Prediction of Soil Erodibility by Diffuse Reflectance Spectroscopy in a Neotropical Dry Forest Biome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Calculation of Erodibility Factors
- (a)
- USLE K-factor, calculated according to the equation proposed by Denardin [50]:
- (b)
- RUSLE K-factor, calculated according to the equation proposed by Renard and collaborators [9]:
2.4. Diffuse Reflectance Spectroscopy
2.5. Data Analysis
Prediction Model Testing
3. Results
3.1. Soil-Texture Distribution
3.2. K-Factor Distribution
3.3. Geostatistical (Spatial) Modeling
3.4. Spectral Signature and Pedometrics
4. Discussion
4.1. Soil Characteristics and Susceptibility to Erosion
4.2. Factors Affecting Soil Erodibility in the Study Area
4.3. Spatial Distribution of Modeled Parameters
4.4. Spectral Reflectance Data and Prediction Model Testing
4.5. Study Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ou, X.; Hu, Y.; Li, X.; Guo, S.; Liu, B. Advancements and challenges in rill formation, morphology, measurement, and modeling. Catena 2021, 196, 104932. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullock, P. Climate Change Impacts. In Encyclopedia of Soils in the Environment; Elsevier: Amsterdam, The Netherlands, 2005; pp. 254–262. [Google Scholar]
- Ozsahin, E.; Duru, U.; Eroglu, I. Land Use and Land Cover Changes (LULCC), a Key to Understand Soil Erosion Intensities in the Maritsa Basin. Water 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
- Salehi-Varnousfaderani, B.; Honarbakhsh, A.; Tahmoures, M.; Akbari, M. Soil erodibility prediction by Vis-NIR spectra and environmental covariates coupled with GIS, regression and PLSR in a watershed scale, Iran. Geoderma Reg. 2022, 28, e00470. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Kumar, L.; Shabani, F. Soil erodibility and its prediction in semi-arid regions. Arch. Agron. Soil Sci. 2019, 65, 1688–1703. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Odeh, I.O.A.; McBratney, A.B. Overview of Pedometrics. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning; Agriculture Handbook #537; US Department of Agriculture, Government Printing Office: Washington, DC, USA, 1978; p. 58. [Google Scholar]
- Renard, K.G.; Foster, G.A.; Weesies, G.A.; MccooL, D.K. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); Agriculture Handbook #703; US Department of Agriculture, Government Printing Office: Washington, DC, USA, 1997; p. 407. [Google Scholar]
- Kamel, T.A.; Achite, M.; Ouillon, S.; Dehni, A. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, North-West of Algeria. Environ. Monit. Assess. 2018, 1, 190. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, Y.; Hu, J.; Liu, F. Use of Visible and Near-Infrared Reflectance Spectroscopy Models to Determine Soil Erodibility Factor (K) in an Ecologically Restored Watershed. Remote Sens. 2020, 12, 3103. [Google Scholar] [CrossRef]
- Wang, G.; Wu, B.; Zhang, L.; Jiang, H.; Xu, Z. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall. J. Hydrol. 2014, 514, 180–191. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Esmaeili, A. Improvement to the prediction of the USLE K-factor. Geomorphology 2014, 204, 229–234. [Google Scholar] [CrossRef]
- Lal, R. (Ed.) Soil Erosion Research Methods, 2nd ed.; CRC-St. Lucie Press: Delray Beach, FL, USA, 1994; p. 352. [Google Scholar]
- Coblinski, J.A.; Giasson, É.; Demattê, J.A.M.; Dotto, A.C.; Costa, J.J.F.; Vašát, R. Prediction of soil texture classes through different wavelength regions of reflectance spectroscopy at various soil depths. Catena 2020, 189, 104485. [Google Scholar] [CrossRef]
- Naimi, S.; Ayoubi, S.; Di Raimo, L.A.D.L.; Dematte, J.A.M. Quantification of some intrinsic soil properties using proximal sensing in arid lands: Application of Vis-NIR, MIR, and pXRF spectroscopy. Geoderma Reg. 2022, 28, e00484. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Li, J.; Liu, X. Prediction of soil texture using FT-NIR Spectroscopy and PXRF Spectrometry with Data Fusion. Soil Sci. 2014, 178, 626–638. [Google Scholar] [CrossRef]
- Zhu, Y.; Weindorf, D.C.; Zhang, W. Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma 2011, 167–168, 167–177. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Y.; Lamb, D.; Naidu, R. The application of rapid handheld FTIR petroleum hydrocarbon-contaminant measurement with transport models for site assessment: A case study. Geoderma 2020, 361, 114017. [Google Scholar] [CrossRef]
- McClure, W.F. 204 years of near infrared technology: 1800–2003. J. Near Infrared Spectrosc. 2003, 11, 487–518. [Google Scholar] [CrossRef]
- Pasquini, C. Near infrared spectroscopy: A mature analytical technique with new perspectives—A review. Anal. Chim. Acta 2018, 1026, 8–36. [Google Scholar] [CrossRef]
- Workman, J.J., Jr. Interpretive spectroscopy for near infrared. Appl. Spectrosc. Rev. 1996, 31, 251–320. [Google Scholar] [CrossRef]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 653–680. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Janik, L.J.; Raupach, M. Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in soil studies. Aust. J. Soil Res. 1991, 29, 49–67. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Hicks, W.S. Soil carbon and its fractions estimated by visible near infrared transfer functions. Eur. J. Soil Sci. 2015, 66, 438–450. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Chabrillat, S.; Dematte, J.A.M.; Ge, Y.; Gomez, C.; Guerrero, C.; Peng, Y.; Ramirez-Lopez, L.; et al. Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century. Eur. J. Soil Sci. 2022, 73, e13271. [Google Scholar] [CrossRef]
- Sampaio, E.V.S.B. Overview of the Brazilian caatinga. In Seasonally Dry Tropical Forests; Bullock, S.H., Mooney, H.A., Medina, E., Eds.; Cambridge University Press: New York, NY, USA, 1995; Volume 1, pp. 35–63. [Google Scholar]
- Menezes, R.S.C.; Sampaio, E.V.S.B.; Giongo, V.; Pérez-Marin, A.M. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome. Braz. J. Biol. 2012, 72, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.C.; Leal, I.R.; Tabarelli, M. Caatinga: The Largest Tropical Dry Forest Region in South America; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–482. [Google Scholar]
- Silva, F.B.R.; Riche, G.R.; Tonneau, J.P.; Souza Neto, N.C.; Brito, L.T.L.; Correia, R.C.; Cavalcante, A.C.; Silva, A.B.; Araujo Filho, J.C.; Leite, A.P. Northeast Agro-Ecological Zoning: Diagnosis of the Natural and Agro-Socio-Economic Framework; EMBRAPA-CPATSA: Petrolina, Brazil, 1993; p. 325. [Google Scholar]
- Queiroz, L.P.; Cardoso, D.; Fernandes, M.F.; Moro, M.F. Diversity and evolution of flowering plants of the Caatinga domain. In Caatinga: The Largest Tropical Dry Forest Region in South America; Silva, J.M.C., Leal, I.R., Tabarelli, M., Eds.; Springer: Cham, Switzerland, 2017; pp. 23–63. [Google Scholar]
- Medeiros, S.S.; Cavalcante, A.M.B.; Marin, A.M.P.; Tinoco, L.B.M.; Salcedo, I.H.; Pinto, T.F. Synopsis of the Demographic Census for the Brazilian Semiarid Region; Semiarid National Institute (INSA): Campina Grande, Brazil, 2012; pp. 1–107. [Google Scholar]
- Araújo Filho, J.C. Manejo Pastoril Sustentável da Caatinga; Projeto Dom Helder Camara: Recife, Brasil, 2013; pp. 1–200. [Google Scholar]
- Palacio, H.A.Q.; Ribeiro Filho, J.C.; Santos, J.C.N.; Andrade, E.M.; Brasil, J.B. Effective precipitation, soil loss, and plant cover systems in the Caating biome, Brazil. Rev. Caatinga 2016, 29, 956–965. [Google Scholar] [CrossRef] [Green Version]
- Tomasella, J.; Vieira, R.M.S.P.; Barbosa, A.A.; Rodriguez, D.A.; Santana, M.O.; Sestini, M.F. Desertification trends in the Northeast of Brazil over the period 2000–2016. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.U.; Silva, R.R. Boron Availability in Building up Fertility in Cerrado Soil of Tocantins. Commun. Soil Sci. Plant Anal. 2020, 51, 595–603. [Google Scholar] [CrossRef]
- Lopes, A.A.C.; Bogiani, J.C.; Figueiredo, C.C.; Junior, F.B.R.; Sousa, D.M.G.; Malaquias, J.V.; Mendes, I.C. Enzyme activities in a sandy soil of Western Bahia under cotton production systems: Short-term effects, temporal variability, and the FERTBIO sample concept. Braz. J. Microbiol. 2021, 52, 2193–2204. [Google Scholar] [CrossRef]
- Alvares, A.A.; Stape, J.L.; Sentelhas, P.C.; Goncalves, J.L.M.; Sparovek, G. Koppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Torres, F.S.M.; Silva, E.P. Geodiversity of the Paraíba State; CPRM: Recife, Brazil, 2016. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araújo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Brazilian Soil Classification System, 5th ed.; Revised and Extended; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; Handbook 436; Natural Resources Conservation Service, U.S. Department of Agriculture: Washington, DC, USA, 1999.
- Leprun, J.C. Report on the End of the Soil Management and Conservation Agreement in Northeast Brazil (1982–1983); SUDENE: Recife, Brazil, 1983; p. 290. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual of Soil Analysis Methods, 3rd ed.; Embrapa: Brasilia, Brazil, 2017. [Google Scholar]
- Van Raij, B.; Andrade, J.C.; Cantarella, H.; Quaggio, J.A. (Eds.) Determination of Organic Matter. In Chemical Analysis for Tropical Soils Fertility Evaluation; Agronomical Institute of Campinas: Campinas, Brasil, 2001; Volume 1. [Google Scholar]
- Barbosa, R.S.; Marques, J.R.J.; Barrón, V.; Martins Filho, M.V.; Siqueira, D.S.; Peluco, R.G.; Camargo, L.A.; Silva, L.S. Prediction and mapping of erodibility factors (USLE and WEPP) by magnetic susceptibility in basalt-derived soils in northeastern São Paulo state, Brazil. Environ. Earth Sci. 2019, 78, 1–12. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Naderi, M.; Demattê, J.A.M.; Kerry, R. Modification of the USLE K factor for soil erodibility assessment on calcareous soils in Iran. Geomorphology 2016, 273, 385–395. [Google Scholar] [CrossRef]
- Denardin, J.E. Soil Erodibility Estimated by Physical and Chemical Parameters. Ph.D. Thesis, Luis de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil, 1990. [Google Scholar]
- Wischmeier, W.H.; Johnson, C.B.; Cross, B.V. A Soil Erodibility Nomograph for Farmland and Construction Sites. J. Soil Water Conserv. 1971, 26, 189–193. [Google Scholar]
- Camargo, L.A.; Marques Júnior, J.; Barrón, V.; Alleoni, L.R.F.; Barbosa, R.S.; Pereira, G.T. Mapping of clay, iron oxide and adsorbed phosphate in Oxisols using diffuse reflectance spectroscopy. Geoderma 2015, 251–252, 124–132. [Google Scholar] [CrossRef]
- Oliveira, R.P.; Barbosa, R.S.; Marques Júnior, J.; Silva, Y.J.A.B.; Barrón, V.; Dantas, J.S.; Resende, J.M.A.; Gualberto, A.V.S. Mid-Infrared Spectrum Analysis for Mapping Attributes of Cohesive Soils in Brazil. Commun. Soil Sci. Plant Anal. 2022, 53, 1277–1293. [Google Scholar] [CrossRef]
- Vieira, S.R. Geostatistics use in studies of spatial variability of soil properties. In Topics in Soil Science; Novais, R.F., Alvarez, V.V.H., Schaefer, C.E.G.R., Eds.; Brazilian Society of Soil Science: Viçosa, Brasil, 2000; Volume 1, pp. 1–54. [Google Scholar]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopa, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A. ParLeS: Software for chemometric analysis of spectroscopic data. Chemom. Intell. Lab. Syst. 2008, 90, 72–83. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.F. An Introduction to the Bootstrap; Chapman & Hall: London, UK, 1993. [Google Scholar]
- Akaike, H. Information theory as an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, Tsahkadsor, Armenia, USSR, 2–8 September 1971; Akadêmia Kiadó: Budapest, Hungary, 1973; pp. 267–281. [Google Scholar]
- Tabatabai, S.; Knadel, M.; Thomsen, A.; Greve, M.H. On-the-Go Sensor Fusion for Prediction of Clay and Organic Carbon Using Pre-processing Survey, Different Validation Methods, and Variable Selection. Am. J. Soil Sci. 2019, 83, 300–310. [Google Scholar] [CrossRef]
- Ng, W.; Minasny, B.; Mendes, W.S.; Demattê, J.A.M. The influence of training sample size on the accuracy of deep learning models for the prediction of soil properties with near-infrared spectroscopy data. Soil 2020, 6, 565–578. [Google Scholar] [CrossRef]
- Cezar, E.; Nanni, M.R.; Crusiol, L.G.T.; Sun, L.; Chicati, M.S.; Furlanetto, R.H.; Rodrigues, M.; Sibaldelli, R.N.R.; Silva, G.F.C.; Oliveira, K.M.; et al. Mapping Particle Size and Soil Organic Matter in Tropical Soil Based on Hyperspectral Imaging and Non-Imaging Sensors. Remote Sens. 2021, 13, 1376. [Google Scholar] [CrossRef]
- Dhawale, N.M.; Adamchuk, V.I.; Prasher, S.O.; Viscarra Rossel, R.A. Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture. Soil Syst. 2021, 5, 48. [Google Scholar] [CrossRef]
- Zhou, P.; Sudduth, K.A.; Veum, K.S.; Li, M. Extraction of reflectance spectra features for estimation of surface, subsurface, and profile soil properties. Comput. Electron. Agric. 2022, 196, 106845. [Google Scholar] [CrossRef]
- Chang, C.W.; Laird, D.; Mausbach, M.J.; Hurburgh, C.R. Near-Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Fang, N.F.; Zhang, P.C.; Shi, Z.H. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Salviano, A.M.; Cunha, T.J.F.; Olszevski, N.; Oliveira Neto, M.B.; Giongo, V.; Queiroz, A.F.; Menezes, F.J.S. Potentialities and limitations for the agricultural use of sandy soils in the semiarid region of Bahia. Magistra 2016, 28, 137–148. [Google Scholar]
- Santos, E.S.; Souza, E.S.; Pessoa, L.G.M.; Leite, P.A.; Wilcox, B.P.; Silva, J.R.I. Water erosion in Caatinga and degraded pasture areas in semiarid region. Amazon. J. Plant Res. 2018, 2, 261–266. [Google Scholar] [CrossRef]
- Souza, J.J.L.L.; Souza, B.I.; Xavier, R.A.; Cardoso, E.C.M.; Medeiros, J.R.; Fonseca, C.F.; Schaefer, C.E.G.R. Organic carbon rich-soils in the Brazilian semiarid region and paleoenvironmental implications. Catena 2022, 212, 106101. [Google Scholar] [CrossRef]
- Araújo Filho, J.C.; Ribeiro, M.R.; Burgos, N.; Marques, F.A. Solos da Caatinga. In Pedology—Soils of the Brazilian Biomes; Curi, N., Ker, J.C., Novais, R.F., Vidal-Torrado, P., Schaefe, C.E.G.R., Eds.; Brazilian Society of Soil Science: Viçosa, Brasil, 2017; Volume 1, pp. 227–260. [Google Scholar]
- da Silva, R.J.A.B.; da Silva, Y.J.A.B.; van Straaten, P.; do Nascimento, C.W.A.; Biondi, C.M.; da Silva, Y.J.A.B.; Araújo Filho, J.C. Influence of parent material on soil chemical characteristics in a semi-arid tropical region of Northeast Brazil. Environ. Monit. Assess. 2022, 194, 1–21. [Google Scholar] [CrossRef]
- Ostovari, Y.; Moosavi, A.A.; Mozaffari, H.; Poppiel, R.R.; Tayebi, M.; Dematte, J.A.M. Chapter 32—Soil erodibility and its influential factors in the Middle East. Comput. Earth Environ. Sci. 2022, 1, 441–454. [Google Scholar] [CrossRef]
- Schmid, T.; Palacios-Orueta, A.; Chabrillat, S.; Bendor, E.; Plaza, A.; Rodriguez, M.; Huesca, M.; Pelayo, M.; Pascual, C.; Escribano, P.; et al. Spectral characteristic of land surface composition to determination soil erosion within semiarid ranifed cultivated areas. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Lin, C.; Zhou, S.L.; Wu, S.H. Using hyperspectral reflectance to detect different soil erosion status in the Subtropical Hilly Region of Southern China: A case study of Changting, Fujian Province. Environ. Earth Sci. 2013, 70, 1661–1670. [Google Scholar] [CrossRef]
- Guerra, A. The effect of organic matter content on soil erosion in simulated rainfall experiments in W. Sussex, UK. Soil Use Manag. 1994, 10, 60–64. [Google Scholar] [CrossRef]
- Kuhn, N.J. Erodibility of soil and organic matter: Independence of organic matter resistance to interrill erosion. Earth Surf. Process. Landf. 2007, 32, 794–802. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.A.; Abbasi, M.; Dematte, A.A.M.; Emmanuel, A.; Panagos, P. Towards prediction of soil erodibility, SOM and CaCO3 using Laboratory Vis NIR spectra: A case study in a semi-arid region of Iran. Geoderma 2018, 314, 102–112. [Google Scholar] [CrossRef]
- Yost, J.L.; Hartemink, A.E. Chapter Four—Soil organic carbon in sandy soils: A review. Adv. Agron. 2019, 158, 217–310. [Google Scholar] [CrossRef]
- Plante, A.F.; Conant, R.T.; Stewart, C.E.; Paustian, K.; Six, J. Impact of Soil Texture on the Distribution of Soil Organic Matter in Physical and Chemical Fractions. Soil Sci. Soc. Am. J. 2006, 70, 287–296. [Google Scholar] [CrossRef]
- Marafon, G.; Barbosa, R.S.; Lacerda, J.J.J.; Martins, V.; Silva, J.D.F.; Costa, O.S., Jr. C and P pool restoration by a no-tillage system on Brazilian Cerrado Oxisol in Piauí State. Environ. Monit. Assess. 2020, 192, 254. [Google Scholar] [CrossRef]
- Mendes, W.S.; Boechat, C.L.; Gualberto, A.V.S.; Barbosa, R.S.; Silva, Y.J.A.B.; Saraiva, P.C.; Sena, A.F.S.; Duarte, L.S.L. Soil spectral library of Piauí State using machine learning for laboratory analysis in Northeastern Brazil. Rev. Braz. Ciênc. Solo 2021, 45, e0200115. [Google Scholar] [CrossRef]
- Adhikari, G.; Bhattacharyya, K.G. Correlation of soil organic carbon and nutrients (NPK) to soil mineralogy, texture, aggregation, and land use pattern. Environ. Monit. Assess. 2015, 187, 1–18. [Google Scholar] [CrossRef]
- Songu, G.A.; Abu, R.D.; Temwa, N.M.; Yiye, S.T.; Wahab, S.; Mohammed, B.G. Analysis of Soil Erodibility Factor for Hydrologic Processes in Kereke Watershed, North Central Nigeria. J. App. Sci. Environ. Manag. 2021, 25, 425–432. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, G.; Zhu, P.; Wang, C.; Wan, Y. Impact of slope position on soil erodibility indicators in rolling hill regions of northeast China. Catena 2022, 217, 106475. [Google Scholar] [CrossRef]
- Olaniya, M.; Bora, P.K.; Das, S.; Chanu, P.H. Soil erodibility indices under different land uses in Ri-Bhoi district of Meghalaya (India). Sci. Rep. 2020, 10, 14986. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.C.N.; Andrade, E.M.; Medeiros, P.H.A.; Guerreiro, M.J.S.; Palacio, H.A.Q. Land use impact on soil erosion at different scales in the Brazilian semi-arid. Rev. Ciênc. Agron. 2017, 48, 251–260. [Google Scholar] [CrossRef] [Green Version]
- Lei, W.; Dong, H.; Chen, P.; Lv, H.; Fan, L.; Mei, G. Study on Runoff and Infiltration for Expansive Soil Slopes in Simulated Rainfall. Water 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Han, D.D.; Deng, J.C.; Gu, C.J.; Mu, X.M.; Gao, P.; Gao, J.J. Effect of shrub-grass vegetation coverage and slope gradient on runoff and sediment yield under simulated rainfall. Int. J. Sediment Res. 2020, 36, 29–37. [Google Scholar] [CrossRef]
- Li, C.J.; Pan, C.Z. Overland runoff erosion dynamics on steep slopes with forages under field simulated rainfall and inflow. Hydrol. Process. 2020, 34, 1794–1809. [Google Scholar] [CrossRef]
- Sampaio, E.V.S.B.; Menezes, R.S.C. Perspectives of the land use in the northeastern semi-arid region. In 500 Years of Soil Use in Brazil; Araújo, Q.R., Ed.; Brazilian Society of Soil Science: Viçosa, Brazil, 2002; pp. 339–363. [Google Scholar]
- Sampaio, E.V.S.B.; Araújo, M.S.B.; Salcedo, I.H.; Menezes, R.S.C. Sustainable Management of the Northeastern Semiarid Region; University Press: Recife, Brazil, 2009; p. 149. [Google Scholar]
- Espindola, G.M.; Figueredo, E.S.; Picanço Júnior, P.; dos Reis Filho, A.A. Cropland expansion as a driver of land-use change: The case of Cerrado-Caatinga transition zone in Brazil. Environ. Dev. Sustain 2021, 23, 17146–17160. [Google Scholar] [CrossRef]
- Brazilian Agricultural Research Corporation. Caatinga Biome. Strategic Territorial Intelligence System. Available online: https://www.embrapa.br/bioma-caatinga (accessed on 14 November 2022).
- Oliveira, G.F.; Garcia, A.C.L.; Montes, M.A.; Jucá, J.C.L.D.A.; Valente, V.L.D.S.; Rohde, C. Are conservation units in the Caatinga biome, Brazil, efficient in the protection of biodiversity? An analysis based on the drosophilid fauna. J. Nat. Conserv. 2016, 34, 145–150. [Google Scholar] [CrossRef]
- Addis, H.K.; Klik, A. Predicting the spatial distribution of soil erodibility factor using USLE nomograph in an agricultural watershed, Ethiopia. Int. Soil Water Conserv. Res. 2015, 3, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [Google Scholar] [CrossRef]
- Bonilla, C.A.; Johnson, O. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma 2012, 189–190, 116–123. [Google Scholar] [CrossRef]
- Montanari, R.; Zambianco, E.C.; Corrêa, A.R.; Pellin, D.M.P.; Carvalho, M.P.; Dalchiavon, F.C. Physical attributes of an Oxisol linear and spatially correlated with millet + pigeonpea intercropping. Rev. Ceres 2012, 59, 125–135. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Hasanzadeh, H.; Cerdà, A. Developing an erodibility triangle for soil textures in semi-arid regions, NW Iran. Catena 2016, 142, 221–232. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A. Robust modelling of soil diffuse reflectance spectra by “bagging-partial least squares regression”. J. Near Infrared Spectrosc. 2007, 15, 37–47. [Google Scholar] [CrossRef]
- Xu, L.; Hong, Y.; Wei, Y.; Guo, L.; Shi, T.; Liu, Y.; Jiang, Q.; Fei, T.; Liu, Y.; Mouazen, A.M.; et al. Estimation of Organic Carbon in Anthropogenic Soil by VIS-NIR Spectroscopy: Effect of Variable Selection. Remote Sens. 2020, 12, 3394. [Google Scholar] [CrossRef]
- Viscarra-Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef] [Green Version]
- Conforti, M.; Froio, R.; Matteucci, G.; Buttafuoco, G. Visible and near infrared spectroscopy for predicting texture in forest soil: An application in southern Italy. Iforest-Biogeosci. For. 2015, 8, 339–347. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Horák-Terra, I.; Beirigo, R.M.; Terra, F.S.; Marques, K.P.P.; Fongaro, C.T.; Silva, A.C.; Vidal-Torrado, P. Genesis and properties of wetland soils by VIS-NIR-SWIR as a technique for environmental monitoring. J. Environ. Manag. 2017, 197, 50–62. [Google Scholar] [CrossRef]
- Di Iorio, E.; Circelli, L.; Lorenzetti, R.; Costantini, E.A.C.; Egendorf, S.P.; Colombo, C. Estimation of andic properties from Vis-NIR diffuse reflectance spectroscopy for volcanic soil classification. Catena 2019, 182, 104109–104122. [Google Scholar] [CrossRef]
- Santos, L.N.S.; Passos, R.R.; Silva, L.V.M.; Oliveira, P.P.; Garcia, G.O.; Cecílio, R.A. Evaluation of some physical attributes of an Oxisol under different crop cover. Biosci. J. 2010, 26, 940–947. [Google Scholar]
- Santos, T.E.M.; Montenegro, A.A.A.; Silva Junior, V.P. Water erosion and organic carbon loss in different types of land cover in the semi-arid region, under simulated rainfall conditions. Rev. Braz. Recur. Hídr. 2008, 13, 113–125. [Google Scholar] [CrossRef]
Soil Properties | Range | Mean | Median | SD | CV |
---|---|---|---|---|---|
Clay (g kg−1) | 34.51–312.89 | 109.81 | 100.00 | 59.77 | 54.43 |
Silt (g kg−1) | 20.00–575.03 | 239.00 | 245.50 | 122.1 | 51.08 |
Sand (g kg−1) | 206.01–942.00 | 651.10 | 650.50 | 177.00 | 27.19 |
VCS (g kg−1) | 5.00–77.01 | 27.47 | 25.00 | 12.17 | 44.29 |
CS (g kg−1) | 6.00–202.10 | 42.68 | 37.00 | 30.17 | 70.69 |
MS (g kg−1) | 11.02–496.00 | 104.65 | 94.30 | 74.63 | 71.31 |
FS (g kg−1) | 43.10–508.00 | 236.10 | 232.50 | 102.90 | 43.58 |
VFS (g kg−1) | 41.03–384.00 | 240.28 | 253.00 | 62.79 | 26.13 |
CDW (g kg−1) | 5.51–158.20 | 65.02 | 59.00 | 31.98 | 49.19 |
SOM (dag kg−1) | 0.01–0.25 | 0.10 | 0.10 | 0.05 | 51.86 |
USLE K-factor (10−3 t h MJ−1 mm−1) | 0.07–45.56 | 29.01 | 30.57 | 9.22 | 31.77 |
RUSLE K-factor (10−3 t h MJ−1 mm−1) | 7.52–43.83 | 20.89 | 19.71 | 10.31 | 49.35 |
Soil Properties | Model | C0 | C0 + C1 | DSD | ESD | a (m) | R2 | RMSE |
---|---|---|---|---|---|---|---|---|
Clay (g kg−1) | Sph | 8 | 27 | 0.28 | M | 70 | 0.77 | 43 |
Silt (g kg−1) | Exp | 37 | 167 | 0.22 | S | 134 | 0.93 | 404 |
Sand (g kg−1) | Sph | 88 | 344 | 0.26 | M | 75 | 0.82 | 5887 |
VCS (g kg−1) | PPE | - | - | - | - | - | - | - |
CS (g kg−1) | Sph | 1 | 4 | 0.26 | M | 34 | 0.21 | 2 |
MS (g kg−1) | Sph | 10 | 26 | 0.39 | M | 55 | 0.59 | 46 |
FS (g kg−1) | Gau | 57 | 128 | 0.44 | M | 140 | 0.96 | 171 |
VFS (g kg−1) | PPE | - | - | - | - | - | - | - |
CDW (g kg−1) | PPE | - | - | - | - | - | - | - |
SOM (dag kg−1) | PPE | - | - | - | - | - | - | - |
USLE K-factor (10−3 t h MJ−1 mm−1) | Exp | 21 | 60 | 0.35 | M | 140 | 0.83 | 115 |
RUSLE K-factor (10−3 t h MJ−1 mm−1) | Sph | 32 | 116 | 0.28 | M | 72 | 0.80 | 685 |
Soil Properties | Parameters of Calibration | Parameters of External Validation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n = 56 | n = 24 | |||||||||
F | R2adj | a | b | RMSE | RPD | R2adj | a | b | RMSE | |
Clay (g kg−1) | 4 | 0.79 | 0.81 | 2.19 | 2.91 | 2.2 | 0.57 | 1.14 | 0.09 | 4.09 |
Silt (g kg−1) | 6 | 0.79 | 0.84 | 4.23 | 5.60 | 2.2 | 0.66 | 1.10 | 0.02 | 8.50 |
Sand (g kg−1) | 6 | 0.82 | 0.85 | 9.53 | 7.67 | 2.4 | 0.68 | 1.10 | −10.10 | 11.09 |
VCS (g kg−1) | 2 | 0.01 | −0.02 | 2.60 | 1.04 | 1.0 | - | - | - | - |
CS (g kg−1) | 2 | 0.06 | 0.10 | 3.38 | 2.08 | 1.0 | - | - | - | - |
MS (g kg−1) | 2 | 0.19 | 0.23 | 7.14 | 6.04 | 1.1 | - | - | - | - |
FS (g kg−1) | 6 | 0.62 | 0.71 | 6.79 | 6.51 | 1.6 | 0.28 | 0.54 | 11.70 | 8.85 |
VFS (g kg−1) | 2 | 0.13 | 0.17 | 20.20 | 5.45 | 1.1 | - | - | - | - |
CDW (g kg−1) | 4 | 0.67 | 0.70 | 2.14 | 1.89 | 1.8 | 0.57 | 0.79 | 2.12 | 2.09 |
SOM (dag kg−1) | 5 | 0.68 | 0.73 | 0.03 | 0.03 | 1.8 | 0.74 | 0.99 | 0.01 | 0.03 |
USLE K-factor (10−3 t h MJ−1 mm−1) | 7 | 0.70 | 0.76 | 7.53 | 3.75 | 1.8 | 0.53 | 0.64 | 12.10 | 8.37 |
RUSLE K-factor (10−3 t h MJ−1 mm−1) | 5 | 0.81 | 0.83 | 3.73 | 4.67 | 2.3 | 0.58 | 0.98 | 2.86 | 6.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontes, S.F.; Silva, Y.J.A.B.d.; Martins, V.; Boechat, C.L.; Araújo, A.S.F.; Dantas, J.S.; Costa, O.S., Jr.; Barbosa, R.S. Prediction of Soil Erodibility by Diffuse Reflectance Spectroscopy in a Neotropical Dry Forest Biome. Land 2022, 11, 2188. https://doi.org/10.3390/land11122188
Pontes SF, Silva YJABd, Martins V, Boechat CL, Araújo ASF, Dantas JS, Costa OS Jr., Barbosa RS. Prediction of Soil Erodibility by Diffuse Reflectance Spectroscopy in a Neotropical Dry Forest Biome. Land. 2022; 11(12):2188. https://doi.org/10.3390/land11122188
Chicago/Turabian StylePontes, Samuel Ferreira, Yuri Jacques Agra Bezerra da Silva, Vanessa Martins, Cácio Luiz Boechat, Ademir Sérgio Ferreira Araújo, Jussara Silva Dantas, Ozeas S. Costa, Jr., and Ronny Sobreira Barbosa. 2022. "Prediction of Soil Erodibility by Diffuse Reflectance Spectroscopy in a Neotropical Dry Forest Biome" Land 11, no. 12: 2188. https://doi.org/10.3390/land11122188
APA StylePontes, S. F., Silva, Y. J. A. B. d., Martins, V., Boechat, C. L., Araújo, A. S. F., Dantas, J. S., Costa, O. S., Jr., & Barbosa, R. S. (2022). Prediction of Soil Erodibility by Diffuse Reflectance Spectroscopy in a Neotropical Dry Forest Biome. Land, 11(12), 2188. https://doi.org/10.3390/land11122188