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Abstract: Land use is an important factor in the change of carbon emissions, and predicting the spatial
pattern of carbon emissions under different land use scenarios is of great significance to respond to the
“double carbon” target of China. Based on the land use data of Nanjing city, Jiangsu Province, China
in 2010, 2015 and 2020, this study used the Conversion of Land Use and its Effects at Small regional
extent (CLUE-S) model to simulate the land use change pattern in 2030 under multiple scenarios,
and predicted the carbon emissions of each subzone based on the simulation results. It also provides
a carbon balance zoning from an economic and ecological point of view and proposes strategies
tailored to each district. The results show that: (1) in 2030, under the ecological conservation scenario,
ecological land all shows different degrees of increase, while under the cultivated land conservation
scenario, construction land only increased by 1.47%. This indicates that the ecological and cultivated
land protection perspectives can effectively curb the expansion of construction land. (2) The growth
rate of carbon emissions in Nanjing from 2010–2030 decreased from 16.65–3.7%. This indicates that
carbon emissions continue to rise, but the trend of growth is slowing down. (3) The spatial carbon
emissions in Nanjing show an overall higher level in the north and lower in the center; the large
expansion of building land and the concentration of industrial industries are the main reasons for the
large increase in carbon emissions. Under the ecological protection scenario, the carbon emissions of
Lishui, Pukou and Qixia districts were 11.05× 104 t, 19.437× 104 t and 10.211× 104 t lower than those
under the natural growth scenario, mainly because these three districts have more ecological land and
the ecological protection effect is more significant. Under the cultivated land conservation scenario,
the growth rate of carbon emissions slows down significantly. This indicates that the future structure
of carbon emissions in Nanjing will vary significantly, and that ecological protection and arable land
conservation play an important role in reducing carbon emissions. This study shows that it is difficult
to reduce emissions in a concerted manner. Therefore, for different districts, differentiated land use
optimization measures should be developed according to local conditions, and ecological protection
and cultivated land protection scenarios should both be taken into account.

Keywords: CLUE-S model; land use; carbon emission zoning; scenario simulation

1. Introduction

In recent years, carbon emissions have attracted widespread international attention as
the trend of global warming has further intensified. China has clearly proposed in 2020 to
strive to achieve carbon peaking by 2030 and carbon neutrality by 2060. Carbon emissions
caused by land use change have an important impact on global warming. Research shows
that [1], since the industrial revolution, carbon emissions caused by land use change
account for about one-third of the total carbon emissions from human activities. Yue
et al. [2] concluded that the land carbon balance under human land use is composed of
emissions from land use and land use change. They affirmed the importance of land use
in the carbon cycle feedback and argued that to mitigate climate problems, the carbon
sink capacity of land should be enhanced. Carbon emissions are not only directly related
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to land use types, but also to geographical location, land management, and spatial and
temporal patterns of land use [3]. Therefore, proposing low-carbon land use regulation
countermeasures according to the carbon emission intensity of different types of land,
and improving the spatial patterns of regional land use are of great significance to reduce
carbon emissions, promote low-carbon development and cope with climate change [4].

The assessment methods of land use carbon emissions are divided into direct and
indirect [5]. Direct carbon emissions refer to carbon emissions from land use itself, while
indirect carbon emissions refer to carbon emissions caused by all human activities on
different types of land. Scientific modeling of future spatial patterns of land use is essential
to predict carbon emissions. At present, many models for simulating land use change exist,
such as Markov chain prediction models, gray system models, etc. Additionally, in recent
years, many scholars have coupled quantitative models for simulating and predicting land
use change with spatial allocation algorithms and proposed many models for predicting
spatial patterns of land use change, such as the meta cellular automata model (CA) [6],
CLUE-S model [7], Geographical Simulation and Optimization Systems (GeoSOS) model [8],
etc. Among them, the CLUE-S model is more widely used. The model is suitable for the
simulation of small area land usage under different scenarios with fine resolution, which
can better explain the spatial connection and relative stability between land use types and
locations, and can be widely used in land use simulation [9].

Many studies have now explored the spatial and temporal characteristics and trends
of land use carbon emissions at different scales, and discussed carbon emission efficiency,
among others. Huang H et al. [10] explored the spatial and temporal evolution of land use
carbon emissions, carbon sequestration and net carbon emissions in China’s provinces from
2003–2016, and analyzed the equity and variability of carbon emissions through the Gini
coefficient. Xia C et al. [11] proposed a land carbon correlation rate. The combined effects
of urban land use changes on the carbon balance in Zhejiang Province during the periods
1995–2000, 2000–2005, 2005–2010 and 2010–2015 are discussed. They showed positive and
negative land-related carbon conversions, as well as changes in ecological relationships.
FAN Jianshuang et al. [12] measured and decomposed the carbon emission efficiency of
different types of land use structures in 11 districts of Nanjing from 2005–2014. In these
studies, the main focus was on carbon emission measurement and assessment, and the
research area was gradually focused from larger scale range to a deeper small-scale area,
which further improved the methodological system of carbon emission research. According
to previous studies, the impact on land use change of carbon emissions mainly depends
on the ecosystem type and land use type transformation. The related studies simulate the
future land use change scenarios and their impact on carbon emissions based on the model,
and provide suggestions for optimizing the land use structure with the goal of carbon
balance. Yu Kangkang et al. [13] analyzed carbon emissions of different land use types in
the Taihu basin during various historical periods and simulated land use and its carbon
emissions for 2030–2040. Feng Y et al. [14] proposed a meta-automata model to predict
land use scenarios and used these scenarios to estimate the total emissions in China and
its changes from 2000 to 2030. Zhu W et al. [15] used a Markov-CLUE-S model to analyze
land use changes in the Qihe watershed in the southern Taihang Mountains from 2005 to
2015. They predicted land use patterns and carbon stocks under natural growth, cropland
conservation, and ecological conservation scenarios in 2025. However, in estimating the
required area of land use types under different scenarios, only the probabilities were
transferred by the modified Markov model without considering the relevant local policies.
In summary, there is a wide range of research into carbon emissions based on land use
change. The use of future scenario modeling to predict carbon emissions is also becoming
more sophisticated. However, there is still a lack of zonal modeling of carbon emissions at
a small scale. This includes providing a scientific basis for land use planning and decision-
making in different regions based on the predicted results. Few studies have also taken
into account relevant local policies when conducting scenario modeling.
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Nanjing, as the capital of Jiangsu Province, is the core city of the Yangtze River
Economic Belt and an important industrial base in China. With the rapid economic devel-
opment, Nanjing’s construction land has expanded rapidly and other types of land such
as cultivated land and forest land have been shrinking, leading to soaring carbon emis-
sions year by year. How to coordinate economic development and ecological civilization
construction in the region has become a major issue. Rational planning of land use, and
promoting green, low-carbon and high-quality development and green transformation of
the city are conducive to providing a reference for emission reduction actions. This study
simulated the spatial distribution of land use changes in 2030 based on land use data from
2010 to 2020. Combined with local policies, the spatial pattern of carbon emissions in 2030
was projected under three scenarios: natural growth, ecological conservation and cultivated
land conservation. Carbon balance partitioning was carried out on the carbon emission
projection results, and the differences in future carbon emission patterns between regions
under different scenarios were analyzed.

2. Materials and Methods
2.1. Study Area

Nanjing city, Jiangsu Province, China (Figure 1) is located in the eastern part of China
and the lower part reaches the Yangtze River, with a geographical location between 31◦14′

and 32◦37′ north latitude and 118◦22′ and 119◦14′ east longitude. Nanjing belongs to
the subtropical monsoon climate, with four distinct seasons, abundant rainfall and good
natural conditions. It is a hilly area, with low hills and gentle hills dominating, with low
hills accounting for 3.5% of the total land area, hills for 4.3%, downland for 53%, and plains,
depressions and rivers and lakes for 39.2%. At the same time, Nanjing is a fast-growing city
with a high level of economization. It is an important gateway city of the Yangtze River
Delta radiating the development of the central and western regions and an important node
city of the strategic intersection of the eastern coastal economic belt and the Yangtze River
economic belt. The city has a resident population of about 9,319,700 and a total area of
6587.02 km2 [16].
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2.2. Data Source and Processing

This study selected the land use remote sensing monitoring data of Jiangsu Province
with a spatial resolution of 1 km for five periods of 2010, 2013, 2015, 2018 and 2020.
We also used data of China’s provincial administrative boundaries in 2015 and data of
China’s prefectural and municipal administrative boundaries in 2015. The above data
are from the Resource and Environment Science Data Center of the Chinese Academy
of Sciences (http://www.resdc.cn) (accessed on 24 July 2022). The natural environment
data such as elevation and slope were obtained from the SRTM3 dataset in the geospatial
data cloud (http://www.gscloud.cn/) (accessed on 28 July 2022) with a spatial resolu-
tion of 90 m. The spatial distribution of the population was obtained from WorldPop
(http://www.worldpop.org) (accessed on 25 July 2022). The socio-economic data are repre-
sented by the nighttime lighting data of “Luojia-1” (http://59.175.109.173:8888/index.html)
(accessed on 3 August 2022). Basic geographic information data, such as the spatial dis-
tribution of highways, railroads, rivers and lakes, were obtained from OpenStreetMap
(https://www.openhistoricalmap.org/) (accessed on 26 July 2022). The spatial distribu-
tion data of protected areas include ecological protection areas, cultivated land and basic
farmland restricted development areas in Jiangsu Province. They were obtained from the
National Ecological Protection Plan of Jiangsu Province (http://www.jiangsu.gov.cn/art/2018
/6/26/art_46143_7715521.html) (accessed on 23 July 2022) and the General Land Use Plan of
Jiangsu Province (2006–2020) (http://g.mnr.gov.cn/201807/t20180720_2115893.html) (ac-
cessed on 23 July 2022) respectively. The data were imported into ArcGIS10.2 for geographic
alignment and vectorization. The slope data were generated by the slope tool in ArcGIS
based on the elevation data, and the distance elements such as distance from highway and
distance from railroad were obtained by the Euclidean distance tool in ArcGIS. All data
are unified in the coordinate system of CGCS2000_GK_CM_119E, and the resolution of all
raster data was unified to 90 m by the resampling tool.

Economic and social indicators’ data, energy and GDP data, etc., were obtained
from the Nanjing Statistical Yearbook (http://tjj.nanjing.gov.cn/bmfw/njtjnj/) (accessed on
5 August 2022) [16] and the China Energy Yearbook [17] for each year.

2.3. Research Methods
2.3.1. CLUE-S Model

This study used the CLUE-S model developed and improved by Verburg et al. [7]
from Wageningen University & Research in The Netherlands. The model was developed
to simulate land use change using the intrinsic quantitative and empirical relationships
between land type change and drivers. It allows for relatively accurate spatial dynamic
simulations at small scale scales based on different scenarios and top-down spatial alloca-
tion of land use type changes. The CLUE-S model is divided into two different modules,
the non-spatial demand module and the spatial allocation module [18]. The non-spatial
demand module, which needs to calculate the land use demand in the region according
to the settings of different scenarios, usually relies on external models to accomplish this.
In this study, Markov chains were used as an external prediction model to forecast the
future land use quantity demand. The spatial allocation module is based on the theoretical
foundation of where changes in a particular land class are most likely to occur. In this
module, the probability of land use occurring at each location is calculated and the land
use change is iterated year by year in conjunction with the land use demand. Thus, the
spatial and temporal changes in future land use are simulated [18]. The principle of the
CLUE-S prediction model is [19]:

TPROPi,u = Pi,u + ELACu + ITERu (1)

where TPROPi,u is the probability of occurrence of land type u on grid i; Pi,u is the prob-
ability of spatial distribution calculated by the regression model; ELACu is the elasticity
coefficient of land use type u; ITERu is the iterative variable of land use type u.

http://www.resdc.cn
http://www.gscloud.cn/
http://www.worldpop.org
http://59.175.109.173:8888/index.html
https://www.openhistoricalmap.org/
http://www.jiangsu.gov.cn/art/2018/6/26/art_46143_7715521.html
http://www.jiangsu.gov.cn/art/2018/6/26/art_46143_7715521.html
http://g.mnr.gov.cn/201807/t20180720_2115893.html
http://tjj.nanjing.gov.cn/bmfw/njtjnj/
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The following four components need to be considered as inputs to the CLUE-S model:

1. Logistic regression coefficient;

In this study, logistic regression was used to calculate the relationship between the
distribution of land use types and the driving factors, linking the probability of land type
occurrence with the location characteristics as a way to characterize the suitability of each
area land type, which is often based on natural environmental, socioeconomic and other
factors. Meanwhile, elevation, slope, slope direction, distance to rivers, and distance to
lakes were selected as natural environmental factors, population density and nighttime
lighting index as socio-economic factors, and distance to highway and distance to railway
as transportation factors [20]. The logistic regression model can be written as following:

log (
Pi

1− Pi
) = β0 + β1X1 + β2X2 + . . . + βnXn (2)

where Pi is the probability of occurrence of the specified land use type in a grid cell; Xn is
each driver, i.e., independent variable; β0 is the constant term; βn is the coefficient of each
independent variable.

A binary logistic regression model stepwise regression was constructed in IBM SPSS
Statistics ver.25 software (Armonk, NY, USA: IBM Corp.) to achieve this, and the Receiver
Operating Characteristic (ROC) method was adopted to assess the goodness of fit as a way
to estimate the regression results [21]. Judging from the Area under the Curve (AUC) of the
ROC, the value of AUC is between 0.5 and 1, and the closer to 1, the better the regression
result.

Firstly, according to the land use remote sensing monitoring data from the Resource
and Environment Science Data Center of the Chinese Academy of Sciences, the land use
is divided into five categories: cultivated land, woodland, grassland, water body, and
construction land. Because the amount of unused land is too small, this study classified the
unused land into the category of construction land. The raster files of 5 land categories and
9 drivers were converted to ASCII files by the Raster to ASCII tool in ArcGIS. The single
record file of each land category about 9 drivers was produced by using the convert software
included in the CLUE-S model package, which was converted to an SPSS-applicable format
and run SPSS for binary logistics. The results of the regression are shown in Table 1. The
selected drivers have good fits for the five land categories of cultivated land, woodland,
grassland, water body and construction land, with the values of AUC of 0.772, 0.781, 0.897,
0.805, 0.875, respectively.

Table 1. Logistic regression results.

Drive Factor Cultivated
Land Woodland Grassland Water Body Construction

Land

Elevation −0.003 0.055 −0.022 −0.0458 −0.009
Slop −0.031 0.049 0.0236 −0.139 −0.002

Slope direction 0.009 −0.007 - 0.00024 -
Population

density −0.038 −0.0069 −0.00246 0.0033 0.049

Nighttime
lighting index −0.013 −0.01 0.00001 - 0.043

Distance to
highway 0.00034 −0.0003 - 0.033 0.0512

Distance to
railway −0.009 −0.001 0.000033 0.024 0.0374

Distance to
rivers 0.07 0.044 −0.000135 0.00059 0.097

Distance to
lakes 0.01 0.096 −0.000087 - 0.174

Constant −0.167 −1.047 1.492 0.42 0.6257
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2. Land demand;

The Markov chain is a stochastic time series that uses the present state and movement
of a variable to predict the future state of that variable and its movement [22]. Due to
its excellent “memorylessness”, it is widely used in the simulation of land use demand
quantities. The basic formula is shown below [23]:

St+1 = Pi,j × St

Pi,j =

P1,1 · · · P1,n
...

. . .
...

Pm,1 · · · Pm,n


Pi,j ∈ [0, 1),

n

∑
j=1

Pi,j = 1(j, j = 1, 2, · · · , n)

(3)

where St+1 and St are the number of each land use type at moments t + 1 and t, respectively;
Pi, j denotes the transfer probability matrix.

In this study, the Markov chain model was used to forecast the land use demand in
2030 based on the land use data in 2010 and 2020. The Markov model was also applied to
obtain land use demand for 2023 based on data from 2013 and 2018, and 2027 based on
data from 2013 and 2020. It was assumed that the speed of each category varies uniformly
across the years 2020–2030, and the data for the remaining years were obtained using linear
interpolation [15,24].

3. Transfer matrix and transfer elasticity;

The transition matrix indicates whether one land type can be converted into another
land type; 1 means it can be converted, 0 means cannot be converted. The settings of the
transition matrix are shown in Table 2.

Table 2. Land use transfer matrix.

Land Use Type Cultivated
Land Woodland Grassland Water Body Construction

Land

Cultivated land 1 1 1 1 1
Woodland 1 1 1 1 1
Grassland 1 1 1 1 1

Water body 1 1 1 1 1
Construction land 1 1 1 1 1

The transfer elasticity was used to measure the reversibility of land use change, and its
value is between 0 and 1; the closer to 0, the less likely the conversion will occur. According
to the land use transfer matrix and transfer probability from 2010 to 2020, combined with
expert experience, the transfer elasticity of cultivated land, woodland, grassland, water
body and construction land under different scenarios was formulated (see Table 3). In the
ecological protection scenario, in order to effectively protect the ecological land, the transfer
of woodland, grassland and water bodies is increased, and the transfer elasticity of these
three types of use is increased by 0.1. The transfer elasticity of cultivated land increased
to 0.8.
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Table 3. Transfer elasticity of land use types under different scenarios.

Cultivated
Land Woodland Grassland Water Body Construction

Land

Natural growth
scenario 0.6 0.7 0.7 0.8 0.9

Ecological
protection scenario 0.6 0.8 0.8 0.9 0.9

Cultivated land
protection scenario 0.8 0.7 0.7 0.8 0.9

4. Space policy and regional restrictions.

This part refers to the protected areas in the area where changes in land use are not
allowed. According to the documents of the National Ecological Protection Plan of Jiangsu
Province and the General Land Use Plan of Jiangsu Province (2006–2020), this study made eco-
logical protection restrictions area and cultivated land protection restricted area document
respectively.

2.3.2. Accuracy Validation

The Kappa coefficient [25–27] is used as a measure of simulation accuracy. The value of
the Kappa coefficient is between 0 and 1, and the closer to 1, the better the model simulation
effect is. Generally, when the Kappa coefficient is greater than 0.75, it indicates that the
simulation results are fitted better. The specific calculation formula is as follows:

Kappa =
Po − Pc

1− Pc
(4)

where Po is the ratio of the number of identical pixels in the simulated map to the total
number of pixels in the actual utilization map, i.e., the proportion of correctly simulated
pixels; Pc is the expected probability based on the consistency of the distribution of the
simulated map.

2.3.3. Estimation of Carbon Emissions for Different Land Use Type

For the estimation of carbon emissions from different land types, there are two meth-
ods [28]. The first is the direct estimation method based on the Intergovernmental Panel
on Climate Change (IPCC) inventory [29], where land use carbon emissions are calculated
directly through carbon emission (carbon sequestration) factors. This method is applicable
to areas with few human activities generating large amounts of carbon emissions, such
as cropland, forest land, grassland, and water. The second one is to use the energy emis-
sion factor method in the IPCC report [30], and this method is applicable to construction
land with large amount of human activities generating carbon emissions [31]. The carbon
emission calculation formula for non-construction land is as follows:

Ek = ∑4
i=1 ei= ∑4

i=1 ei × δi (5)

where Ek is the total direct carbon emission from non-construction land; i is the land use
type; ei is the carbon emission occurring on type i land; Ti is the total area of type i land; δi
is the carbon emission or carbon absorption coefficient of type i land.

The carbon emission of cultivated land consists of the difference between carbon
emission from conducting agricultural activities and carbon uptake by photosynthesis of
crops on cultivated land, and the carbon emission factor of cultivated land was determined
to be 0.0422 kg/(m2·a) according to the study of Sun He et al. [32]. Woodland and grassland
produce less carbon emissions from human activities and have better carbon sequestration
capacity. The carbon emission coefficients of woodland and grassland were determined to
be −0.0631 kg/(m2·a) and −0.0021 kg/(m2·a), according to Shi Hongxin et al. [33]. General
water bodies include wetlands and lakes, which has better ecological conditions and is
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mostly carbon sinks. The carbon emission factor of water body was determined to be
−0.0253 kg/(m2·a) according to Shi Hongxin et al. [33].

Carbon emissions from construction sites are mainly composed of the sum of fossil
energy consumption during production and construction and carbon emissions from
population breathing. This study selected raw coal, washed coal, coke, natural gas, crude
oil, gasoline, kerosene, diesel, fuel oil, and liquefied petroleum gas as the energy sources [12].
The formula for calculating carbon emissions from construction land is shown below:

Et = ∑ (Et1 + Et2)

Et1 =
10

∑
i=1

Eti1 =
10

∑
i=1

(Eti1 × θi × fi)
(6)

where Et is the total carbon emissions from construction land; Et1 is the carbon emissions
from the consumption of fossil energy for production activities; Et2 is the carbon emissions
from population respiration; Eti1 is the carbon emissions from the consumption of fossil
energy of category I; Ei1 is the total amount of fossil energy consumption of category i;
θi is the converted standard coal coefficient of fossil energy of category i; fi is the carbon
emission coefficient of each type of energy.

According to the China Energy Statistical Yearbook and the IPCC Guidelines for Na-
tional Greenhouse Gas Inventories, the Table 4 shows converted standard coal coefficients
and the carbon emission coefficients of the 10 fossil energy sources.

Table 4. Fossil Energy Conversion Standard Coal Factor and Carbon Emission Factor.

Energy Discount Factor for Standard
(Coalkgce/kg)

Carbon Emission Factor
(t C/t)

Raw coal 0.7143 0.7559

Washed refined coal 0.9000 0.7559

Coke 0.9714 0.855

Natural gas 1.2143 0.4483

Crude oil 1.4286 0.5857

Gasoline 1.4714 0.5538

Kerosene 1.4714 0.5714

Diesel 1.4571 0.5921

Fuel oil 1.4286 0.6185

Liquefied petroleum gas 1.7143 0.5042

3. Results
3.1. Simulation Accuracy Verification

Based on the land use data of Nanjing in 2010 and 2015, a Markov chain was applied
to predict the land demand in 2020. The data for the missing years were obtained by linear
interpolation. And all the data was input into the CLUE-S model to simulate the spatial
structure of land use distribution in Nanjing in 2020. By comparing the real land use pattern
in 2020 with the simulation results, the accuracy of the model and its applicability to this
study area can be determined.

Using the two images as input data and applying the Kappa module in the Plus
software accuracy verification, we can get the Kappa coefficient of simulated land use
in Nanjing in 2020 as 0.8365, which is greater than 0.75; therefore, the CLUE-S model is
considered to be able to predict the land use status better and with higher accuracy. Actual
and simulated land use patterns in 2020 are shown in Figure 2.
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Figure 2. Comparison of actual land use and simulated land use in Nanjing in 2020.
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3.2. Analysis of 2030 Land Simulation Results under Different Scenarios

For the current stage of development and future development needs of Nanjing, this
study constructed three different scenarios of natural growth, ecological protection and
cultivated land protection [34], and simulated the land use change pattern in 2030 under
different scenarios by setting the number of growth or reduction of certain land types and
adding different regional restriction files to the model [35].

3.2.1. Natural Growth Scenario

In the natural growth scenario, it was assumed that land use change from 2020–2030
is not constrained by spatial policies and regions and continues the natural evolutionary
trend development from 2010–2020 without significant changes. This scenario is more
common in land use change simulations and is one of the scenarios with high simulation
accuracy in most studies [36,37]. The simulated land use pattern of Nanjing in 2030 under
the natural growth scenario is shown in Figure 3.

 

2 

 
Figure 3. Spatial pattern of land use in Nanjing in 2030 under natural growth scenario.

In the period of 2020–2030, the areas of cultivated land, grassland and water will
decrease by 14,575.95 hm2, 625.32 hm2 and 610.74 hm2, and the areas of forest land and
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construction land will increase by 413.1 hm2 and 15,398.91 hm2, respectively. By 2030, the
cultivated land in Nanjing will decrease to 313,345.26 hm2; compared with 2020 it decreased
by 4.44%. Grassland decreased to 5184 hm2, a decrease of 10.76% compared to 2020, and
water body decreased to 71,942.58 hm2, a decrease of 0.84% compared to 2020. Woodland
increased to 67,110.12 hm2, an increase of 0.169% compared to 2020. Construction land
increased to 190,192.05 hm2, an increase of 8.81% compared to 2020. Under this trend, the
increase of forest land and the decrease of water area are smaller, the area of cultivated land
and grassland is significantly reduced, and the area of construction land is significantly
increased. Construction is expanding at the cost of taking up cultivated land and grassland,
and if the trend continues, it will cause a series of ecological and environmental problems.

From the spatial change pattern of land use in each district of Nanjing, the decrease
of cultivated land area is concentrated in Jiangning District, Lishui District and Pukou
District, with a decrease of more than 2000 hm2. The increase of woodland area is mainly
concentrated in Lishui District, Pukou District and Gaochun District; all three districts are
located in the outer edge of Nanjing, far from the city center. Grassland area decreased
in most areas, and only Pukou District had a small increase. The growth of water body is
mainly concentrated in Lishui District, Liuhe District and Pukou District. The expansion
trend of construction land is to grow outward along the existing large construction land
and fill in the inner part of the city, at the cost of occupying a lot of cultivated land and
other types of land. Since Lishui District, Gaochun District and Pukou District belong to the
distant suburbs of Nanjing, the ecological environment is better; woodland, grassland and
water bodies more or less increased. However, with the economic growth and accelerated
urbanization in recent years, the construction land has expanded rapidly. The cultivated
land areas in Jiangning District, Pukou District and Qixia District, where the increase of the
construction land is most obvious, were all reduced by a large amount.

3.2.2. Ecological Conservation Scenario

Nanjing is the capital city of Jiangsu Province, and during the period of 2010–2021,
the total economic volume crossed nine-hundred billion, achieving a historic breakthrough
of one trillion, and ranking second in the GDP of 13 cities in Jiangsu Province. With the
rapid development of the economy, problems such as the reduction of cultivated land
area, the crowding of ecological space, and the shrinking of wetland area have come one
after another. In order to make future development sustainable, this study designed an
ecological protection scenario. Under this scenario, the amount of woodland, grassland and
water body converted to construction land is reduced by 30%. The study also constructed a
development restriction zone document based on the National Ecological Protection Plan of
Jiangsu Province. Figure 4 shows the simulated land use pattern of Nanjing in 2030 under
the ecological protection scenario.

Under the ecological protection scenario, compared with the land use in 2020, the
areas of woodland, grassland, water body, and construction land increased by 2255.3 hm2,
790.47 hm2, 5255.33 hm2, and 8199.45 hm2, respectively, and the area of cultivated land
decreased by 16,500.55 hm2. Compared with the natural growth scenario, the areas of
woodland, grassland, and water body increased by 1842.2 hm2, 1415.79 hm2, 5866.07 hm2.
The area of cultivated land and construction land decreased by 1924.6 hm2, 7199.46 hm2.

According to the spatial simulation pattern of land use, it can be seen that the wood-
land in Pukou District, Lishui District and Liuhe District has a more obvious growth.
Grassland in Pukou District, Yuhuatai District and Liuhe District has a small growth.
Larger waters such as Yangtze River, Shishu Lake and Gucheng Lake have a slight increase
in water body size due to the surrounding ecological protection. The growth of the con-
struction land area is concentrated in Pukou and Jiangning districts. Compared with the
natural growth scenario in 2030, the ecologically relevant areas will grow by 9124.06 hm2

under the ecological protection scenario. The most significant growth areas are Lishui
District, Pukou District and Yuhuatai District, with an increase of 1914.30 hm2, 1227.05 hm2

and 1028.44 hm2. From the overall pattern, except for the decrease of cultivated land,
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the area of woodland, grassland and water bodies increased compared with the natural
growth scenario, which indicates that the ecological protection scenario is beneficial to the
ecological protection and sustainable development of Nanjing.

 

3 

 
Figure 4. Spatial pattern of land use under ecological protection scenario in Nanjing in 2030.

3.2.3. Cultivated Land Conservation Scenarios

The rapid expansion of cities is accompanied by the crowding out of the quantity of
high-quality cultivated land, which is a significant contradiction with the conservation
of cultivated land, the quantity and quality of which are closely related to national food
security [38]. In response to the national policy of cultivated land protection and to ensure
national food security, this study designed a cultivated land protection scenario. Under
this scenario, the conversion of cultivated land into construction land is reduced by 40%.
The basic construction land is also set as a restricted area according to the General Land Use
Plan of Jiangsu Provincial (2006–2020). The simulation pattern of land use in 2030 under the
scenario of cultivated land protection in Nanjing is shown in Figure 5.
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Figure 5. Spatial pattern of land use under cultivated land protection scenario in Nanjing in 2030.

Under the cultivated land conservation scenario, compared with the land use in
2020, the areas of woodland, grassland, water body and construction land increased by
1372.4 hm2, 94.16 hm2, 456.99 hm2 and 3178.03 hm2, and the area of cultivated land
decreasesdby 5101.58 hm2. Compared with the natural growth scenario, the areas of
cultivated land, woodland, grassland and water body increased by 9474.37 hm2, 959.3 hm2,
719.48 hm2, and 1067.73 hm2, respectively, and the area of construction land decreased by
12,220.88 hm2.

According to the spatial simulation pattern of land use, it can be seen that a small
amount of destruction of woodland occurred in Jiangning District, Liuhe District, and
Gulou District, while all other areas grew. The change of grassland area is not obvious,
with a small increase or decrease in several districts. The construction land in Lishui
District, Liuhe District, Yuhuatai and Gaochun District all show a little negative growth;
Jiangning District has a more obvious growth, and all other districts have a small growth.
Compared with the natural growth scenario in 2030, the cultivated land area increased by
9474.37 hm2 under the cultivated land conservation scenario. Cultivated land in Pukou,
Liuhe, Lishui and Gaochun districts increased most significantly, with an increase of
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1678.32 hm2, 1485.27 hm2, 1075.29 hm2 and 960.16 hm2, respectively. This is due to the fact
that the cultivated land conservation areas are mainly set up in these four districts. From
the overall pattern, the cultivated land increased the most. In the cultivated land restricted
development area, besides the significant growth of cultivated land, the watershed is also
relatively well protected, and the overall woodland, grassland and watershed areas have
all increased to a certain extent, indicating that the cultivated land protection scenario has
a certain effect on both cultivated land protection and natural ecological protection.

3.3. Carbon Emission Projections for Different Land Use Types
3.3.1. Trends in Carbon Emissions

The carbon emissions corresponding to each land use type are estimated below based
on the simulated area of each land use type in 2030 under different scenarios (see Table 5).
In this case, a linear regression model was developed to estimate the energy consumption
and population density in 2030 based on the energy consumption and population density
from 2010–2020. The results were used to calculate the carbon emissions of construction
land in 2030 [13].

Table 5. Carbon emissions from different land categories in Nanjing, 2010–2030.

Year

Carbon Source (104 t) Carbon Sink (104 t)
Net

EmissionCultivated
Land

Construction
Land

Total Carbon
Emissions Woodland Grassland Water Body Total Carbon

Uptake

2010 15.487 6164.065 6179.552 −4.26 −0.143 −1.808 −6.211 6173.341
2020 13.838 7193.661 7207.499 −4.209 −0.012 −1.836 −6.057 7201.442

2030’s natural
growth scenario 13.223 7460.864 7474.087 −4.235 −0.01 −1.82 −6.065 7468.022

2030’s ecological
conservation

scenario
13.141 7412.538 7425.679 −4.351 −0.139 −1.969 −6.459 7419.22

2030’s cultivated
land conservation

scenario
13.623 7395.295 7408.918 −4.295 −0.124 −1.847 −6.266 7402.652

According to the trend of carbon emission changes in each year, it can be seen that the
carbon emission from 2010–2030 is on an increasing trend, from 6173.341 × 104 t in 2010 to
7201.442 × 104 t in 2020 and then to 7468.022 × 104 t in the forecasted 2030. The increase
from 2020 to 2030 is 3.7%, and although the overall trend is still up, this is plateauing
steadily. There are two main sources of carbon: cultivated land and construction land. The
results show that the area of cultivated land is decreasing and the area of construction land
is increasing every year. The reduction in carbon sources due to the reduction in the area
of cultivated land is much smaller than the increase in carbon sources due to the increase
in the area of construction land. This leads to a continuous increase in net emissions. The
carbon sink effect of woodland is the largest, accounting for about 70% of the total carbon
sink. Although the area of woodland in 2030 increased compared with 2020, it is still
decreased compared with 2010, and the total absorption is on a decreasing trend, with
a slight increase in 2030.

The main contributions of carbon sources and sinks come from construction land
and woodland. However, due to the small area of ecological land, the carbon sources
are much larger than the carbon sinks. Moreover, with the accelerated urbanization and
industrialization of Nanjing in recent years, the population continues to gather in the
city center area, fossil energy consumption is growing and construction land continues to
expand. This has led to continued growth in net carbon emissions. If we do not protect
ecological land and cultivated land, and limit the growth of energy consumption and area of
construction land, it will lead to the unrestricted growth of carbon emissions and increased
climate pressure. Under the two scenarios of ecological conservation and cultivated land
conservation in 2030, there is a significant increase in the area of ecological land and
a significant decrease in the area of construction land compared to the natural growth
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scenario. Net carbon emissions decreased by 0.653% and 0.875%, compared to the natural
growth scenario. This indicates that the adoption of ecological conservation or cultivated
land conservation measures can effectively curb the growth of carbon emissions.

3.3.2. Spatial Patterns of Carbon Emissions

Table 6 shows the total net carbon emissions of 11 districts in Nanjing in 2020, under
the natural growth scenario in 2030, the ecological protection scenario in 2030, and the
cultivated land protection scenario in 2030. Among them, Jiangning District, Liuhe District
and Pukou District have been in the first place in terms of carbon emissions. The total
energy consumption is higher in these districts due to their large areas and significantly
larger construction land areas than in other districts. In contrast, Qinhuai District, Jianye
District and Xuanwu District have lower carbon emissions.

Table 6. Total Net Carbon Emissions by District in Nanjing.

Region 2020’s 2030’s Natural
Growth Scenario

2030’s Ecological
Conservation

Scenario

2030’s Cultivated
Land Conservation

Scenario

Jianye 228.374 253.46 249.773 246.55
Jiangning 1904.852 1950.12 1942.472 1940.307

Lishui 484.752 474.493 463.443 472.09
Liuhe 1063.856 1078.836 1083.815 1083.224
Pukou 1014.747 1049.057 1029.62 1031.782
Qixia 768.749 804.273 794.062 783.531

Qinhuai 173.751 196.144 197.237 189.877
Xuanwu 269.47 300.071 310.173 299.749
Yuhuatai 248.473 276.189 269.891 270.641
Gaochun 344.936 358.02 348.005 355.843

Gulou 699.482 727.359 730.729 729.058

In order to distinguish the difference between carbon emissions of each district,
Figure 6 has classified the 11 districts into three levels: light carbon emission, medium
carbon emission, and heavy carbon emission. In 2020, Liuhe District, Pukou District, Qixia
District, and Jiangning District are heavy carbon emission areas, Gulou District, Gaochun
District, Lishui District, and Xuanwu District are medium carbon emission areas, and Jianye
District, Yuhuatai District, and Qinhuai District are light carbon emission areas. In 2030,
under the natural growth scenario, Jianye District changed from a light carbon emission
area to a moderate carbon emission area, and Gulou District changed from a moderate
carbon emission area to a heavy carbon emission area. Under the ecological protection and
cultivated land protection scenario, the carbon emissions of each district decreased slightly
due to a more or less reduction in the amount of land used for construction in all districts.
The carbon emission classification of Jianye District remained unchanged and remained as
a light carbon emission area.

Under the ecological protection scenario, carbon emissions in Lishui, Pukou and
Qixia districts decreased the most, with 11.05 × 104 t, 19.437 × 104 t and 10.211 × 104 t,
respectively. Gulou, Qinhuai and Xuanwu districts decreased the least. This indicates
that the key areas for ecological protection are in the remote suburban areas at the edge
of Nanjing, and that more ecological protection is needed in the city center. Under the
cultivated land protection scenario, the carbon emissions in Pukou, Jiangning and Qixia
districts all decreased more significantly, with 17.275 × 104 t, 9.813 × 104 t, 20.742 × 104 t,
respectively, indicating that the cultivated land protection policy has a more significant
effect on reducing carbon emissions. The cultivated land conservation scenario shows a
greater decrease in carbon emissions per zone than the ecological conservation scenario.
This is because the rate of reduction in construction land is greater than the rate of increase
in cultivated land. Jiangning District ranks first in carbon emissions all year round, due
to the presence of a large number of industrial enterprises in Jiangning District. It is also



Land 2022, 11, 1788 16 of 19

one of the most important industrial clusters in Nanjing and has many energy-intensive
industries.
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4. Discussion

In recent years, Nanjing’s economy has been developing rapidly and the land use
structure has been optimized, but the economic development is built on the basis of high
input and high emission, and the carbon emission shows a rising trend. Therefore, it
is important to adjust the economic development structure and realize the green and
sustainable development of economy and ecology together.

Compared with the previous studies on land use scenario simulation, this study
took relevant local policies into consideration, which will help to improve the accuracy
of regional carbon emission estimation. To verify the accuracy of the method and model,
this study used Markov chains to predict the demand in 2020 based on data from 2010
and 2015, and the remaining years were obtained by linear interpolation. The results were
then input into the CLUE-S model for simulation. Then, we compared the mock-up with
the real layout. The Kappa coefficient was 0.8365. Therefore, this study is reliable and
reasonable in predicting carbon emission patterns by simulating land use with the CLUE-S
model, indicating that the method is an effective method for predicting carbon emissions
and carbon emission patterns.

Meanwhile, the zoning of the simulation results is conducive to the development
of differentiated land use optimization measures according to the situation of different
regions. The carbon balance zoning in this study focuses on the low carbon perspective,
which can be used as a reference for collaborative emission reduction and development of
a low carbon economy in the region. The main causes of increased carbon emissions differ
between the regions delineated. For regions with different causes of carbon emissions,
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differentiated low carbon development strategies can be proposed in a targeted manner to
effectively improve the efficiency of emission reduction policies.

Cultivated land and construction land dominate in Nanjing, with the area of cultivated
land decreasing and construction land expanding year by year. With the deepening of
urbanization, carbon emissions are also rising year by year, but the prediction results show
that the rising trend is slowing down and leveling off, and the carbon emission trend is
more gentle under the ecological protection scenario and the cultivated land protection
scenario; so, taking into account the cultivated land protection and ecological protection
scenarios can achieve the carbon peak of land use faster. To achieve the future land use
optimization target under the carbon peak and carbon neutral scenarios, the land use areas
of different regions responding to the carbon peak were obtained based on the simulation
results of zoning scenarios to optimize the land use pattern in Nanjing.

5. Conclusions

In this study, by simulating land use and projecting carbon emission zoning under
different scenarios for Nanjing 2030, the following points are concluded:

(1) The area of cultivated land, woodland and grassland in Nanjing will decrease by
10.49%, 0.89% and 20.55%, respectively from 2010 to 2020. The area of watershed
and the area of construction land will expand, increasing by 1.26% and 28.32%, with
construction land expanding significantly. In 2020–2030, under the natural growth
scenario, cultivated land will continue to decrease and construction land will continue
to expand; except for a small increase in woodland, the area of grassland and water
body will both decrease; Under the ecological protection scenario, cultivated land will
decrease by 5.03%, with ecological land showing varying degrees of reduction; Under
the cultivated land protection scenario, cultivated land will decrease by 1.56%, while
construction land will only increase by 1.47%, and the trend of decreasing cultivated
land will slow down significantly. The simulation of different scenarios in 2030
shows that both the ecological protection scenario and the cultivated land restriction
protection scenario can effectively restrain the rapid expansion of construction land
and protect ecological areas.

(2) Nanjing’s carbon emissions will grow year by year from 2010 to 2030, but the growth
trend is slowing down, from 6173.341 × 104 t in 2010 to 7201.442 × 104 t in 2020,
and then to 7468.022 × 104 t in the forecasted 2030. The growth rate decreases from
16.65–3.7%. The carbon emissions are always much higher than the carbon absorption,
with construction land as the main carbon source and forest land as the main carbon
sink. Under the scenario of ecological protection and cultivated land protection, the
carbon emissions are slightly decreased. Therefore, in the development process of
Nanjing, it is important to focus on the protection of ecological land and cultivated
land, slow down the expansion of construction land, and balance carbon sources and
sinks in order to achieve carbon neutrality.

(3) The overall carbon emission space of Nanjing is shown as higher in the north and
lower in the center. Under the natural growth scenario, the areas with increased
carbon emissions are significantly greater in number than those with decreased car-
bon emissions, mainly concentrated in Qixia, Pukou and Jiangning districts, with
significant increases of 35.524 × 104 t, 34.31 × 104 t and 45.268 × 104 t. The large
expansion of construction land and the gathering of industrial enterprises are the
main reasons for the large increase of carbon emissions. In the ecological protection
scenario, compared with the natural growth scenario, areas with reduced carbon
emissions are more common than those with increased carbon emissions. Among
them, Lishui District, Pukou District and Qixia District are the most significant, where
carbon emissions are 11.05 × 104 t, 19.437 × 104 t and 10.211 × 104 t less than those
in the natural growth scenario. Under the cultivated land protection scenario, the
increase in carbon emissions slows down significantly, which is due to the significant
decrease in the growth rate of the construction land area.
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In summary, Nanjing’s carbon emissions show a continuous rising trend from 2010
to 2020, but the rate of increase has slowed down. This rising trend continued under the
natural growth scenario, while the ecological protection scenario can control the trend
but cannot effectively control the reduction of cultivated land area, and the cultivated
land protection scenario protects high-quality cultivated land while inhibiting the rapid
expansion of construction land. Therefore, for the future optimization of land use structure
in Nanjing, a balance should be struck between cultivated land protection and ecological
protection scenarios. The expansion of construction land in Pukou District, Jiangning
District, Qixia District and Liuhe District should be properly controlled, and the occupation
of other types of land by construction land should be strictly controlled. Accelerate the
adjustment of industrial structure and strengthen the protection of high-quality cultivated
land. Additionally, researchers should carry out ecological restoration projects in Lishui
District and Gaochun District to enhance the carbon sink capacity of the ecological carbon
sequestration system. Meanwhile, we should give up low-quality cultivated land in
Gulou District, Xuanwu District, Qinhuai District and Jianye District to ecological land
to increase carbon storage. Food security and cultivated land quality will be ensured
while achieving green and low-carbon sustainable development. Based on the results
obtained, differentiated abatement strategies are proposed for each sub-district. This will
promote efficient implementation of abatement actions according to local conditions, and
provide a new perspective for the future sustainable ecological management of land and
the formulation of green emission reduction measures in Nanjing.
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