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Abstract: Loss of green space habitats and landscape fragmentation are important reasons for the
decline in environmental quality, degradation of ecosystem functions, and decline in biodiversity.
Quantifying the spatio-temporal characteristics of landscape fragmentation of green space and its
relationship with urban expansion mode is an important basis for improving urban development
mode and enhancing urban ecological functions. For this paper, we took the Beijing–Tianjin–Hebei
(BTH) urban agglomeration as the research object, a typical rapidly urbanizing area. Through multi-
scale landscape pattern analysis and statistical analysis, the spatial–temporal evolution characteristics
of green space fragmentation in the BTH urban agglomeration from 2000 to 2020 and the influence of
urban expansion were analyzed, and the land-use situation in 2030 was predicted by the Future Land
Use Simulation (FLUS) model. The main conclusions are as follows: The BTH urban agglomeration
has developed rapidly in the last 20 years, showing the characteristics of diffusion and corridor
development. The intensity and pattern of urban expansion have significantly affected the pattern
of green space, leading to the intensification of domestic green space fragmentation. Among them,
urban expansion exerts most severe effects on the fragmentation of farmland, followed by grassland
and water. The influence of urban expansion on the scale and fragmentation of forestland is limited.
The forecast results in 2030 show that built-up areas may continue to occupy green space. The rate of
occupation of farmland will slow down while that of grassland will intensify.

Keywords: urban expansion; green space; landscape fragmentation; FLUS model; Beijing-Tianjin-Hebei
urban agglomeration

1. Introduction

Urban growth is occurring at an unprecedented rate worldwide. The world will reach
an urban population rate at 60.4% by 2030 [1]. As the most direct manifestation of the urban-
ization process, urban expansion is a powerful sign of progress in social civilizations, a vital
result of social and economic development [2]. It poses both opportunities and challenges
for the sustainability transition toward long-term balances between human needs and the
planet’s environmental capacities [3,4]. In China, the “Open Door” Policy initiated in 1978
and the land reform regulation launched in 1987 markedly expedited the urbanization
rate [5,6]. Employment opportunities, capital and other factors flooded into cities, further
promoting economic development and urban–rural migration [7–10]. The rapid economic
development and population growth have contributed to the unprecedented expansion of
urban land [11,12]. However, the unsystematic expansion of urban land has given rise to
negative environmental problems [13–15] that have become a key issue in global change re-
search [16]. The most prominent manifestation is the fragmentation, degradation and even
loss of the pattern of urban green space, which may deprive the living environment, reduce
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biodiversity, and destroy the structure and process of the urban ecosystem [17–19]. Under
the background of new urbanization and ecological civilization construction [20], while
advancing urban development step by step, we must improve the ecological quality of the
city, reduce the negative impact of urban expansion on the ecological environment, and
scientifically explore a reasonable way to effectively coordinate the relationship between
the demand for built-up areas and green space protection, so as to realize the coordinated
development of urban expansion and green space [21].

Since the 20th century, due to the gradual acceleration of urbanization in western
countries, the economy has developed rapidly [22]. Scholars began to study the theories
and methods of urban land expansion such as scale, mode, and driving forces [23]. The
research on urban expansion theory can be traced back to the end of the 19th century.
The famous “Central Place Theory” was put forward by the German urban geographer
Christaller (1930) and the economist Losch (1940), laying the foundation for the study of
urban geography [24]. On this basis, early scholars summarized urban expansion modes
from the macroscopic expansion form through a large number of cases, including concentric
circle, multi-core, and fan-shaped. Later, new definitions were developed, e.g., edge,
corridor, single-core, multi-core and distributed [25], filling, expansion, and enclave [26];
among them, the classification of filling, edge, and enclave is generally accepted, and these
models are widely used in the study of urban expansion [27,28]. Afterwards, scholars
explored the driving factors of urban expansion and considered that natural factors [29,30],
traffic location factors [31], social and economic factors [32], and policy factors [33] were
the main driving factors of urban expansion. Since then, similar research results have
appeared [34–36]. However, driving factors of urban expansion and their influences vary
in different regions and development stages [37].

The research methods for urban land expansion mainly include qualitative analysis
and quantitative measurement. Restricted by data and theoretical methods in the early
stage, the research framework of urban expansion measurement based on empirical analysis
was favored by scholars [11]. In recent years, the emergence of theories and methods such
as remote sensing and spatial statistics has made the design and implementation of complex
models, analysis, and processing of spatio-temporal data become possible and develop
rapidly [38,39], making the combination of remote sensing technology and geographic
information system technology the main method of urban expansion research [40]. CA
(Cellular Automata) has become one of the most important models for simulating urban
expansion [41], and improved models based on CA such as FLUS (Future Land Use
Simulation) model [42], multi-agent model [43], SLEUTH model [44], ANN-CA (Artificial
Neural Network-Cellular Automata) model [45], and RF-CA-MC (Random Forest-Cellular
Automata-Markov Chain) model [46] are often used.

The study of green space began in the 19th century in Britain. Since it plays an impor-
tant role in protecting the urban ecological environment [47] and influencing urbanization,
green space has become a hot research topic and concept in the field of urban space re-
search since the 21st century [48,49]. Scholars have carried out research on the concept
definition, ecological function and service value, pattern characteristics, and environmental
effects of green space [50,51]. Conceptually, green space originated from Howard’s “Gar-
den City” theory [52], and after that, it experienced three development stages, i.e., “open
space—urban open green space—urban green space” [53]. There is no clear standard for
the definition of green space, and it varies for different research purposes [54–56]. Gen-
erally speaking, the definition of green space is relatively consistent with the generalized
“green space”, which refers to natural, semi-natural, and artificial ecosystem networks on
all spatial scales in, around, and among urban areas [57,58]. For example, some studies
summarized the space that provides for ecological service functions, such as parks, forests,
green roofs, rivers, and community gardens, as green space [59]; others divided green space
into forest land, farmland and parks or forest land, agricultural land, and grassland [60,61].
Combined with research objectives and the actual situation of the research area, in this
paper, the definition of green space is “green open space other than built-up areas, includ-
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ing farmland, forests, grassland, and water”. The research on its ecological function and
service value mainly focuses on protecting urban species’ diversity [62], cooling green
space [63], purifying the air [64], etc. In terms of pattern characteristics and environmental
effects, scholars have carried out a lot of research on the role of green space in human
health, economic development, social interaction, and biodiversity [65]. Research shows
that the green spatial pattern (patch characteristics, spatial configuration) affects its function
and environmental improvement [66–68]. However, there is relatively little research on
pattern fragmentation, mainly focusing on the grade of patch area, shape characteristics,
and human activities [69]. As for the method of pattern research, it has experienced a
gradual transition from qualitative description research to mixed methods of the qualitative
and quantitative. In recent years, with the optimization of remote sensing technology and
the rapid development of landscape ecology, the quantitative method of landscape pattern
metrics has been widely used [69].

To sum it up, the study on the spatial–temporal characteristics and patterns of ur-
ban expansion has formed a complete research system. However, on the one hand, in
terms of its ecological effects, existing research mostly focuses on the impact of ecosystem
services, land carrying capacity, and biodiversity, largely neglecting the impact of green
space [70–72]. There is also a lack of analysis on the correlation between urban expansion
and the change in green space pattern. On the other hand, the BTH (Beijing–Tianjin–Hebei)
urban agglomeration, as one of the important cores of China’s economic development, has
experienced rapid urbanization and intensive land use changes, bringing about tremen-
dous external pressure on the ecosystem and seriously threatening regional habitat quality.
However, few related studies are mostly confined to the inner part of Beijing’s urban area,
and there may be great differences in landscape changes in urban and urban agglomeration
scales, and the research needs to be further expanded. Therefore, to clarify the intensity
and situation of the urban expansion of BTH urban agglomeration from 2000 to 2020 as
well as the changing trend of green space area and landscape pattern, we used ArcGIS
spatial analysis, landscape pattern index, and correlation analysis methods to explore the
spatial–temporal evolution characteristics and correlation of urban expansion and green
spatial pattern. The specific ideas are as follows: Firstly, we used the data of land use in
2000, 2010, and 2020 to explore the spatial–temporal evolution characteristics of built-up
area expansion; secondly, we used spatial analysis and landscape pattern index to explore
the spatio-temporal evolution characteristics of green space and its fragmentation degree;
thirdly, on this basis, the correlation analysis method was used to analyze the relationship
between them, and the FLUS model was used to predict the land use of BTH urban ag-
glomeration in 2030. In this way, we can have an in-depth understanding of the land use
of cities in the metropolitan area, which is crucial to the improvement of the green spatial
pattern, the sustainable development of urban agglomerations, and the rational overall
planning of land resource utilization in the BTH region.

2. Research Areas and Methods
2.1. Study Area

The study area (113◦04′–119◦53′ E, 36◦05′–42◦37′ N) includes Beijing, Tianjin, and
Hebei province (Baoding, Langfang, Chengde, Shijiazhuang, Cangzhou, Xingtai, Qinhuang-
dao, Hengshui, Tangshan, Handan, and Zhangjiakou), which consists of 13 cities (Figure 1).
This area covers an area of 218,000 km2 belonging to temperate semi-humid and semi-arid
continental monsoon climates. The landform is diverse, mainly plain, and there are also
mountains, hills, and basins, with an average elevation of about 200–500 m. Benefiting from
topographical conditions, the BTH region is rich in land use types, among which farmland
and forestland account for a large proportion. As China’s capital economic circle and third
economic growth pole, the implementation of BTH’s coordinated development strategy in
2014 (one of the current three national strategies) has caused its population to grow rapidly
with the population increasing from 90.39 million in 2000 to 110 million in 2020. In addition,
the development trend has been rapid, with the GDP rising from 920.71 billion yuan to
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8639.32 billion yuan, and the urbanization rate in core areas of Beijing and Tianjin reaching
about 86.6% and 82.64%, respectively. However, with the acceleration of urban expansion,
more and more green spaces have been converted into built-up areas, resulting in regional
landscape changes and even destruction, posing challenges to the sustainable development
of the BTH region [2,73].
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Figure 1. The location of the study area.

2.2. Data Sources

Based on the data of land cover in BTH in 2000, 2010, and 2020, and considering the
spatial resolution of images and actual situation of land use in the BTH, we divide the
land cover into (1) farmland, (2) forestland, (3) grassland, (4) water, (5) built-up areas,
and 6) other types. The green space studied in this paper contains farmland, forestland,
grassland, and water. The slope and aspect data of the BTH area are obtained from digital
elevation model data, and the distances to expressways, main roads, railways, city centers
and town centers are calculated using road network data and coordinate data of the town
government (Table 1).

2.3. Methods
2.3.1. Land Use Transfer Matrix

To systematically analyze the change in land use and explore the occupation of green
space by built-up areas, we use the land use transfer matrix, which can intuitively indicate
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the direction of increase or decrease in the area for each land use type [74]. The expression
is as follows:

Sij =



S11 S12 . . . Sij . . . S1n
S21 S22 . . . S2j . . . S2n
. . . . . . . . . . . . . . . . . .
Si1 Si2 . . . Sij . . . Sin
. . . . . . . . . . . . . . . . . .

Sn1 Sn2 . . . Snj . . . Snn

. (1)

Sij represents transfer area, i represents the land use type at the beginning of the
research time, j represents the land use type at the end of the research time, and n represents
the quantity of all land use types.

Table 1. Data sources.

Data Sources

GlobeLand30 Land Cover Data (2000, 2010, 2020) http://www.globallandcover.com
DEM data Shuttle radar topography mission (SRTM) data set

Road network data https://planet.openstreetmap.org

Administrative division data 1: 1 million national basic geographic database
(https://www.webmap.cn)

Coordinate data of the town government 1: 1 million national basic geographic database
(https://www.webmap.cn)

2.3.2. Landscape Metrics

Landscape metrics is most widely used in landscape pattern analysis. It can highly
concentrate the information of landscape pattern and reflect its structural composition
and spatial configuration [69,75,76]. So it is an effective method to reveal the spatio-
temporal change characteristics of the urban green spatial pattern [77]. To analyze the
fragmentation characteristics of green space and urban expansion pattern, we chose four
typical metrics: Number of Patches (NP), Effective Mesh Size (MESH), Aggregation Index
(AI), and Largest Patch Index (LPI), and all the metrics were effective in quantifying spatial
patterns [78], the specific explanation are shown in Table 2. In particular, NP is a measure of
the number of patches, and to a certain extent, the larger the NP, the more landscape patches,
and the greater fragmentation. MESH represents the degree of landscape fragmentation
from the area, which combines ecological process, landscape components, and spatial
pattern, making it more comprehensive and objective [79]. AI describes the aggregation
degree between different patches, and the larger the AI value, the smaller is the landscape
fragmentation degree [80]. LPI is used to help understand the fragmentation process; the
smaller the LPI value, it means that the landscape is composed of more small patches,
and the degree of fragmentation of the landscape increases [81]. We analyzed the spatio-
temporal characteristics of green space fragmentation in the BTH urban agglomeration
from 2000 to 2020 from landscape level and class level respectively.

Table 2. Interpretation of Landscape Pattern Index.

Indicators Formulas Explanations

Number of Patches NP = n
At the type level, it is equal to the total number of a certain patch

type in the landscape; at the landscape level, it is equal to the total
number of all patches in the landscape.

Effective Mesh Size MESH = ∑n
j=1 a2

ij/A× 100
Describe the landscape fragmentation by dividing the sum of

squares of all patch areas in landscape type i by the total landscape
area. Unit is hm2.

Aggregation Index AI =
[

∑m
i=1

(
gij

max→gij

)
Pi

]
×100

The number of similar adjacencies of the corresponding type
divided by the maximum value when the type grows from a patch

to the greatest extent. Unit is %.

Largest Patch Index LPI = max(a ij)/A× 100 Describe landscape dominance using the proportion of the largest
patch area of landscape type i to the total landscape area. Unit is %.

http://www.globallandcover.com
https://planet.openstreetmap.org
https://www.webmap.cn
https://www.webmap.cn
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2.3.3. Correlation Analysis Method

To explore the relationship between green space fragmentation and urban expansion,
we adopted the correlation analysis method. The expansion of built-up areas is measured
from three dimensions: pattern, quantity, and intensity. They are characterized by the
fragmentation pattern of built-up areas (B-MESH), the proportion of built-up areas (B-
PLAND), and the built-up area expansion intensity index (B-P) [79], respectively. The
formula is as follows:

P =
At+n −At

A
× 1

n
×100% (2)

P is the index of urban expansion intensity during the research period, A is the total
area, At is the area of built-up areas at the initial stage of research, At+n is the area of
built-up areas at the final stage of research, and n is the research period.

PLAND =
n

∑
j=1

aij/A× 100 (3)

PLAND (Percentage of Landscape) is a type of landscape pattern metrics. It charac-
terizes the proportion of landscape type i area to the total landscape area, and describes
the landscape components, in which aij is the area of type i patch j; A is the total landscape
area; and n is the number of patches of landscape type i. It can describe the proportion of
built-up areas quantitively.

The change in green fragmentation is characterized by the effective mesh size of
farmland (F1-MESH), forestland (F2-MESH), grassland (G-MESH), and water (W-MESH).
Green spatial fragmentation change intensity is characterized by constructing a green
spatial fragmentation change intensity index based on MESH, and the calculation formula
is as follows:

FG =
Mt+n −Mt

A
× 1

n
×1000‰ (4)

FG is the index of green space fragmentation change intensity during the research
period, Mt is the MESH value of green space at the initial stage of research, and Mt+n is the
MESH value of green space at the final stage of research.

2.3.4. FLUS Model

The FLUS model developed by Liu et al. [42] is the improved cellular automata model
for predicting future land use change combining the “top-down” features of the SD model
and “bottom-up” features of the cellular automata model; it can better avoid the occurrence
of error transmission, and has high simulation accuracy [22]. In this paper, the land use
situation of the BTH urban agglomeration in 2030 is predicted by FLUS V2.4 software.

3. Results and Analysis
3.1. Spatial–Temporal Evolution Characteristics of Built-Up Areas

By analyzing the land use data of the BTH urban agglomeration from 2000 to 2020, we
can see that in 2000, the scale of built-up areas was 14,931.96 km2, and by 2010, it increased
to 17,898.76 km2 with an annual growth rate of about 1.99%. From 2010 to 2020, the urban
expansion accelerated, and the area increased by 8630.61 km2 to 26,529.37 km2 with an
annual growth rate of 4.82%; the area was 1.78 times that of 2000. The scale of built-up
areas in the study area has been expanding continuously since 2000, and the expansion
speed has accelerated in the past decade.

From the perspective of spatial distribution (Figure 2), limited by natural conditions
such as topography and development strategy, cities are mainly concentrated in the flat
southern plain, which is conducive to population gathering and urban development. The
built-up areas are mainly concentrated in the center of each city, and it expands in all
directions with the downtown extension. According to the different characteristics of each
city, it expands in either the form of a ring, fan, or axis. Specifically, the core functional areas
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in central BTH (Beijing, Tianjin, Baoding, Langfang) are developing rapidly due to their
prominent strategic position; driven by the Beijing–Tangshan–Qinhuangdao industrial
development zone, it is obvious that the built-up areas of Tangshan and Qinhuangdao
are expanding continuously; cities located in the south of urban agglomeration, such as
Shijiazhuang, Xingtai, and Handan, are important node cities on the development axis
of “Beijing–Baoding–Shijiazhuang”, and due to policy support and great development
opportunities, they have been expanding at varying degrees in the past 10 years; and
for cities located in the north of urban agglomerations like Chengde and Zhangjiakou,
which belong to the northwest ecological conservation area, because of their location in
mountainous areas and complex terrain, urban expansion mainly takes place along the
limited valley space.
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3.2. Spatial–Temporal Evolution and Fragmentation Characteristics of Green Space
3.2.1. Spatial–Temporal Evolution Characteristics of Green Space

In terms of green space, the results are shown in Figure 3. In 2000, the total area of green
space in BTH city circle was 199,808.23 km2, accounting for 92.49% of the total area. Among
them, farmland was the main part, with an area of 11,6250.78 km2, accounting for 58.19%;
forest land was 41,787.48 km2, grassland was 37,781.82 km2, and water was 3964.17 km2,
accounting for 20.92%, 18.91%, and 1.98% respectively. The spatial autocorrelation of land
indicates that while built-up areas are increasing, other types of land use are decreasing.
In 2010, the total area of green space decreased by 1861.66 km2; from 2010 to 2020, the
area of green space rapidly decreased by 9361.74 km2 to 188,584.84 km2, and a total of
13,353.52 km2 of green space was converted into artificial land. Among them, the farmland
area dropped significantly from 11,955.65 km2 to 104,295.13 km2. Besides, the grassland
scale increased slightly from 2000 to 2010, but it has also decreased in the last 10 years,
reaching 38,236.81 km2 in 2020, with a cumulative decrease of about 454.99 km2. Forestland
decreased during the past 10 years, but the overall area increased slightly, with an area of
42,117.68 km2 in 2020. As for water, due to the limitation of research scale, only 105.13 km2

of water reduction was observed, and the current scale is 3859.04 km2. The proportion of
these three land use types in green space remains mainly unchanged. According to the land
use transfer matrix (Table 3), we can conclude that the expansion of built-up areas mainly
shifted from farmland and grassland, with 11,863.57 km2 and 947.58 km2 respectively, and
other land use types also shifted out and transformed into each other to different degrees.
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To sum up, farmland is most affected by urban expansion, followed by grassland. Urban
expansion has little impact on forestland and water.
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Table 3. Transfer matrix of land use area in the study area (km2).

Land Use Types
2020

Farmland Forestland Grassland Built Up Areas Water Other Types Sum

2020

farmland 97,966.20 1450.50 3945.63 11,863.57 825.98 198.90 116,250.78
forestland 751.90 34,152.84 6617.71 202.59 33.90 28.54 41,787.48
grassland 2756.69 6442.92 27,338.86 947.58 120.06 175.71 37,781.82

built up areas 1856.39 35.47 88.62 12,878.60 60.86 11.67 14,931.61
water 876.57 31.01 165.45 339.78 2442.29 109.07 3964.17

other types 87.38 4.85 80.54 281.59 375.95 471.70 1302.01
sum 104,295.13 42,117.68 38,236.81 26,513.71 3859.04 994.99

Figures 4 and 5 show the distribution of green space and the specific transfer situa-
tion in BTH from 2000 to 2020 respectively. From the perspective of spatial distribution
(Figure 4), farmland is distributed in the southeastern plain. Built-up areas expand outward
continuously, leading to the continuous encroachment of farmland. The overall distribu-
tion of forestland in the BTH region is in an “inverted-J” shape, mainly concentrated in
the Huairou and Yanqing districts of Beijing and the northeast and southwest of Hebei
province. Grassland is mainly distributed around forestland. Because the terrain of forest
and grassland distribution area is mainly mountainous, it is relatively less affected by
the expansion of urban agglomeration, and the occupation is mainly near the city and
the developed areas of Zhangjiakou and Chengde. Large-scale water bodies are mainly
distributed along the coast of the Bohai Sea, as well as reservoirs, rivers, and lakes scattered
in some cities. Due to the demand for water supply in the BTH region, they are less affected,
mainly represented by the erosion of small tributaries.

From the land use transfer matrix (Figure 5), it can be concluded that most areas in
the BTH region experienced transfer of land use types in the last 20 years. Specifically, the
expansion of built-up areas mainly shifted from farmland and grassland, and mostly in the
primitive farmland distributed around cities in the southeast. In addition, farmland was
also transferred to grassland, mainly along rivers and lakes in Tianjin and Tangshan, such
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as Chaobai River and Huangtai Lake. The transfer to forestland mainly occurred at the
junction of the original forestland and farmland, such as the northern part of Qinhuangdao,
Chengde, Zhangjiakou, and the eastern marginal areas of Baoding, Shijiazhuang, Xingtai,
and Handan. The transfer to the water was mainly dispersed near the original water body,
most obviously among Baodi district of Tianjin, Chaobai River in Ninghe district, Tuanbowa
Reservoir in Jinghai district, Caofei Lake in Caofeidian district of Tangshan, and Yuecheng
Reservoir in Ci county of Handan. Most of the grasslands were transferred to forestland
and farmland, and the transfer to forestland mainly occurred in primitive forestland. The
transfer to farmland mainly occurred in Zhangjiakou and Chengde, Yanqing and Pinggu
districts of Beijing; Jizhou district of Tianjin; and Fuping county of Baoding. The vicinity
of Beitang reservoir in Binhai New Area was an obvious area that was converted into
water. Forestland was mainly transformed into grassland and farmland, and the converted
grassland was mostly distributed in areas near the primitive forestland. The converted
farmland was mainly distributed in Beijing’s peripheral administrative areas, Zhangjiakou,
Shijiazhuang, and Xingtai, while the converted built-up areas were mostly distributed in
Beijing and its surrounding areas. The water was mainly converted into farmland and
built-up areas, and the vicinity of the primitive water bodies in Tianjin was transferred to
farmland at varying extents. In addition, Caofeidian district in Tangshan, Miyun district
in Beijing, and Anxin county in Baoding, all experienced considerable area transfer. The
transfer to built-up areas were concentrated in Tianjin, Cangzhou, and Tangshan along the
Bohai Sea; Miyun district of Beijing; Zhangbei county and Huailai county of Zhangjiakou;
Tang county of Baoding; and Pingshan county of Shijiazhuang. Other types of land use
also underwent different degrees of mutual transfer.
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3.2.2. Fragmentation Characteristics of Green Space

By analyzing landscape metrics at the landscape level, we can get the overall structural
characteristics and spatial distribution of the BTH urban agglomeration, and make an
overall study of its landscape evolution characteristics. It can be seen from Table 4 that from
2000 to 2010, NP increased by 11,756, but from 2010 to 2020, it decreased to 331,369. The
decrease in MESH and LPI yearly indicates that the landscape patch area tends to break and
its shape becomes complicated. The aggregation index indicates the aggregation degree of
patches, and the decrease in AI yearly indicates that landscape separation has intensified.
Generally speaking, with the interference of human activities, landscape fragmentation in
the study area has shown an upward trend over time.
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Table 4. The landscape-level metrics in the study area.

2000 2010 2020

NP 325,191 336,947 331,369
MESH/hm2 3,929,543.33 3,712,420.49 2,881,932.20

AI/% 86.16 85.72 85.12
LPI/% 40.92 39.74 34.94

Class metrics can represent the structural characteristics and spatial distribution of
different landscape types, thus making it possible to analyze a single landscape type.
Figure 6 shows the trend of landscape metrics. In terms of NP, farmland, as the main
landscape type in the study area, has been continuously increased for 20 years, eventually
increasing by about 37%. In addition, its area has continuously decreased by 10.3%,
indicating that its scale and integrity have been destroyed. The NP of forestland showed
an upward trend in 2000–2010 and a downward trend in 2010–2020, which was consistent
with the change in its area. The scale of grassland is not dominant, but the number of
patches is always the highest, indicating that the distribution is scattered. Its NP showed
a downward trend, while its area showed a trend of first increasing and then decreasing,
and the decreasing trend of the number of patches in the last decade was obviously
higher than the decreasing rate of the area. To some extent, it showed that the increase
in grassland area was mostly based on the expansion of primitive grassland, while its
decrease was mostly seen in the disappearance of small patches. However, the water
area has been decreasing continuously in the last 20 years, and the number of patches
has also decreased, indicating that small tributaries or small patches in water areas have
been cut off, dried up, or converted into other land use. The trends of LPI and MESH for
different land types are similar. Specifically, the LPI of farmland decreased from 40.92%
to 34.94%, and MESH decreased by 28.1%; LPI and MESH of forestland first increased
and then decreased; grassland also increased first and then decreased, and the indexes
were lower than those in 2000; LPI and MESH continue to decline in water. In terms of
AI, the farmland decreased obviously, forestland and grassland remained stable, and the
water first decreased and then increased. The changes of these indicators all show that
patches of farmland are constantly being cut, their shapes tend to be complex, and their
fragmentation is intensified to some extent. A decade ago, due to population reproduction
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and afforestation projects, forestland was gradually distributed contiguously. However,
in the last decade, this weakened somewhat, falling back to a situation similar to that
of 2000, and the fragmentation degree is now relatively stable. It can be seen that the
impact of urban agglomeration expansion on forestland is limited, which may be due to
the following reasons: Firstly, most of the forestland is distributed in mountainous areas,
and because of the influence of terrain, the cost is relatively high, and it is unlikely to face
interference and be changed by humans; secondly, at the beginning of the 21st century,
serious forestland degradation caused Beijing to be frequently attacked by natural disasters
such as sandstorms, which enhanced the government’s awareness of forest management
and ecological barrier construction. In addition, urban events such as the 2008 Olympic
Games caused the government and citizens to pay attention to environmental quality,
which made afforestation and forestland protection an important task. In the first decade,
the area of grassland increased and patches tended to be complete, but in the last decade,
due to the acceleration of urban expansion, the grassland was damaged and the degree
of fragmentation was intensified. During the research period, water was also found to be
damaged and fragmented, which may have been caused by the impact of urban expansion
or severe exploitation, and the implementation of the “water to drought” project in some
regional water systems such as the Chaobai River Basin in 2006.
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3.3. Correlation Analysis and Simulation Prediction between Urban Expansion and Green
Space Fragmentation
3.3.1. Correlation Analysis between Urban Expansion and Green Space Fragmentation

The correlation of urban expansion and green space fragmentation is characterized
by the Pearson correlation coefficient. As shown in Table 5, the proportion, fragmentation,
and expansion intensity of built-up areas are negatively correlated with the fragmentation
of farmland, indicating that quantity expansion, expansion intensity, change rate, and
fragmentation pattern of built-up areas in the BTH urban agglomeration are closely related
to the fragmentation of farmland, and the expansion of built-up areas obviously leads to
the increase in fragmentation of farmland. Besides, there is a positive correlation between
forestland fragmentation and the proportion and fragmentation of built-up areas; and
forestland fragmentation is significantly and positively correlated with the expansion
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intensity of built-up areas, which shows that though forestland has been protected to some
extent in the process of urban expansion, there is still a certain degree of correlation between
urban expansion and forestland pattern. As for grassland, its fragmentation is negatively
correlated with the proportion and fragmentation of built-up areas and positively correlated
with the expansion intensity of built-up areas, indicating that urban expansion is related
to the change in grassland fragmentation and supporting the above conclusion that the
impact of urban expansion on grassland is mostly about built-up areas swallowing small
grassland patches. As for metrics of water, it is negatively correlated with the proportion
and fragmentation of built-up areas, and significantly and negatively correlated with the
expansion intensity of built-up areas, indicating that urban expansion is related to the
water pattern to a certain extent. In summary, the changing intensity of fragmentation of
farmland, forestland, grassland, and water is negatively correlated with the proportion,
fragmentation, and expansion intensity of built-up areas at 0.01 level, which shows that
urban expansion is a significant correlation factor of green space fragmentation.

Table 5. Correlation coefficient between urban expansion and green space fragmentation from 2000
to 2020.

B-PLAND B-MESH B-P

F1-MESH −1.000 ** −1.000 * −1.000 **
F2-MESH 0.827 0.844 1.000 **
G-MESH −0.339 −0.309 1.000 **
W-MESH −0.176 −0.208 −1.000 **

F1-FG −1.000 ** −1.000 ** −1.000 **
F2-FG −1.000 ** −1.000 ** −1.000 **
G-FG −1.000 ** −1.000 ** −1.000 **
W-FG −1.000 ** −1.000 ** −1.000 **

* means significant correlation at 0.05 level; ** means significant correlation at 0.01 level.

3.3.2. Forecast of Land Use in 2030 Based on FLUS Model

Based on land use data of BTH in 2010, we chose elevation, slope, aspect, distance
to the municipal government, distance to the town government, distance to the highway,
distance to the railway, and population as driving factors to calculate suitability probability.
Based on the model tests and expert knowledge, after a series of debugging and verification
tests, the simulation parameters are determined, and the simulation accuracy is verified
by using the overall accuracy (OA) and Kappa coefficient. Among them, the OA value
and Kappa coefficient are between 0 and 1, and the closer to 1, the higher the simulation
accuracy. The Kappa coefficient of this paper is 0.7264 and the overall accuracy is 81.30%,
which shows that the simulation effect is remarkable and suitable for predicting future land
use change in the BTH region.

As can be seen in Figure 7, built-up areas continuously encroach on farmland, forest-
land, grassland, and other types of land around towns, but the encroachment on farmland
is relatively slow and that on grassland is intensified. Generally, there are two major
characteristics: The “extended” expansion centered on Beijing is remarkable, and the frag-
mentation of green space in Beijing urban area is intensified; the band expansion mode
along the traffic trunk line is more prominent and the built-up areas are concentrated along
the development axis of “Beijing–Baoding–Shijiazhuang”, but it is relatively less driven to
other regions. The built-up areas in Beijing, Tianjin, and Hebei have expanded significantly,
and the fragmentation of farmland has obviously intensified.

In terms of fragmentation of green space, it can be seen from Table 6 that compared
with 2020, the AI of farmland will decrease in 2030, and so its agglomeration will be further
weakened. While the area is further reduced, its NP increases and MESH and LPI decrease,
indicating that its large patches may continue to separate into small patches and landscape
fragmentation would be further aggravated. The size of grassland and water also decrease
slightly, and NP increases while AI decreases, so their fragmentation may be increased.
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However, as for forestland, its NP decreases while the MESH, AI and LPI increase, so
its landscape may connect with each other and fragmentation may decrease. Overall, in
2030, the scale of green space in BTH urban agglomeration will be further reduced, and the
fragmentation of farmland, grassland, and water will be further aggravated. Although the
scale of forestland will be reduced slightly, its fragmentation will still be lower.
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Table 6. Area and landscape metrics of the study area in 2020 and 2030 in class level.

Year Area/km2 NP MESH/hm2 AI/% LPI/%

Farmland
2020 104,307.47 23,585 2,681,091 92.24 34.94

2030 98,170.91 31,555 2,210,118 90.71 31.70

Forestland
2020 42,123.39 102,913 178,350 79.78 8.99

2030 41,753.53 98,158 237,462 79.98 10.44

Grassland
2020 38,246.02 123,756 20,167 73.24 2.39

2030 38,003.35 127,926 23,261 72.90 2.66

Built up areas
2020 26,529.37 49,088 1868 83.17 0.76

2030 33,218.07 27,009 15,922 84.90 2.32

Water
2020 3907.96 10,288 423 86.43 0.29

2030 3899.30 14,301 608 85.42 0.47

The above results show that the expansion of BTH urban agglomeration encroaches on
green space. Among them, implementation of farmland protection measures in China may
be one of the reasons for the slowdown in occupation of cultivated land. However, at the
same time, there are still some issues such as different local policies in land management
operation and slow policy advancement [82] that may lead to the protection of farmland in
some areas at the expense of ecological land [83]. In short, some studies have shown that
green space has improved the quality of urban life in various aspects, such as providing
ecosystem services, protecting biodiversity, reducing the urban heat island effect, and
improving the health and well-being of urban residents [84–86]. Therefore, fragmentation
of green space not only reduces habitat area but also breaks the landscape pattern of
the ecosystem, harming the maintenance of biodiversity and ecological balance. How to
balance the supply and demand of green space and ensure the sustainable development of
the city is the focus of future regional planning.

4. Discussion

BTH urban agglomeration is an important carrier of China’s economic, technological,
and cultural development, and has a strong siphon effect. However, it also has a radiation
effect that strongly drives change of land use within its jurisdiction and drastically alters
the regional landscape pattern, leading to particularly prominent ecological pressure. This
study is of great significance for understanding the impact of urban expansion on landscape
patterns and coordinating the relationship between urban agglomeration expansion and
the ecological environment.

At present, most research on urban expansion focuses on the representation of its
spatial characteristics [87]; for example, Zhang studied the characteristics of urban ex-
pansion in Beijing, Tianjin, and Shijiazhuang over the last 30 years [88]. Besides, a few
scholars are concerned about the impact of urban expansion on farmland [89]. However,
there is a lack of research on the correlation between urban expansion and green land
fragmentation [70–72]. This paper links the two, filling the gap and proving to be of strong
practical significance. Secondly, existing research based on the green space in the BTH
region is mostly confined to the interiors of Beijing urban area [90]. There may be great
differences in landscape changes at the scale of urban agglomeration, and so our results
help complete the research on green space patterns and the sustainable development of
urban agglomeration. In addition, most related studies only focus on the empirical study
of the past or present urban expansion while ignoring the future situation. This paper
creatively used the FLUS model to predict the future land use situation, so it can more
intuitively address the problems that we may face under the influence of existing policies
and related factors; it may play a guiding role in timely adjustment of relevant policies.
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However, due to the fuzziness of the concept and the subjectivity of index selection,
there are some limitations to this paper. Moreover, urban expansion and landscape pattern
replacement are complex dynamic processes. To have a more comprehensive and in-depth
understanding, we suggest that future research apply data with a higher spatial–temporal
resolution that enables more detailed examination.

5. Conclusions

In this paper, we took BTH urban agglomeration as the research area and combined
landscape pattern index, FLUS model, and other methods to explore the influence of urban
agglomeration expansion on the fragmentation of green space. The main conclusions are
as follows:

(1) From 2000 to 2020, the expansion of BTH urban agglomeration generally accelerated
mainly in the eastern and southern plain areas, and the spreading trend has intensified
over time. It presents the expansion mode that the central city leads the development
of urban agglomeration and urban agglomeration drives regional development.

(2) In the past 20 years, the overall area of green space in BTH urban agglomeration
has decreased, fragmentation at the landscape level has increased, and the degree of
landscape segmentation has intensified. Among them, farmland was continuously
destroyed, becoming the most affected by urban expansion. There was less fragmenta-
tion of grassland and water, and the fragmentation of forestland was relatively stable.

(3) There is a significant correlation between urban expansion and green space frag-
mentation. As a result of urban expansion, ecological resources such as farmland,
forests, and grass gradually disappear, having a negative impact on the ecological
environment. By 2030, built-up areas may continue to occupy other land types around
cities and towns along the main traffic lines and development axis, intensifying
the fragmentation of farmland, grassland, and water, but the impact on forestland
is inapparent.

Future development planning of the BTH region should continue to strengthen the
protection of farmland and ecological land, make rational use of sloping land, and reduce
the encroachment on cultivated land [91]. The boundary of urban development should
be strictly controlled. The underground and aboveground space should be rationally and
comprehensively developed to improve the efficiency of urban land use. The regional
development layout should be optimized to promote coordinated development of the
overall economy and ecological protection in the BTH urban agglomeration.
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