 2017 85 0.0207

SI 5 =
√
(B4)2 + (B5)2 0.13–0.72 25 May 2017 85 0.00009

NDSI = R−NIR
R+NIR −0.69–0.17 25 May 2017 85 0.0076

SI 6 =
SWIR1∗SWIR2−SWIR2∗SWIR2

SWIR−1
0.009–0.099 25 May 2017 85 0.0042

SI 7 = G ∗ R
B 0.05–0.44 25 May 2017 85 0.0228

SI 8 = R ∗ NIR
G 0.079–0.62 25 May 2017 85 0.0011
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Figure 6. (a) Salinity map using salinity index 1; (b) Salinity map using salinity index 2; (c) Salinity
map using salinity index 3; (d) Salinity map using salinity index 4; (e) Salinity map using salinity
index 5; (f) Salinity map using salinity 6; (g) Salinity map using salinity index 7; (h) Salinity map
using salinity index 8; (i) Salinity map using NDSI.
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served that the maximum R2 value for all of the salinity indices is below 0.02, and the 
minimum value is 0.00009, thus indicating that there is a minimal relationship between 
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Figure 7. (a) Linear Regression between ground EC and Salinity Index 1; (b) Linear Regression
between Ground EC value and Salinity Index 2; (c) Linear Regression between ground EC value and
Salinity Index 3; (d) Linear Regression between Ground EC value and Salinity Index 4; (e) Linear
Regression between value Ground EC value and Salinity Index 5; (f) Linear Regression between
Ground EC value and Salinity Index 6; (g) Linear Regression between Ground EC value and Salinity
Index 7; (h) Linear Regression between ground EC value and Salinity Index 8; (i) Linear Regression
between Ground EC value and NDSI.

4. Discussion

The results of the linear regression analysis show a very negligible relationship be-
tween the satellite-based salinity indices maps and the ground truth EC values. It is
observed that the maximum R2 value for all of the salinity indices is below 0.02, and the
minimum value is 0.00009, thus indicating that there is a minimal relationship between
them. The linear regression analysis has been used in several case studies as a first step in
creating the soil salinity maps. Researchers in El-Tina Plain, Egypt, used two predictive
models, the Multivariate Adaptive Regression Splines (MARS) and the Partial Least Squares
Regression (PLSR), which were based on the observed EC and the laboratory soil reflectance
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spectra which were resampled, thereby resulting in Landsat sensor’s resolution and R2 val-
ues of 0.73 and 0.70 for the PLSR and MARS linear regression analyses, respectively. These
results were quite good at forecasting the new EC values for various places in different
years [63]. Another study in Central Iraq used the Generalized Difference Vegetation Index
(GDVI) to map the soil salinity, and the authors of it found multi-temporal changes using
the Landsat 4, Landsat 5, and Landsat 7 ETM+ data, thus yielding an R2 value of 0.94. [64].
In the Lower Cliff Plain of Algeria, researchers have used five soil salinity indices compris-
ing Landsat 7 images to detect and forecast the soil salinity: SI 1 =

√
B1∗B3 , SI 2 = 2 ∗ B2

− (B3 + B4), SI 3 =
√
(B2)2 + (B3)2, SI 4 = (B3 − B4)/(B3+B4), and Soil Adjusted Salinity

Index (SASI) = B3/(100 ∗ (B1)2) [65]. They also developed a multiple linear regression
model for the prediction of soil salinity based on the Soil Adjusted Salinity Index (SASI) =
B3/(100 ∗ (B1)2) and an elevation with an R2 value of 0.45 that is between the measured EC
and the predicted EC [66]. Furthermore, in a study by [42] in Tuz Lake Region, Turkey, five
salinity indices were applied to Landsat 5 satellite images to monitor the soil salinization.
The best result found for SI 1 =

√
B1∗B3 with an R2 value was 0.83 (Table 6). So, compared

to these studies, the R2 value that we obtained is very minimal for this study.

Table 6. Results of linear regression analysis for five different salinity indices used in the Tuz Lake
Region, Turkey [42].

Salinity Index (SI) Index Range Sample Numbers R2 Value

SI 1 =
√

B1∗B3 0–1 28 0.83

SI 2 =
√

B2∗B3 0–1 28 0.77

SI 3 =
√
(B2)2 + (B3)2 + (B4)2 0–1.73 28 0.76

SI 4 =
√
(B2)2 + (B3)2 0–1.42 28 0.74

SI 5 =
√
(B3)2 + (B4)2 0–1.42 28 0.71

On the other hand, the NDVI value that was found for the study area ranges between
−0.01 and 0.48. This low NDVI value indicates that there is a minimum amount of
vegetation in the Barguna Sadar Upazila. Soil salinity might have severely affected the
growth of the vegetation, and from the NDVI map, the soil of the Barguna Sadar area is
severely affected by the salinity. Through the Normalized Difference Vegetation Index
(NDVI), which is used to express the health of the vegetation, the remote sensing data
supplied quantitative information on the status of the diverse plants. The level of plant
greenness and the crop’s health are related to the salinity of the soil [67–69]. The different
levels of the NDVI values are linked to different soil salinity classes, for example, very
severe salinization, severe salinization, moderate salinization, weak salinization, and non-
salinization highlighted in Table 7.

Table 7. Hypothetical NDVI range for soil salinity levels [69].

NDVI Range Soil Salinity Level

0.15–0.25 Very severe salinization

0.26–0.40 Moderate to Severe salinization

0.41–0.55 Moderate salinization

0.56–0.70 Weak salinization

0.71–1.00 Non-salinization

Thus, the NDVI map also visualizes the soil salinity that affects the vegetation’s health.
However, the regression between the soil salinity indices and the ground truth values
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shows a minimum rate. As a result, it is assumed that these salinity indices do not work
well to determine the soil salinity using the satellite data in the coastal area of Bangladesh.

These indices may apply to those areas where the soil salinity is visible, meaning those
areas in which salt appears on the soil surface. For example, it is observed that the salt
concentration is visible in Tuz Lake, Turkey. However, the salt concentration is not visible
on the soil surface of the study area. Therefore, the salt concentration in the soil particles
needs a laboratory analysis to be performed in order to assess the EC value. Subsequently,
these formulas are insufficient for evaluating the soil salinity based on remote sensing
data alone.

5. Conclusions

Climate change has substantially affected the coastal areas of Bangladesh, where
40 million people’s subsistence depends on agriculture. Soil salinity that is due to climate
change prevails dominantly across the rural coastal areas, and it significantly affects the crop
growth’s development, ultimately negatively impacting the agricultural crop production
and the food security status. It also severely impacts public health by creating a shortage of
fresh drinking water. From the LULC map, it is found that approximately 50 percent of the
study area is agricultural land which means that the livelihood of the inhabitants depends
mainly on agriculture. Therefore, to create proper land-use planning for agricultural crop
production plus to address the scarcity of fresh drinking water, salinity-affected land area
identification and its monitoring are essential. Significantly, salt-affected areas, and their
location, intensity, and pattern varies over time, so regular investigations are warranted.
However, a salinity determination is traditionally performed by field measurements that
are coupled with a laboratory analysis, which is a challenging, laborious, costly, and
time-consuming task when it is performed on a large scale; as such, the use of a satellite
imagery-based analysis could make the processes quicker and more cost-effective, and
this should be utilized in future investigations. This research was intended to determine
the soil salinity area through a remote sensing analysis using some approaches, formulas,
and salinity indices that were applied in other studies in different regions of the world.
However, the extracted salinity values by the indices that were used have not produced
satisfactory results; the correlation (R2 value) between the salinity indices-generated salinity
map and the measured salinity values was meager. On the other hand, the Soil Resource
Development Institute (SRDI)-created salinity maps clearly illustrate the various soil salinity
degrees for the study area. In addition, the NDVI also showed low values, indicating that
there was a poor amount of or no vegetation. Consequently, it could be inferred that poor
or no vegetation levels indicate the existence of soil salinity.

We can also conclude that the salinity indices that have been applied in this research
are not enough to determine the soil salinity from the Landsat imagery for the study area.
The reason might lie in the type or nature of the salinity and the soil’s physical and chemical
properties for this specific geographic area. Therefore, the performance of collaborative
work with SRDI and other government and non-government agencies, identifying the
alternative options of remote/proximal sensing techniques, is essential with this particular
area for assessing the soil salinity.
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