Targeting the Influences of Under-Lake Coal Mining Based on the Value of Wetland Ecosystem Services: What and How?
Abstract
:1. Introduction
2. Study Area, Data, and Methodology
2.1. Study Area
2.2. Datasets Used
2.3. Methodologies
2.3.1. Traditional ESV from Land Use Interpretation
2.3.2. Revised ESV with Water Range and Depth from RS Image Inversion
- (1)
- Water range of the lake
- (2)
- Water depth of the lake
2.3.3. Characterization of Influence Indicators from Mining Activities
3. Results
3.1. Land Use Types in the Wetland during Different Periods
3.2. Water Depth of the Wetland in Different Periods
3.3. Calculating the ESV of Nansi Lake
3.4. Analysis of Influence of Mining Activity Based on the ESV
4. Discussion
4.1. Rationality of ESV Results
4.2. Possibility of Influence Strength of Under-Lake Mining
4.3. Implications for Regional Ecological Management
- (1)
- Strategies for maintaining and improving the four services
- (2)
- Monitoring the impact of under-lake coal mining on wetland ecosystem services
- (3)
- Improving the assessment of the data gaps and the acceptability of the results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.R.; Zhou, D.M.; Niu, Z.G.; Xu, F.J. Valuation of lake and marsh wetlands ecosystem services in China. Chin. Geogr. Sci. 2014, 24, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Camacho-Valdez, V.; Ruiz-Luna, A.; Ghermandi, A.; Nunes, P.A.L.D. Valuation of ecosystem services provided by coastal wetlands in northwest Mexico. Ocean Coast Manag. 2013, 78, 1–11. [Google Scholar] [CrossRef]
- Sun, B.; Cui, L.; Li, W.; Kang, X.; Pan, X.; Lei, Y. A meta-analysis of coastal wetland ecosystem services in Liaoning Province, China. Estuar. Coast. Shelf Sci. 2018, 200, 349–358. [Google Scholar] [CrossRef]
- Sabia, G.; Petta, L.; Moretti, F.; Ceccarelli, R. Combined statistical techniques for the water quality analysis of a natural wetland and evaluation of the potential implementation of a FWS for the area restoration: The Torre Flavia case study, Italy. Ecol. Indic. 2018, 84, 244–253. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Huang, L.; Gu, B.; Lu, Q.; Gao, Z. A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic. 2016, 60, 442–452. [Google Scholar] [CrossRef]
- Liu, P.; Jiang, S.; Zhao, L.; Li, Y.; Zhang, P.; Zhang, L. What are the benefits of strictly protected nature reserves? Rapid assessment of ecosystem service values in Wanglang Nature Reserve, China. Ecosyst. Serv. 2017, 26, 70–78. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Athukorala, D.; Estoque, R.C.; Murayama, Y.; Matsushita, B. Impacts of urbanization on the muthurajawela marsh and negombo lagoon, sri lanka: Implications for landscape planning towards a sustainable urban wetland ecosystem. Remote Sens. 2021, 13, 316. [Google Scholar] [CrossRef]
- Long, K.E.; Schneider, L.; Connor, S.E.; Shulmeister, N.; Finn, J.; Roberts, G.L.; Zawadzki, A.; Enge, T.G.; Smol, J.P.; Ballard, C.; et al. Human impacts and anthropocene environmental change at Lake Kutubu, a ramsar wetland in Papua New Guinea. Proc. Natl. Acad. Sci. USA 2021, 118, e2022216118. [Google Scholar] [CrossRef]
- Valiela, I.; Fox, S.E. Managing coastal wetlands. Science 2008, 319, 290–291. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Zhen, L.; Xiao, Y.; Hu, Y. Ecological and socioeconomic effects of ecological restoration in China’s Three Rivers Source Region. Sci. Total Environ. 2019, 650, 2307–2313. [Google Scholar] [CrossRef]
- Mason, T.J.; Krogh, M.; Popovic, G.C.; Glamore, W.; Keith, D.A. Persistent effects of underground longwall coal mining on freshwater wetland hydrology. Sci. Total Environ. 2021, 772, 144772. [Google Scholar] [CrossRef]
- Senger, D.F.; Saavedra Hortua, D.A.; Engel, S.; Schnurawa, M.; Moosdorf, N.; Gillis, L.G. Impacts of wetland dieback on carbon dynamics: A comparison between intact and degraded mangroves. Sci. Total Environ. 2021, 753, 141817. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Guan, D.; Liu, H.; Sun, K.; Zhang, G.; Wang, K.; Zhou, L.; Wang, F.; Sun, J. An ecological scenario prediction model for newly created wetlands caused by coal mine subsidence in the Yanzhou, China. Environ. Geochem. Health 2020, 42, 1991–2005. [Google Scholar] [CrossRef]
- Liu, W.W.; Guo, Z.L.; Jiang, B.; Lu, F.; Wang, H.N.; Wang, D.A.; Zhang, M.Y.; Cui, L.J. Improving wetland ecosystem health in China. Ecol. Indic. 2020, 113, 106184. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Kayumba, P.M.; Chen, Y.N.; Mind’je, R.; Mindje, M.; Li, X.Y.; Maniraho, A.P.; Umugwaneza, A.; Uwamahoro, S. Geospatial land surface-based thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China. Landsc. Ecol. 2021, 36, 1699–1723. [Google Scholar] [CrossRef]
- Li, B.L.; Hu, Y.M.; Chang, Y.; Liu, M.; Wang, W.J.; Bu, R.C.; Shi, S.X.; Qi, L. Analysis of the factors affecting the long-term distribution changes of wetlands in the Jing-Jin-Ji region, China. Ecol. Indic. 2021, 124, 107413. [Google Scholar] [CrossRef]
- Gandarillas, V.; Jiang, Y.; Irvine, K. Assessing the services of high mountain wetlands in tropical Andes: A case study of Caripe wetlands at Bolivian Altiplano. Ecosyst. Serv. 2016, 19, 51–64. [Google Scholar] [CrossRef]
- Reiss, K.C.; Brown, M.T. Evaluation of Florida palustrine wetlands: Application of USEPA Levels 1, 2, and 3 assessment methods. Ecohealth 2007, 4, 206–218. [Google Scholar] [CrossRef]
- Singh, M.; Sinha, R. Hydrogeomorphic indicators of wetland health inferred from multi-temporal remote sensing data for a new Ramsar site (Kaabar Tal), India. Ecol. Indic. 2021, 127, 107739. [Google Scholar] [CrossRef]
- Hill, T.D.; Anisfeld, S.C. Coastal wetland response to sea level rise in Connecticut and New York. Estuar. Coast. Shelf Sci. 2015, 163, 185–193. [Google Scholar] [CrossRef]
- Lu, X.G.; Wang, Q.C.; Liu, J.P. Primary study on impact assessment of wetland ecological environment. Chin. J. Ecol. 2004, 23, 83–85. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.; Kienast, F. Indicators of ecosystem service potential at European scales: Mapping marginal changes and trade-offs. Ecol. Indic. 2012, 21, 39–53. [Google Scholar] [CrossRef]
- Lautenbach, S.; Kugel, C.; Lausch, A.; Seppelt, R. Analysis of historic changes in regional ecosystem service provisioning using land use data. Ecol. Indic. 2011, 11, 676–687. [Google Scholar] [CrossRef]
- Posthumus, H.; Rouquette, J.R.; Morris, J.; Cowing, D.J.G.; Hess, T.M. A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecol. Econ. 2010, 69, 1510–1523. [Google Scholar] [CrossRef]
- Bagley, P.; Lin, V. The development and pilot testing of a rapid assessment tool to improve local public health system capacity in Australia. BMC Public Health 2009, 9, 413. [Google Scholar] [CrossRef] [Green Version]
- Pandeya, B.; Buytaert, W.; Zulkafli, Z.; Karpouzoglou, T.; Mao, F.; Hannah, D.M. A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions. Ecosyst. Serv. 2016, 22, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in Europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Li, X.W.; Yu, X.B.; Jiang, L.G.; Li, W.Y.; Liu, Y.; Hou, X.Y. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 2014, 10, 54–60. [Google Scholar] [CrossRef]
- Whitehead, J.C.; Blomquist, G.C. Measuring contingent values for wetlands: Effects of information about related environmental goods. Water Resour. Res. 1991, 27, 2523–2531. [Google Scholar] [CrossRef] [Green Version]
- Woodward, R.T.; Wui, Y.S. The economic value of wetland services: A meta-analysis. Ecol. Econ. 2001, 37, 257–270. [Google Scholar] [CrossRef]
- Brander, L.; Brouwer, R.; Wagtendonk, A. Economic valuation of regulating services provided by wetlands in agricultural landscapes: A meta-analysis. Ecol. Eng. 2013, 56, 89–96. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Singh, S.; Bhardwaj, A.; Verma, V.K. Remote sensing and GIS based analysis of temporal land use/land cover and water quality changes in Harike wetland ecosystem, Punjab, India. J. Environ. Manag. 2020, 262, 110355. [Google Scholar] [CrossRef]
- Ricaurte, L.F.; Olaya-Rodríguez, M.H.; Cepeda-Valencia, J.; Lara, D.; Arroyave-Suárez, J.; Max Finlayson, C.; Palomo, I. Future impacts of drivers of change on wetland ecosystem services in Colombia. Glob. Environ. Chang. 2017, 44, 158–169. [Google Scholar] [CrossRef]
- Rahimi, L.; Malekmohammadi, B.; Yavari, A.R. Assessing and modeling the impacts of wetland land cover changes on water provision and habitat quality ecosystem services. Nat. Resour. Res. 2020, 29, 3701–3718. [Google Scholar] [CrossRef]
- Redhead, J.W.; Stratford, C.; Sharps, K.; Jones, L.; Ziv, G.; Clarke, D.; Oliver, T.H.; Bullock, J.M. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Sci. Total Environ. 2016, 569–570, 1418–1426. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C.; Polasky, S.; Goldstein, J.; Kareiva, P.M.; Mooney, H.A.; Pejchar, L.; Ricketts, T.H.; Salzman, J.; Shallenberger, R. Ecosystem services in decision making: Time to deliver. Front. Ecol. Environ. 2009, 7, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Hauck, J.; Görg, C.; Varjopuro, R.; Ratamäki, O.; Maes, J.; Wittmer, H.; Jax, K. “Maps have an air of authority”: Potential benefits and challenges of ecosystem service maps at different levels of decision making. Ecosyst. Serv. 2013, 4, 25–32. [Google Scholar] [CrossRef]
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Han, X.X.; Chen, X.L.; Feng, L. Four decades of winter wetland changes in Poyang Lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Yin, H.Y.; Hu, Y.M.; Liu, M.; Li, C.L.; Lv, J.J. Ecological and environmental effects of estuarine wetland loss using keyhole and landsat data in Liao River Delta, China. Remote Sens. 2021, 13, 311. [Google Scholar] [CrossRef]
- Langan, C.; Farmer, J.; Rivington, M.; Novo, P.; Smith, J.U. A wetland ecosystem service assessment tool; Development and application in a tropical peatland in Uganda. Ecol. Indic. 2019, 103, 434–445. [Google Scholar] [CrossRef]
- Sader, S.A.; Ahl, D.; Liou, W.-S. Accuracy of landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sens. Environ. 1995, 53, 133–144. [Google Scholar] [CrossRef]
- Lefebvre, G.; Davranche, A.; Willm, L.; Campagna, J.; Redmond, L.; Merle, C.; Guelmami, A.; Poulin, B. Introducing WIW for detecting the presence of water in wetlands with landsat and sentinel satellites. Remote Sens. 2019, 11, 2210. [Google Scholar] [CrossRef] [Green Version]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, O. Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters. Remote Sens. Environ. 2015, 159, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, B.P.; Raval, S.; Timms, W. Evaluation of rainfall and wetland water area variability at Thirlmere Lakes using Landsat time-series data. Int. J. Environ. Sci. Technol. 2016, 13, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Sheng, L.; Shuangting, W.; Gaowei, Z. Research on reefs bathymetry estimation by remote sensing based on nonlinear model. Sci. Surv. Mapp. 2015, 40, 43–47. [Google Scholar] [CrossRef]
- Philpot, W.D. Radiative transfer in stratified waters: A single-scattering approximation for irradiance. Appl. Opt. 1987, 26, 4123–4132. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.; Ding, Q. A technique for extracting water depth information from multispectral scanner data in the South China Sea. Mar. Sci. Bull. 2003, 22, 55–60. [Google Scholar]
- Huenneke, L.F.; Marks, P.L. Stem dynamics of the shrub alnus incana SSP. rugosa: Transition matrix models. Ecology 1987, 68, 1234–1242. [Google Scholar] [CrossRef]
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Dar, S.A.; Rashid, I.; Bhat, S.U. Land system transformations govern the trophic status of an urban wetland ecosystem: Perspectives from remote sensing and water quality analysis. Land Degrad. Dev. 2021, 32, 4087–4104. [Google Scholar] [CrossRef]
- Volik, O.; Elmes, M.; Petrone, R.; Kessel, E.; Green, A.; Cobbaert, D.; Price, J. Wetlands in the Athabasca Oil Sands Region: The nexus between wetland hydrological function and resource extraction. Environ. Rev. 2020, 28, 246–261. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Li, L. Remote sensing bathymetric inversion for the Xisha Islands based on WorldView-2 data:A case study of Zhaoshu Island and South Island. Remote Sens. Land Resour. 2016, 4, 170–175. [Google Scholar] [CrossRef]
- Shu, K. Experiment and research on coal mining under weishanhu Lake. Coal Sci. Technol. 1992, 28, 44–49. [Google Scholar] [CrossRef]
- Xu, J.; Dong, J. Response of ecosystem in service value to changes in landscape pattern of the Nansi Lake Wetland. J. Ecol. Rural. Environ. 2013, 29, 471–477. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Mooney, H.A.; Agard, J.; Capistrano, D.; Defries, R.S.; Diaz, S.; Dietz, T.; Duraiappah, A.K.; Oteng-Yeboah, A.; Pereira, H.M.; et al. Science for managing ecosystem services: Beyond the millennium ecosystem assessment. Proc. Natl. Acad. Sci. USA 2009, 106, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, S.L.; Hou, H.P.; Yang, Y.J.; Gong, Y.L. Assessing the changes of ecosystem services in the Nansi Lake Wetland, China. Water 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.B.; Wu, J.; Gong, Y.Z. Valuing wetland ecosystem services based on benefit transfer: A meta-analysis of China wetland studies. J. Clean. Prod. 2020, 276, 122988. [Google Scholar] [CrossRef]
- Song, F.; Su, F.; Mi, C.; Sun, D. Analysis of driving forces on wetland ecosystem services value change: A case in Northeast China. Sci. Total Environ. 2021, 751, 141778. [Google Scholar] [CrossRef]
- Aung, T.D.W.; Kyi, S.W.; Suzue, K.; Theint, S.M.; Tsujita, K.; Yu, T.T.; Merriman, J.C.; Peh, K.S.H. Rapid ecosystem service assessment of a protected wetland in Myanmar, and implications for policy development and management. Ecosyst. Serv. 2021, 50, 101336. [Google Scholar] [CrossRef]
Wetland Types | 1991 | 1997 | 2003 | 2009 | 2015 | 2021 | |
---|---|---|---|---|---|---|---|
Natural wetland | Lake | 520.6 | 475.4 | 469.4 | 464.3 | 433.4 | 430.7 |
River | 26.8 | 50.6 | 44.1 | 52.3 | 66.5 | 54.7 | |
Swamp | 555.7 | 525.8 | 401.2 | 196.5 | 93.7 | 59.7 | |
Total | 1103.2 | 1051.8 | 914.8 | 713.2 | 593.7 | 545.2 | |
Constructed wetland | Irrigated paddy field | 97.9 | 144.1 | 146.2 | 163.2 | 232.3 | 204.8 |
Raised field fishpond | 5.3 | 23.5 | 167.9 | 356.3 | 415.0 | 462.9 | |
Total | 103.2 | 167.6 | 314.2 | 519.5 | 647.4 | 667.8 | |
Non-wetland | Building land | 27.4 | 26.9 | 17.9 | 18.5 | 24.6 | 27.6 |
Woodland | 7.8 | 7.1 | 7.9 | 10.4 | 8.0 | 11.2 | |
Other land | 46.8 | 35.0 | 33.7 | 26.9 | 14.9 | 36.7 | |
Total | 82.2 | 69.1 | 59.7 | 55.9 | 47.5 | 75.6 |
Wetland Types | 1991 | 1997 | 2003 | 2009 | 2015 | 2021 | |
---|---|---|---|---|---|---|---|
Natural wetland | Lake | 69.0 | 78.1 | 86.4 | 93.4 | 103.9 | 101.3 |
River | 9.5 | 10.0 | 9.0 | 9.7 | 7.9 | 5.1 | |
Swamp | 59.6 | 42.9 | 34.1 | 14.6 | 11.5 | 7.4 | |
Total | 138.2 | 131.1 | 129.6 | 117.8 | 123.4 | 113.8 | |
Constructed wetland | Irrigated paddy field | 12.8 | 20.4 | 14.3 | 10.1 | 13.1 | 4.5 |
Raised field fishpond | 0.1 | 0.4 | 11.7 | 25.4 | 18.3 | 34.6 | |
Total | 13.0 | 20.8 | 26.1 | 35.5 | 31.5 | 39.1 | |
Non-wetland | Building land | 2.7 | 2.1 | 2.7 | 2.5 | 3.0 | 2.6 |
Woodland | 0.6 | 0.0 | 0.03 | 2.2 | 0.0 | 1.8 | |
Other land | 4.2 | 4.8 | 0.4 | 0.6 | 0.8 | 1.4 | |
Total | 7.6 | 6.9 | 3.2 | 5.4 | 3.9 | 5.8 |
Water Depth (m) | 1991 | 1997 | 2003 | 2009 | 2015 | 2021 |
---|---|---|---|---|---|---|
0 ≤ 1 | 179.6 | 181.7 | 69.2 | 42.7 | 54.8 | 93.8 |
1 ≤ 2 | 239.0 | 172.7 | 144.3 | 41.0 | 131.6 | 122.1 |
2 ≤ 3 | 80.3 | 82.2 | 141.8 | 144.2 | 117.2 | 134.3 |
3 ≤ 4 | 21.6 | 38.7 | 113.4 | 92.9 | 85.4 | 21.9 |
4 ≤ 5 | 0.4 | 107.6 | 40.7 | 4.2 | ||
≥5 | 35.6 | 3.5 | 54.2 |
Sub-ESV | Elasticity Coefficients | ||||
---|---|---|---|---|---|
Provisioning services | 0.139 | 0.051 | 0.035 | 0.033 | 0.230 |
Regulation services | −0.324 | 0.265 | 0.092 | 0.007 | 0.435 |
Support services | −4.500 | 0.273 | 1.000 | −0.091 | 0.000 |
Cultural services | −0.027 | 0.364 | 0.267 | 0.500 | −0.196 |
Total | −0.140 | 0.207 | 0.069 | 0.019 | 0.413 |
Eigenvalues | Eigenvectors |
---|---|
0.001 | |
0.175 | |
0.479 | |
0.827 – 0.446i | |
0.827 + 0.446i |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, H.; Ding, Z.; Zhang, S.; Chen, Z.; Wang, X.; Sun, A.; An, S.; Xiong, J. Targeting the Influences of Under-Lake Coal Mining Based on the Value of Wetland Ecosystem Services: What and How? Land 2022, 11, 2166. https://doi.org/10.3390/land11122166
Hou H, Ding Z, Zhang S, Chen Z, Wang X, Sun A, An S, Xiong J. Targeting the Influences of Under-Lake Coal Mining Based on the Value of Wetland Ecosystem Services: What and How? Land. 2022; 11(12):2166. https://doi.org/10.3390/land11122166
Chicago/Turabian StyleHou, Huping, Zhongyi Ding, Shaoliang Zhang, Zanxu Chen, Xueqing Wang, Aibo Sun, Shi An, and Jinting Xiong. 2022. "Targeting the Influences of Under-Lake Coal Mining Based on the Value of Wetland Ecosystem Services: What and How?" Land 11, no. 12: 2166. https://doi.org/10.3390/land11122166
APA StyleHou, H., Ding, Z., Zhang, S., Chen, Z., Wang, X., Sun, A., An, S., & Xiong, J. (2022). Targeting the Influences of Under-Lake Coal Mining Based on the Value of Wetland Ecosystem Services: What and How? Land, 11(12), 2166. https://doi.org/10.3390/land11122166