Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Investigation of Plant Species and Diversity, and Soil Properties
2.3. DNA Extraction and PCR Amplification
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical Properties
3.2. Alpha(α)-Diversity of the Bacterial and Fungal Community
3.3. Composition of Bacterial and Fungal Community
3.4. The Co-Occurrence Network of Bacterial and Fungal Community
3.5. The Bacterial Metabolic Functional Groups on Nitrogen and Carbon
4. Discussion
4.1. Soil Microbial Community in Gullies after NVR
4.2. NVR Influenced the Microbial Community in Gullies by Plant Community Composition
4.3. NVR Influenced the Microbial Community in Gullies by the Accumulation of SOM
4.4. NVR Influence the Potential Microbial C, P and N Storage by Key Biomarkers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munoz-Robles, C.; Reid, N.; Frazier, P.; Tighe, M.; Briggs, S.V.; Wilson, B. Factors related to gully erosion in woody encroachment in south-eastern Australia. Catena 2010, 83, 148–157. [Google Scholar] [CrossRef]
- Cui, Y.X.; Fang, L.C.; Guo, X.B.; Wang, X.; Wang, Y.Q.; Zhang, Y.J.; Zhang, X.C. Responses of soil bacterial communities, enzyme activities, and nutrients to agricultural-to-natural ecosystem conversion in the Loess Plateau, China. J. Soils Sediments 2019, 19, 1427–1440. [Google Scholar] [CrossRef]
- Guo, Z.M.; Zhang, X.Y.; Dungait, J.A.J.; Green, S.M.; Wen, X.F.; Quine, T.A. Contribution of soil microbial necromass to SOC stocks during vegetation recovery in a subtropical karst ecosystem. Sci. Total Environ. 2021, 761, 143945. [Google Scholar] [CrossRef] [PubMed]
- Sansupa, C.; Wahdan, S.F.M.; Hossen, S.; Disayathanoowat, T.; Wubet, T.; Purahong, W. Can We Use Functional Annotation of Prokaryotic Taxa (FAPROTAX) to Assign the Ecological Functions of Soil Bacteria? Appl. Sci. 2021, 11, 688. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Jiao, J.-Y.; Su, Y.; Chen, Y. The efficiency of large-scale afforestation with fish-scale pits for revegetation and soil erosion control in the steppe zone on the hill-gully Loess Plateau. Catena 2014, 115, 159–167. [Google Scholar] [CrossRef]
- Asfaha, T.G.; Frankl, A.; Haile, M.; Nyssen, J. Catchment Rehabilitation and Hydro-geomorphic Characteristics of Mountain Streams in the Western Rift Valley Escarpment of Northern Ethiopia. Land Degrad. Dev. 2016, 27, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Dini-Andreote, F.; Meador, T.B.; Angel, R.; Meszarosova, L.; Hedenec, P.; Li, L.; Baldrian, P.; Frouz, J. Microbial phylogenetic relatedness links to distinct successional patterns of bacterial and fungal communities. Environ. Microbiol. 2022, 24, 3985–4000. [Google Scholar] [CrossRef]
- Xiong, Q.; Li, L.; Luo, X.; He, X.; Zhang, L.; Pan, K.; Liu, C.; Sun, H. Driving forces for recovery of forest vegetation after harvesting a subalpine oak forest in eastern Tibetan Plateau. Environ. Sci. Pollut. Res. 2021, 28, 67748–67763. [Google Scholar] [CrossRef]
- Huyen-Trang, T.; Hung-Minh, N.; Thi-Minh-Hue, N.; Chang, C.; Huang, W.-L.; Huang, C.-L.; Chiang, T.-Y. Microbial Communities Along 2,3,7,8-tetrachlorodibenzodioxin Concentration Gradient in Soils Polluted with Agent Orange Based on Metagenomic Analyses. Microb. Ecol. 2022. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhang, X.Y.; Liu, Z.H.; Sun, Y.K.; Liu, W.; Dai, L.; Fu, S.C. Spatial heterogeneity of soil organic matter and soil total nitrogen in a Mollisol watershed of Northeast China. Environ. Earth Sci. 2014, 72, 275–288. [Google Scholar] [CrossRef]
- Chen, Z.C.; Liao, H. Organic acid anions: An effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils. J. Genet. Genom. 2016, 43, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Hao, W.L.; Xia, B.; Xu, M.X. Erosion-deposition positively reconstruct the bacterial community and negatively weaken the fungal community. Catena 2022, 217, 106471. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, Z.; Huo, J.; Zhang, H. Key factors influencing on vegetation restoration in the gullies of the Mollisols. J. Environ. Manag. 2021, 299, 113704. [Google Scholar] [CrossRef]
- Qiu, L.; Zhang, Q.; Zhu, H.; Reich, P.B.; Banerjee, S.; van der Heijden, M.G.A.; Sadowsky, M.J.; Ishii, S.; Jia, X.; Shao, M.; et al. Erosion reduces soil microbial diversity, network complexity and multifunctionality. ISME J. 2021, 15, 2474–2489. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.B.; Su, F.Y.; Zhang, Q.; Ishii, S.; Sadowsky, M.J.; Banerjee, S.; Shao, M.G.; Qiu, L.P.; Wei, X.R. Erosion and deposition divergently affect the structure of soil bacterial communities and functionality. Catena 2022, 209, 105805. [Google Scholar] [CrossRef]
- Waldrop, M.P.; Firestone, M.K. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils. Microb. Ecol. 2006, 52, 470–479. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Huang, S.; Shen, M.; Ren, Z.J.; Wu, H.; Yang, H.; Si, B.; Lin, J.; Liu, Z. Long-term in situ bioelectrochemical monitoring of biohythane process: Metabolic interactions and microbial evolution. Bioresour. Technol. 2021, 332, 125119. [Google Scholar] [CrossRef]
- Ni, H.; Wang, K.; Lv, S.; Wang, X.; Zhuo, L.; Zhang, J. Effects of Concentration Variations on the Performance and Microbial Community in Microbial Fuel Cell Using Swine Wastewater. Energies 2020, 13, 2231. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Wang, Z.; Zhao, L.; Qi, J.; Wang, Y.; Zhao, P.; Zhong, N. Short-Term Effects of Eco-Friendly Fertilizers on a Soil Bacterial Community in the Topsoil and Rhizosphere of an Irrigated Agroecosystem. Sustainability 2020, 12, 4803. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [Green Version]
- de Vries, F.T.; Griffiths, R.I.; Bailey, M.; Craig, H.; Girlanda, M.; Gweon, H.S.; Hallin, S.; Kaisermann, A.; Keith, A.M.; Kretzschmar, M.; et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.B.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.Y.; Cruse, R.M.; Yuan, X.H. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- Liu, J.J.; Sui, Y.Y.; Yu, Z.H.; Shi, Y.; Chu, H.Y.; Jin, J.; Liu, X.B.; Wang, G.H. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Qin, W.; Yin, Z.; Cao, W.; Fan, J. Present and future of systematic prevention and control for gully erosion in black soil area of Northeast China. J. Sediment Res. 2021, 46, 72–80. [Google Scholar]
- Chao, A.; Chiu, C.-H.; Jost, L. Unifying Species Diversity, Phylogenetic Diversity, Functional Diversity, and Related Similarity and Differentiation Measures Through Hill Numbers. Annu. Rev. Ecol. Evol. Syst. 2014, 45, 297–324. Available online: https://www.annualreviews.org/journal/ecolsys (accessed on 2 October 2022).
- Bao, S.D. Soil Agrochemical Analysis; China Agriculture Press: Beijing, China, 2000; pp. 50–57. [Google Scholar]
- Dai, Z.; Lv, X.; Ma, B.; Chen, N.; Chang, S.X.; Lin, J.; Wang, X.; Su, W.; Liu, H.; Huang, Y.; et al. Concurrent and rapid recovery of bacteria and protist communities in Canadian boreal forest ecosystems following wildfire. Soil Biol. Biochem. 2021, 163, 108452. [Google Scholar] [CrossRef]
- Hamer, U.; Makeschin, F.; An, S.; Zheng, F. Microbial activity and community structure in degraded soils on the Loess Plateau of China. J. Plant Nutr. Soil Sci. 2009, 172, 118–126. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, G.; Song, Z.; Qu, D.; Fang, L.; Deng, L. Natural succession on abandoned cropland effectively decreases the soil erodibility and improves the fungal diversity. Ecol. Appl. 2017, 27, 2142–2154. [Google Scholar] [CrossRef]
- Hahn, A.S.; Quideau, S.A. Long-term effects of organic amendments on the recovery of plant and soil microbial communities following disturbance in the Canadian boreal forest. Plant Soil 2013, 363, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.D.; Heidelberg, J.F.; Tully, B.J. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 2018, 12, 1861–1866. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.-X.; Wang, P.; Ou, H.-B.; Wei, S.-X.; Wu, L.-C.; Jiang, Y.; Wang, R.-J.; Liu, X.-S.; Wang, Z.-H.; Chen, L.-J.; et al. Effects of different vegetation restoration on soil nutrients, enzyme activities, and microbial communities in degraded karst landscapes in southwest China. For. Ecol. Manag. 2022, 508, 120002. [Google Scholar] [CrossRef]
- Rong, L.; Wu, X.; Xu, J.; Dong, F.; Liu, X.; Xu, H.; Cao, J.; Zheng, Y. Clomazone improves the interactions between soil microbes and affects C and N cycling functions. Sci. Total Environ. 2021, 770, 144730. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Song, Y.; Li, S.; Xiong, Z. Responses of N2O production pathways and related functional microbes to temperature across greenhouse vegetable field soils. Geoderma 2019, 355, 113904. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Guan, Y.P.; Bello, A.; Wu, Y.X.; Ding, J.Y.; Wang, L.Q.; Ren, Y.Q.; Chen, G.X.; Yang, W. Dynamics of ammonia oxidizers and denitrifiers in response to compost addition in black soil, Northeast China. PeerJ 2020, 8, e8844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.M.; Pan, H.; Sun, M.J.; He, W.; Wei, M.; Lou, Y.H.; Wang, H.; Yang, Q.G.; Feng, H.J.; Zhuge, Y.P. Nitrosospira cluster 3 lineage of AOB and nirK of Rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils. Ecol. Indic. 2021, 127, 107722. [Google Scholar] [CrossRef]
- Xuan, Y.X.; Mai, Y.W.; Xu, Y.Q.; Zheng, J.Y.; He, Z.L.; Shu, L.F.; Cao, Y.J. Enhanced microbial nitrification-denitrification processes in a subtropical metropolitan river network. Water Res. 2022, 222, 118857. [Google Scholar] [CrossRef]
- Wang, R.; Li, P.; Li, Z.; Yu, K.; Han, J.; Zhu, Y.; Su, Y. Effects of gully head height and soil texture on gully headcut erosion in the Loess Plateau of China. Catena 2021, 207, 105674. [Google Scholar] [CrossRef]
- Kothe, E.; Turnau, K. Editorial: Mycorrhizosphere Communication: Mycorrhizal Fungi and Endophytic Fungus-Plant Interactions. Front. Microbiol. 2018, 9, 3015. [Google Scholar] [CrossRef] [Green Version]
- Kodsueb, R.; McKenzie, E.H.C.; Lumyong, S.; Hyde, K.D. Diversity of saprobic fungi on Magnoliaceae. Fungal Divers. 2008, 30, 37–53. [Google Scholar]
- Cadot, S.; Guan, H.; Bigalke, M.; Walser, J.C.; Jander, G.; Erb, M.; van der Heijden, M.G.A.; Schlaeppi, K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. Microbiome 2021, 9, 1–19. [Google Scholar] [CrossRef]
- Opik, M.; Peay, K.G. Mycorrhizal diversity: Diversity of host plants, symbiotic fungi and relationships. Fungal Ecol. 2016, 24, 103–105. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Waller, F.; Zuccaro, A.; Selosse, M.A. Sebacinales–one thousand and one interactions with land plants. New Phytol. 2016, 211, 20–40. [Google Scholar] [CrossRef]
- Fritsche, Y.; Lopes, M.E.; Selosse, M.A.; Stefenon, V.M.; Guerra, M.P. Serendipita restingae sp. nov. (Sebacinales): An orchid mycorrhizal agaricomycete with wide host range. Mycorrhiza 2021, 31, 1–15. [Google Scholar] [CrossRef]
- Yang, F.; Wu, J.J.; Zhang, D.D.; Chen, Q.; Zhang, Q.; Cheng, X.L. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Appl. Soil Ecol. 2018, 128, 43–53. [Google Scholar] [CrossRef]
- Shigyo, N.; Umeki, K.; Hirao, T. Plant functional diversity and soil properties control elevational diversity gradients of soil bacteria. Fems Microbiol. Ecol. 2019, 95, fiz025. [Google Scholar] [CrossRef]
- Zuo, X.A.; Wang, S.K.; Lv, P.; Zhou, X.; Zhao, X.Y.; Zhang, T.H.; Zhang, J. Plant functional diversity enhances associations of soil fungal diversity with vegetation and soil in the restoration of semiarid sandy grassland. Ecol. Evol. 2016, 6, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.W.; Brandt, M.; Yue, Y.M.; Horion, S.; Wang, K.L.; De Keersmaecker, W.; Tian, F.; Schurgers, G.; Xiao, X.M.; Luo, Y.Q.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Liu, X.Z.; Liu, Y.; Zhang, L.; Yin, R.; Wu, G.L. Bacterial contributions of bio-crusts and litter crusts to nutrient cycling in the Mu Us Sandy Land. Catena 2021, 199, 105090. [Google Scholar] [CrossRef]
- Yurkov, V.V.; Beatty, J.T. Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 695–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martikainen, P.J. Heterotrophic nitrification—An eternal mystery in the nitrogen cycle. Soil Biol. Biochem. 2022, 168, 108611. [Google Scholar] [CrossRef]
- Garrido-Oter, R.; Nakano, R.T.; Dombrowski, N.; Ma, K.W.; McHardy, A.C.; Schulze-Lefert, P.; AgBiome, T. Modular Traits of the Rhizobiales Root Microbiota and Their Evolutionary Relationship with Symbiotic Rhizobia. Cell Host Microbe 2018, 24, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicorarat, D.; Dick, W.A.; Dopson, M.; Tuovinen, O.H. Bacterial phylogenetic diversity in a constructed wetland system treating acid coal mine drainage. Soil Biol. Biochem. 2008, 40, 312–321. [Google Scholar] [CrossRef]
- Kang, E.; Li, Y.; Zhang, X.; Yan, Z.; Wu, H.; Li, M.; Yan, L.; Zhang, K.; Wang, J.; Kang, X. Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. Sci. Total Environ. 2021, 774, 145780. [Google Scholar] [CrossRef]
- Wang, H.L.; Bu, L.Y.; Song, F.Q.; Tian, J.; Wei, G.H. Soil available nitrogen and phosphorus affected by functional bacterial community composition and diversity as ecological restoration progressed. Land Degrad. Dev. 2021, 32, 183–198. [Google Scholar] [CrossRef]
- Deng, Z.Y.; Wang, Y.C.; Xiao, C.C.; Zhang, D.X.; Feng, G.; Long, W.X. Effects of Plant Fine Root Functional Traits and Soil Nutrients on the Diversity of Rhizosphere Microbial Communities in Tropical Cloud Forests in a Dry Season. Forests 2022, 13, 421. [Google Scholar] [CrossRef]
- Chen, H.; Peng, W.; Du, H.; Song, T.; Zeng, F.; Wang, F. Effect of Different Grain for Green Approaches on Soil Bacterial Community in a Karst Region. Front. Microbiol. 2020, 11, 577242. [Google Scholar] [CrossRef]
- Brangari, A.C.; Manzoni, S.; Rousk, J. The mechanisms underpinning microbial resilience to drying and rewetting—A model analysis. Soil Biol. Biochem. 2021, 162, 108400. [Google Scholar] [CrossRef]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Lewin, S.; Francioli, D.; Ulrich, A.; Kolb, S. Crop host signatures reflected by co-association patterns of keystone Bacteria in the rhizosphere microbiota. Environ. Microbiome 2021, 16, 1–18. [Google Scholar] [CrossRef]
- Dijkhuizen, L.W.; Brouwer, P.; Bolhuis, H.; Reichart, G.J.; Koppers, N.; Huettel, B.; Bolger, A.M.; Li, F.W.; Cheng, S.F.; Liu, X.; et al. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N-2 but may denitrify. New Phytol. 2018, 217, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Lodha, T.D.; Srinivas, A.; Sasikala, C.; Ramana, C.V. Hopanoid inventory of Rhodoplanes spp. Arch. Microbiol. 2015, 197, 861–867. [Google Scholar] [CrossRef]
- Wu, X.; Rensing, C.; Han, D.; Xiao, K.-Q.; Dai, Y.; Tang, Z.; Liesack, W.; Peng, J.; Cui, Z.; Zhang, F. Genome-Resolved Metagenomics Reveals Distinct Phosphorus Acquisition Strategies between Soil Microbiomes. Msystems 2022, 7, e0110721. [Google Scholar] [CrossRef]
Site | Depth | Positions | SOM g/kg | TN g/kg | TP g/kg | AN mg/kg | AP mg/kg | SM % | pH us/cm |
---|---|---|---|---|---|---|---|---|---|
Guangrong | 0–20 cm | Farmland | 24.90 (4.29) a | 1.58 (0.23) a | 0.40 (0.09) a | 139.83 (81.20) a | 30.41 (5.84) a | 0.2 (0.01) a | 6.63 (0.37) a |
Deposition area | 18.88 (5.35) a | 1.33 (0.34) a | 0.47 (0.11) a | 90.02 (37.85) a | 51.53 (14.85) a | 0.19 (0.02) a | 7.28 (0.71) a | ||
Gully | 24.54 (21.24) a | 1.46 (0.93) a | 0.51 (0.14) a | 70.84 (23.43) a | 39.38 (10.86) a | 0.16 (0.02) b | 6.74 (0.05) a | ||
20–40 cm | Farmland | 18.17 (3.91) a | 1.27 (0.10) a | 0.36 (0.03) a | 169.34 (181.63) a | 28.11 (2.28) b | 0.21 (0.03) a | 6.62 (0.14) a | |
Deposition area | 18.56 (0.97) a | 1.30 (0.02) a | 0.51 (0.10) a | 109.57 (34.98) a | 46.34 (11.27) a | 0.19 (0.03) a | 7.14 (0.60) a | ||
Gully | 15.26 (5.50) a | 1.09 (0.24) a | 0.38 (0.09) a | 79.69 (25.93) a | 36.24 (7.35) ab | 0.21 (0.03) a | 6.8 (0.08) a | ||
40–60 cm | Farmland | 13.89 (1.08) a | 1.03 (0.1) a | 0.28 (0.04) a | 70.10 (17.99) a | 31.28 (7.21) a | 0.19 (0.01) a | 6.59 (0.15) a | |
Deposition area | 17.60 (3.78) a | 1.23 (0.15) a | 0.55 (0.15) a | 83.38 (22.69) a | 43.62 (10.38) a | 0.17 (0.05) a | 7.01 (0.52) a | ||
Gully | 26.47 (29.05) a | 1.70 (1.37) a | 0.55 (0.28) a | 73.79 (10.92) a | 42.95 (8.23) a | 0.19 (0.03) a | 6.68 (0.05) a | ||
Yanmagou | 0–20 cm | Farmland | 38.84 (11.15) a | 1.80 (0.38) a | 0.44 (0.08) a | 24.03 (17.07) a | 19.54 (7.42) a | 0.24 (0.02) b | 5.94 (0.41) b |
Gully | 45.57 (22.80) a | 1.97 (0.73) a | 0.45 (0.08) a | 31.50 (19.06) a | 19.43 (12.10) a | 0.29 (0.02) a | 6.62 (0.19) a |
Group | Depth | AP | SOM | pH | SM | Plant Composition | |
---|---|---|---|---|---|---|---|
Guangrong | Bacteria | 0.810 * | 0.202 | 0.647 * | 0.115 | 0.334 | 0.338 |
Fungi | 0.003 | 0.274 | 0.370 | 0.084 | 0.224 | 0.888 ** | |
Yanmagou | Bacteria | - | 0.221 | 0.832 ** | 0.860 ** | 0.069 | 0.542 |
Fungi | - | 0.143 | 0.063 | 0.228 | 0.085 | 0.111 |
Bacterial Richness | Fungal Richness | |||
---|---|---|---|---|
Variables | Variance | p-Value | Variance | p-Value |
Control no variables | ||||
Plant diversity | −0.650 | 0.022 | 0.589 | 0.044 |
Plant richness | −0.782 | 0.003 | 0.418 | 0.176 |
Plant composition | −0.758 | 0.004 | 0.661 | 0.019 |
Control SM | ||||
Plant diversity | −0.019 | 0.995 | 0.137 | 0.689 |
Plant richness | −0.364 | 0.271 | −0.271 | 0.421 |
Plant composition | −0.238 | 0.480 | 0.251 | 0.457 |
Control AN | ||||
Plant diversity | −0.505 | 0.113 | 0.275 | 0.414 |
Plant richness | −0.697 | 0.017 | −0.035 | 0.918 |
Plant composition | −0.665 | 0.026 | 0.422 | 0.196 |
Control AN | ||||
Plant diversity | −0.554 | 0.077 | 0.650 | 0.030 |
Plant richness | −0.727 | 0.011 | 0.463 | 0.151 |
Plant composition | −0.693 | 0.018 | 0.734 | 0.010 |
Alpha Diversity | Depths (cm) | Plant Diversity | Plant Richness | Plant Composition | SOM |
---|---|---|---|---|---|
Bacterial Diversity | 0–20 | −0.32 | −0.39 | −0.48 | −0.06 |
Bacterial Diversity | 20–60 | 0.19 | 0.28 | 0.11 | −0.88 * |
Bacterial Richness | 0–20 | −0.65 * | −0.78 ** | −0.75 ** | −0.15 |
Bacterial Richness | 20–60 | 0.49 | 0.56 | 0.44 | −0.97 ** |
Fungal Diversity | 0–20 | 0.24 | 0.50 | 0.16 | −0.44 |
Fungal Diversity | 20–60 | 0.47 | 0.56 | 0.40 | −0.63 |
Fungal Richness | 0–20 | 0.58 * | 0.41 | 0.66 * | 0.46 |
Fungal Richness | 20–60 | −0.37 | −0.44 | −0.31 | 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Z.; Zhang, S.; Yan, P.; Huo, J.; Aurangzeib, M. Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China. Land 2022, 11, 2231. https://doi.org/10.3390/land11122231
Xiao Z, Zhang S, Yan P, Huo J, Aurangzeib M. Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China. Land. 2022; 11(12):2231. https://doi.org/10.3390/land11122231
Chicago/Turabian StyleXiao, Ziliang, Shaoliang Zhang, Pengke Yan, Jiping Huo, and Muhammad Aurangzeib. 2022. "Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China" Land 11, no. 12: 2231. https://doi.org/10.3390/land11122231
APA StyleXiao, Z., Zhang, S., Yan, P., Huo, J., & Aurangzeib, M. (2022). Microbial Community and Their Potential Functions after Natural Vegetation Restoration in Gullies of Farmland in Mollisols of Northeast China. Land, 11(12), 2231. https://doi.org/10.3390/land11122231