Spatial Identification and Interactive Analysis of Urban Production—Living—Ecological Spaces Using Point of Interest Data and a Two-Level Scoring Evaluation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Methods
2.3.1. Kernel Density Analysis
2.3.2. Two-Level Scoring Evaluation Model
2.3.3. Identification Method of Production–living–Ecological Spaces
2.3.4. Spatial Transition Matrix
2.3.5. Bivariate Spatial Autocorrelation Model
3. Results
3.1. Identification and Validation of Urban Production–Living–Ecological Spaces
3.2. Spatial Pattern of Production–Living–Ecological Spaces
3.3. Spatial Interactive Analysis of Production–Living–Ecological Spaces
3.3.1. Spatial Transformations of Production–Living–Ecological Spaces
3.3.2. Spatial Correlations of Production–Living–Ecological Spaces
4. Discussion
5. Conclusions
- (1)
- The proposed two-level scoring evaluation model considering both the physical area and density of POIs can be effective in accurately identifying urban production–living– ecological spaces, and the identification accuracy reached 88.9%.
- (2)
- Urban production space was concentrated on the south bank of the Qiantang River and the north of Hangzhou, urban living space was distributed within the ring highway of Hangzhou and along the Qiantang River in a contiguous distribution pattern, and urban ecological space was concentrated around West Lake and Xiang Lake, which are rich in natural and cultural landscapes.
- (3)
- During 2010 and 2019, urban production space transferred to the east and north of Hangzhou, urban living space rapidly expanded to the east and west along urban main roads, and urban ecological space expanded to the surrounding living areas.
- (4)
- The mutual transformation between production and living spaces was more frequent during the study period and was mainly distributed within the ring highway of Hangzhou. There were significant positive spatial correlations between production and living, and between living and ecological spaces, while significant negative spatial correlation appeared between production and ecological spaces. The spatial correlations of urban production–living–ecological spaces had obvious spatial heterogeneity.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, G.; Fang, C. Quantitative function identification and analysis of urban ecological- production- living spaces. Acta Geogr. Sin. 2016, 71, 49–65. [Google Scholar]
- De Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban. Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Wiggering, H.; Müller, K.; Werner, A.; Helming, K. The concept of multifunctionality in sustainable land development. In Sustainable Development of Multifunctional Landscape; Springer: Berlin/Heidelberg, Germany, 2003; pp. 3–18. [Google Scholar]
- Zhang, S.; Zhao, K.; Ji, S.; Guo, Y.; Wu, F.; Liu, J.; Xie, F. Evolution Characteristics, Eco-Environmental Response and Influencing Factors of Production-Living-Ecological Space in the Qinghai–Tibet Plateau. Land 2022, 11, 1020. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Li, X.; Liu, X.; Yao, Y.; Hu, G.; Xu, X.; Pei, F. Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k -medoids method. Landsc. Urban Plan. 2017, 160, 48–60. [Google Scholar] [CrossRef]
- Lyu, Y.; Wang, M.; Zou, Y.; Wu, C. Mapping trade-offs among urban fringe land use functions to accurately support spatial planning. Sci. Total Environ. 2021, 802, 149915. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; He, X.; Zhu, Y. Identification and Evaluation of the Polycentric Urban Structure: An Empirical Analysis Based on Multi-Source Big Data Fusion. Remote Sens. 2022, 14, 2705. [Google Scholar] [CrossRef]
- Yang, S.; Dou, S.; Li, C. Land-use conflict identification in urban fringe areas using the theory of leading functional space partition. Soc. Sci. J. 2020, 1–16. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, E.; Zhang, H.; Shang, E. Spatio-temporal coordination and conflict of production-living-ecology land functions in the Beijing-Tianjin-Hebei Region, China. Land 2020, 9, 170. [Google Scholar] [CrossRef]
- Li, Q.; Fang, C.; Wang, S. Evaluation of territorial utilization quality in China: Based on the aspect of production-living-ecological space. Areal Res. Dev. 2016, 35, 163–169. [Google Scholar]
- Hou, W.; Wu, S.; Yang, L.; Yin, Y.; Gao, J.; Deng, H.; Wu, M.; Li, X.; Liu, L. Production–Living–Ecological Risk Assessment and Corresponding Strategies in China’s Provinces under Climate Change Scenario. Land 2022, 11, 1424. [Google Scholar] [CrossRef]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. An aggregation framework to link indicators associated with multifunctional land use to the stakeholder evaluation of policy options. Ecol. Indic. 2011, 11, 71–80. [Google Scholar] [CrossRef]
- Zhu, C.; Dong, B.; Li, S.; Lin, Y.; Shahtahmassebi, A.R.; You, S.; Zhang, J.; Gan, M.; Yang, L.; Wang, K. Identifying the trade-offs and synergies among land use functions and their influencing factors from a geospatial perspective: A case study in Hangzhou, China. J. Clean. Prod. 2021, 314, 128026. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Lu, L.; Liu, C.; Zhang, Y.; Hao, J.; Wang, H. Research progress of the identification and optimization of production-living-ecological spaces. Prog. Geogr. 2020, 39, 503–518. [Google Scholar] [CrossRef]
- Kong, L.; Xu, X.; Wang, W.; Wu, J.; Zhang, M. Comprehensive evaluation and quantitative research on the living protection of traditional villages from the perspective of “Production–Living–Ecology”. Land 2021, 10, 570. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2016, 577, 136–147. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Lin, N.; Lin, Y.; Yuan, S.; Zhang, L.; Zhu, J.; Wang, K.; Gan, M.; Zhu, C. Spatial identification and trade-off analysis of land use functions improve spatial zoning management in rapid urbanized areas, China. Land Use Policy 2022, 116, 106058. [Google Scholar] [CrossRef]
- Ji, Z.; Liu, C.; Xu, Y.; Huang, A.; Lu, L.; Duan, Y. Identification and optimal regulation of the production-living-ecological space based on quantitative land use functions. Trans. Chin. Soc. Agric. Eng. 2020, 36, 222–231. [Google Scholar]
- Li, H.; Fang, C.; Xia, Y.; Liu, Z.; Wang, W. Multi-Scenario Simulation of Production-LivingEcological Space in the Poyang Lake Area Based on Remote Sensing and RF-Markov-FLUS Model. Remote Sens. 2022, 14, 2830. [Google Scholar] [CrossRef]
- Slee, B. Social indicators of multifunctional rural land use: The case of forestry in the UK. Agric. Ecosyst. Environ. 2007, 120, 31–40. [Google Scholar] [CrossRef]
- Fan, Y.; Jin, X.; Gan, L.; Jessup, L.H.; Pijanowski, B.C.; Yang, X.; Xiang, X.; Zhou, Y. Spatial identification and dynamic analysis of land use functions reveals distinct zones of multiple functions in eastern China. Sci. Total Environ. 2018, 642, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, Y.; Huang, A.; Liu, Y.; Wang, H.; Lu, L.; Sun, P.; Zheng, W. Spatial identification of land use multifunctionality at grid scale in farming-pastoral area: A case study of Zhangjiakou City, China. Habitat Int. 2018, 76, 48–61. [Google Scholar] [CrossRef]
- Chang, S.; Wang, Z.; Mao, D.; Liu, F.; Lai, L.; Yu, H. Identifying Urban Functional Areas in China’s Changchun City from Sentinel-2 Images and Social Sensing Data. Remote Sens. 2021, 13, 4512. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Y. Pervasive location acquisition technologies: Opportunities and challenges for geospatial studies. Comput. Environ. Urban Syst. 2012, 36, 105–108. [Google Scholar] [CrossRef]
- Mou, J. Extracting Network Patterns of Tourist Flows in an Urban Agglomeration Through Digital Footprints: The Case of Greater Bay Area. IEEE Access. 2022, 10, 16644–16654. [Google Scholar] [CrossRef]
- Ferreira, A.P.G.; Silva, T.H.; Loureiro, A.A.F. Uncovering spatiotemporal and semantic aspects of tourists mobility using social sensing. Comput. Commun. 2020, 160, 240–252. [Google Scholar] [CrossRef]
- Huang, C.; Xiao, C.; Rong, L. Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas. Remote Sens. 2022, 14, 4201. [Google Scholar] [CrossRef]
- Jendryke, M.; Balz, T.; McClure, S.C.; Liao, M. Putting people in the picture: Combining big location-based social media data and remote sensing imagery for enhanced contextual urban information in Shanghai. Comput. Environ. Urban Syst. 2017, 62, 99–112. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wei, J.; Sun, D.; Liu, Y.; Wang, S.; Tan, J.; Miao, C. Recognition and spatio-temporal evolution analysis of production-living-ecological spaces based on the random forest model: A case study of Zhengzhou city, China. Geogr. Res. 2021, 40, 945–957. [Google Scholar]
- Cao, Y.; Gu, Z.; Zhang, Q. Recognition of “Ecological Space, Living Space, and Production Space” in the Uban Central Area Based on POI Data: The Case of Shanghai. Urban Plan. Forum. 2019, 249, 44–53. [Google Scholar]
- Zhang, X.; Du, S.; Wang, Q. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data. ISPRS J. Photogramm. Remote Sens. 2017, 132, 170–184. [Google Scholar] [CrossRef]
- Jia, F.; Yan, J.; Wang, T. Research on scoring model and functional regions identification constructed by big data. Sci. Surv. Mapp. 2021, 46, 172–178. [Google Scholar]
- Zhang, Y.; Long, H.; Tu, S.; Ge, D.; Ma, L.; Wang, L. Spatial identification of land use functions and their trade-offs/synergies in China: Implications for sustainable land management. Ecol. Indic. 2019, 107, 105550. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural roduction-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2017, 117, 106512. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Zhi, C.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Liu, P.; Sun, B. The spatial pattern of urban production-living-ecological space quality and its related factors in China. Geogr. Res. 2020, 39, 13–24. [Google Scholar]
- Zhu, C.; Zhang, X.; Zhou, M.; He, S.; Gan, M.; Yang, L.; Wang, K. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China. Ecol. Indic. 2020, 117, 106654. [Google Scholar] [CrossRef]
- Lee, J.-G.; Kang, M. Geospatial big data: Challenges and opportunities. Big Data Res. 2015, 2, 74–81. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, Y.; Xu, T.; Wang, L.; Zuo, Q.; Liu, J.; Su, X.; He, N.; Wu, Z. Tradeoffs/synergies in land-use function changes in central China from 2000 to 2015. Chin. Geogr. Sci. 2021, 31, 711–726. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Liu, Y.; Tian, L. Identifying the urban-rural fringe using wavelet transform and kernel density estimation: A case study in Beijing City, China. Environ. Model. Softw. 2016, 83, 286–302. [Google Scholar] [CrossRef]
- Bosso, L.; Smeraldo, S.; Russo, D.; Chiusano, M.L.; Bertorelle, G.; Johannesson, R.K.; Danovaro, R.; Raffini, F. The rise and fall of an alien: Why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biol. Invasions 2022, 24, 3169–3187. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, J.; Sun, D.; Wang, S.; Liu, Y.; Tan, J. Multi-scale analysis on the coupling coordination degree of productionliving- ecological spaces in cities: A case study of Zhengzhou City. Resour. Sci. 2021, 43, 944–953. [Google Scholar]
- Zhou, D.; Zhong, W.; Zhou, T.; Qi, J. Assessment on urban mixed land use and analysis of its influencing factors based on POI data: A case of the main districts of Hangzhou City. China Land Sci. 2021, 35, 96–106. [Google Scholar]
- Jin, Y.; Zhou, K.; Gao, J.; Mu, S.; Zhang, X. Identifying the priority conservation areas for key national protected terrestrial vertebrate species based on a random forest model in China. Acta Ecol. Sin. 2016, 36, 7702–7712. [Google Scholar]
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Handb. Appl. Spat. Anal. 2010, 38, 73–89. [Google Scholar]
- Zhu, C.; Li, W.; Du, Y.; Xu, H.; Wang, K. Spatial-temporal change, trade-off and synergy relationships of cropland multifunctional value in Zhejiang Province, China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 263–272. [Google Scholar]
- Vongpraseuth, T.; Choi, C.G. Globalization, foreign direct investment, and urban growth management: Policies and conflicts in Vientiane, Laos. Land Use Policy 2015, 42, 790–799. [Google Scholar] [CrossRef]
- Smeraldo, S.; Bosso, L.; Fraissinet, M.; Bordignon, L.; Bruneli, M.; Ancillotto, L.; Russo, D. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 2020, 29, 1959–1976. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wang, H.; Li, X. What is the future for production-living-ecological spaces in the Greater Bay Area? A multi-scenario perspective based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Z.; Li, C.; Cha, L.; Song, Z.; Zhang, X. Land use function transformation in the Xiong′an New Area based on ecological-production-living spaces and associated eco-environment effects. Acta Ecol. Sin. 2020, 40, 7113–7122. [Google Scholar]
- Liu, C.; Tang, Q.; Xu, Y.; Wang, C.; Wang, S.; Wang, H.; Li, W.; Cui, H.; Zhang, Q.; Li, Q. High-Spatial-Resolution Nighttime Light Dataset Acquisition Based on Volunteered Passenger Aircraft Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1001817. [Google Scholar] [CrossRef]
- Gao, S.; Janowicz, K.; Couclelis, H. Extracting urban functional regions from points of interest and human activities on locationbased social networks. Trans. GIS 2017, 21, 446–467. [Google Scholar] [CrossRef]
- Fan, Y.; Gan, L.; Hong, C.; Jessup, L.; Jin, X.; Pijanowski, B.; Sun, Y.; Lv, L. Spatial identification and determinants of trade-offs among multiple land use functions in Jiangsu Province, China. Sci. Total Environ. 2021, 772, 145022. [Google Scholar] [CrossRef]
- Zhang, L.; Yue, W.; Liu, Y.; Fan, P.; Wei, D. Suburban industrial land development in transitional China: Spatial restructuring and determinants. Cities 2018, 78, 96–107. [Google Scholar] [CrossRef]
- Wu, L.; Kim, S.K. Exploring the equality of accessing urban green spaces: A comparative study of 341 Chinese cities. Ecol. Indic. 2021, 121, 107080. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, J. Spatially heterogeneity response of ecosystem services supply and demand to urbanization in China. Ecol. Eng. 2021, 169, 106303. [Google Scholar] [CrossRef]
- Chen, Y.; Yue, W.; Daniele, L.R. Which communities have better accessibility to green space? An investigation into environmental inequality using big data. Landsc. Urban Plan. 2020, 204, 103919. [Google Scholar] [CrossRef]
- Jin, C.; Zhang, Y.; Yang, X.; Zhao, N.; Ouyang, Z.; Yue, W. Mapping China’s Electronic Power Consumption Using Points of Interest and Remote Sensing Data. Remote Sens. 2021, 13, 1058. [Google Scholar] [CrossRef]
Space Type | Sub-Space | Class I | Class II |
---|---|---|---|
Production | Commercial production | Company | Advertisement, internet, commercial trade |
Financial and insurance | Insurance institute, bank, securities company | ||
Industrial production | Industrial park | Factory, industrial park | |
Warehousing logistics | Storage, logistics | ||
Living | Commercial services | Food and beverages | Restaurant, cafeteria, dessert shop |
Shopping | Convenience shop, supermarket | ||
Life service | Post office, petrol station | ||
Sports leisure | Entertainment venues, sports buildings | ||
Accommodation services | Hotel, guesthouse | ||
Public services | Government agencies | Government agency, social organization | |
Traffic facilities | Subway, bus, train | ||
Medical security | Hospital, clinic | ||
Science and education culture | Museum, scientific research institution, school | ||
Residential guaranteeing | Commercial housing | Commercial office building, residential district | |
Ecological | Green ecological | Urban parks | Botanical garden, park plaza |
Scenic spot | Scenic area |
Space Type | Average Physical Area (hm2) | Weight | Space Type | Average Physical Area (hm2) | Weight |
---|---|---|---|---|---|
Companies | 1.06 | 0.046 | Accommodation services | 1.03 | 0.045 |
Financial and insurance | 0.57 | 0.024 | Government agencies | 1.01 | 0.044 |
Industrial park | 1.97 | 0.085 | Traffic facilities | 0.99 | 0.043 |
Warehousing logistics | 2.19 | 0.094 | Medical security | 1.48 | 0.064 |
Food and beverages | 0.57 | 0.025 | Science and education culture | 3.28 | 0.141 |
Shopping | 1.27 | 0.055 | Commercial housing | 2.26 | 0.097 |
Life service | 0.93 | 0.040 | Green lands of parks | 0.74 | 0.032 |
Sports leisure | 3.13 | 0.135 | Scenic spot | 0.72 | 0.031 |
Space Type | Production Space | Living Space | Ecological Space | |||
---|---|---|---|---|---|---|
Scale of spatial unit | 300 m | 500 m | 300 m | 500 m | 300 m | 500 m |
Number of samples | 140 | 120 | 180 | 160 | 80 | 50 |
Number of forecasts | 119 | 91 | 165 | 134 | 64 | 32 |
Accuracy | 84.29 | 75.83 | 91.67 | 83.75 | 80.00 | 64.00 |
Space Type | 2010 | 2019 | Annual Growth Rate (2010–2019) |
---|---|---|---|
Production space | 3251 | 5571 | 7.14 |
Living space | 5933 | 10485 | 7.67 |
Ecological space | 256 | 551 | 11.52 |
Mixed functional space | 26 | 89 | 24.23 |
Number | Space Type | Land Use Planning Types | The Correct Grid Proportion |
---|---|---|---|
1 | Production | Industrial land | 8/9 |
2 | Living | Highway land | 8/9 |
3 | Living | Urban residential land | 9/9 |
4 | Living | Highway land, forest land | 7/9 |
5 | Production–living | Mining, highway land | 8/9 |
6 | Production | Logistics storage, commercial service facilities land | 7/9 |
7 | Production | Industrial land | 9/9 |
8 | Living–ecological | Highway land, forest land | 7/9 |
9 | Production–living | Railway, urban residential land | 8/9 |
10 | Production | Industrial land | 9/9 |
11 | Ecological | Green, forest land | 6/9 |
12 | Production–living | Science and education, commercial service facilities land | 8/9 |
13 | Production | Industrial, rural residential land | 8/9 |
14 | Living | Commercial service facilities, urban residential land | 9/9 |
15 | Ecological | Commercial service facilities, forest land | 7/9 |
16 | Production | Industrial, urban residential land | 9/9 |
17 | Production-living | Industrial, road land | 8/9 |
18 | Production | Mining, road land | 7/9 |
19 | Production–living | Industrial, rural residential land | 9/9 |
20 | Production–living | Industrial, urban residential land | 9/9 |
Total | 160/180 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Liu, Y.; Zhu, C.; Chen, X.; Rong, Y.; Zhang, J.; Huang, B.; Bai, L.; Chen, Q.; Su, Y.; et al. Spatial Identification and Interactive Analysis of Urban Production—Living—Ecological Spaces Using Point of Interest Data and a Two-Level Scoring Evaluation Model. Land 2022, 11, 1814. https://doi.org/10.3390/land11101814
Yang Y, Liu Y, Zhu C, Chen X, Rong Y, Zhang J, Huang B, Bai L, Chen Q, Su Y, et al. Spatial Identification and Interactive Analysis of Urban Production—Living—Ecological Spaces Using Point of Interest Data and a Two-Level Scoring Evaluation Model. Land. 2022; 11(10):1814. https://doi.org/10.3390/land11101814
Chicago/Turabian StyleYang, Ying, Yawen Liu, Congmou Zhu, Xinming Chen, Yi Rong, Jing Zhang, Bingbing Huang, Longlong Bai, Qi Chen, Yue Su, and et al. 2022. "Spatial Identification and Interactive Analysis of Urban Production—Living—Ecological Spaces Using Point of Interest Data and a Two-Level Scoring Evaluation Model" Land 11, no. 10: 1814. https://doi.org/10.3390/land11101814
APA StyleYang, Y., Liu, Y., Zhu, C., Chen, X., Rong, Y., Zhang, J., Huang, B., Bai, L., Chen, Q., Su, Y., & Yuan, S. (2022). Spatial Identification and Interactive Analysis of Urban Production—Living—Ecological Spaces Using Point of Interest Data and a Two-Level Scoring Evaluation Model. Land, 11(10), 1814. https://doi.org/10.3390/land11101814