Direct Seeded Rice: Strategies to Improve Crop Resilience and Food Security under Adverse Climatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Details
2.2. Planting Methods
2.3. Crop Planting
2.4. Climatic Conditions
2.5. Nutrient, Weed and Water Management
2.6. Statistical Analysis
3. Results
3.1. Plant Height and Effective Tillers
3.2. Length of Panicle and Number of Grains per Panicle
3.3. 1000-Grain Weight and Productivity
3.4. Crop Lodging Percentage and Rainfall Events
4. Discussion
5. Conclusions and Future Perspectives of DSR Technology
- Direct seeded rice (DSR) has a ~10% yield advantage compared with mechanically transplanted rice.
- The results show that DSR technology has the potential to protect against up to 70% of crop lodging in adverse climatic conditions.
- DSR helps in advancing the planting dates of succeeding rabi crops, by at least 7–10 days, by saving the land preparation time.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; van Groenigen, K.J.; Lee, J.; Lundy, M.E.; van Gestel, N.; Six, J.; Venterea, R.T.; van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Jat, H.S.; Kumar, V.; Datta, A.; Choudhary, M.; Yadvinder-Singh; Kakraliya, S.K.; Poonia, T.; McDonald, A.J.; Jat, M.L.; Sharma, P.C. Designing profitable, resource use efficient and environmentally sound cereal based systems for the Western Indo-Gangetic plains. Sci. Rep. 2020, 10, 1–16. [Google Scholar]
- Lal, B.; Gautam, P.; Panda, B.; Tripathi, R.; Shahid, M.; Bihari, P.; Guru, P.; Singh, T.; Meena, R.; Nayak, A. Identification of energy and carbon efficient cropping system for ecological sustainability of rice fallow. Ecol. Indic. 2020, 115, 106431. [Google Scholar] [CrossRef]
- Babu, S.; Mohapatra, K.; Das, A.; Yadav, G.S.; Tahasildar, M.; Singh, R.; Panwar, A.; Yadav, V.; Chandra, P. Designing energy-efficient, economically sustainable and environmentally safe cropping system for the rainfed maize–fallow land of the Eastern Himalayas. Sci. Total Environ. 2020, 722, 137874. [Google Scholar] [CrossRef]
- Jat, R.A.; Dungrani, R.A.; Arvadia, M.K.; Sahrawat, K.L. Diversification of rice (Oryza sativa L.)-based cropping systems for higher productivity, resource-use efficiency and economic returns in south Gujarat, India. Arch. Agron. Soil Sci. 2012, 58, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mishra, J.S.; Mali, S.S.; Mondal, S.; Meena, R.S.; Lal, R.; Jha, B.K.; Naik, S.K.; Biswas, A.K.; Hans, H.; et al. Comprehensive environmental impact assessment for designing carbon-cum-energy efficient, cleaner and eco-friendly production system for rice-fallow agro-ecosystems of South Asia. J. Clean. Prod. 2021, 331, 129973. [Google Scholar] [CrossRef]
- Zewde, N.; Gorham, R.D., Jr.; Dorado, A.; Morikis, D. Correction: Neglecting the fallow season can significantly underestimate annual methane emissions in Mediterranean rice fields. PLoS ONE 2018, 13, e0198081. [Google Scholar] [CrossRef]
- Jat, S.; Parihar, C.; Singh, A.; Kumar, B.; Choudhary, M.; Nayak, H.; Parihar, M.; Parihar, N.; Meena, B. Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options. Sci. Total Environ. 2019, 664, 659–668. [Google Scholar] [CrossRef]
- Yadav, G.S.; Babu, S.; Das, A.; Mohapatra, K.; Singh, R.; Avasthe, R.; Roy, S. No-till and mulching enhance energy use efficiency and reduce carbon footprint of a direct-seeded upland rice production system. J. Clean. Prod. 2020, 271, 122700. [Google Scholar] [CrossRef]
- Gathala, M.K.; Laing, A.M.; Tiwari, T.P.; Timsina, J.; Islam, S.; Bhattacharya, P.M.; Dhar, T.; Ghosh, A.; Sinha, A.K.; Chowdhury, A.K.; et al. Energy-efficient, sustainable crop production practices benefit smallholder farmers and the environment across three countries in the Eastern Gangetic Plains, South Asia. J. Clean. Prod. 2020, 246, 118982. [Google Scholar] [CrossRef]
- Nandan, R.; Poonia, S.P.; Singh, S.S.; Nath, C.P.; Kumar, V.; Malik, R.K.; McDonald, A.; Hazra, K.K. Potential of conservation agriculture modules for energy conservation and sustainability of rice-based production systems of Indo-Gangetic Plain region. Environ. Sci. Pollut. Res. 2021, 28, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, R.; Kukal, S.S.; A Busari, M.; Arora, S.; Yadav, M. Sustainability issues on rice–wheat cropping system. Int. Soil Water Conserv. Res. 2016, 4, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, R.; Singh, P.; Hossain, A.; Timsina, J. Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: Issues and technological interventions for increasing productivity and sustainability. Paddy Water Environ. 2021, 19, 1–21. [Google Scholar] [CrossRef]
- Singh, P.; Singh, G.; Sodhi, G.P.S. Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India. Energy 2019, 174, 269–279. [Google Scholar] [CrossRef]
- Singh, A.K.; Das, B.; Mali, S.S.; Bhavana, P.; Shinde, R.; Bhatt, B.P. Intensification of rice-fallow cropping systems in the Eastern Plateau region of India: Diversifying cropping systems and climate risk mitigation. Clim. Dev. 2020, 12, 791–800. [Google Scholar] [CrossRef]
- Rao, K.K.; Samal, S.K.; Poonia, S.P.; Kumar, R.; Mishra, J.S.; Bhatt, B.P.; Dwivedi, S.K.; Mondal, S.; Choubey, A.K.; Kumar, S.; et al. Conservation agriculture improves soil physical properties and crop productivity: A long-term study in middle Indo-Gangetic Plains of India. Soil Res. 2021. [CrossRef]
- Kumar, V.; Ladha, J. Direct seeding of rice: Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Quilloy, F.A.; Labaco, B.; Dixit, S.; Casal, C. Crop Establishment in Direct-Seeded Rice: Traits, Physiology, and Genetics. In Rice Improvement; Springer Science and Business Media LLC: Cham, Switzerland, 2021; pp. 171–202. [Google Scholar]
- Sandhu, N.; Yadav, S.; Catolos, M.; Cruz, M.T.S.; Kumar, A. Developing Climate-Resilient, Direct-Seeded, Adapted Multiple-Stress-Tolerant Rice Applying Genomics-Assisted Breeding. Front. Plant Sci. 2021, 12, 637488. [Google Scholar] [CrossRef]
- Samal, S.; Rao, K.K.; Poonia, S.; Kumar, R.; Mishra, J.; Prakash, V.; Mondal, S.; Dwivedi, S.; Bhatt, B.; Naik, S.K.; et al. Evaluation of long-term conservation agriculture and crop intensification in rice-wheat rotation of Indo-Gangetic Plains of South Asia: Carbon dynamics and productivity. Eur. J. Agron. 2017, 90, 198–208. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Lee, D.-J.; Ito, O.; Siddique, K.H.M. Advances in drought resistance of rice. Crit. Rev. Plant Sci. 2009, 28, 199–217. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Ahmad, N.; Murtaza, G. Enhancing the performance of transplanted coarse rice by seed priming. Paddy Water Environ. 2009, 7, 55–63. [Google Scholar] [CrossRef]
- Pandey, S.; Velasco, L.E. Economics of alternative rice establishment methods in Asia: A strategic analysis. In Social Sciences Division Discussion Paper; International Rice Research Institute: Los Baños, Philippines, 1999. [Google Scholar]
- Pandey, S.; Velasco, L. Economics of direct seeding in Asia: Patterns of adoption and research priorities. In Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopes, K., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2002. [Google Scholar]
- Pandey, S.; Velasco, L. Trends in crop establishment methods in Asia and research issues. 2005, Rice is Life: Scientific Perspectives for the 21st Century. In Proceedings of the World Rice Research Conference, Tsukuba, Japan, 4–7 November 2004. [Google Scholar]
- Farooq, M.; Siddique, K.; Rehman, H.; Aziz, T.; Lee, D.-J.; Wahid, A. Rice direct seeding: Experiences, challenges and opportunities. Soil Tillage Res. 2011, 111, 87–98. [Google Scholar] [CrossRef]
- Raj, S.K.; Syriac, E.K. Weed management in direct seeded rice: A review. Agric. Rev. 2017, 38, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.; Singh, G.; Johnson, D.; Mortimer, M. Changing from transplanted rice to direct seeding in the rice–wheat cropping system in India. In Rice is Life: Scientific Perspectives for the 21st Century. Proceedings of the World Rice Research Conference, Tsukuba, Japan, 4–7 November 2004; International Rice Research Institute: Tsukuba, Japan, 2005; pp. 198–201. [Google Scholar]
- Singh, S.; Bhushan, L.; Ladha, S.K. Evaluation of new crop establishment/tillage techniques in rice-wheat system. In Proceedings of the Agenda Notes, 13th Regional Technical Coordination Committee Meeting, Dhaka, Bangladesh, 6–8 February 2004; p. 12. [Google Scholar]
- Singh, V.P.; Singh, G.; Singh, S.P.; Kumar, A.; Singh, Y.; Johnson, D.E.; Mortimer, M. Effect of rice wheat establishment methods and weed management in irrigated rice—Wheat production system. In Workshop on “Direct Seeded Rice in the Rice—Wheat System of the Indo-Gangetic Plains, 1 February to 2 February 2005, G.B.; Pant University of Agriculture and Technology: Pantnagar, India, 2005; p. 12. [Google Scholar]
- Balasubramanian, V.; Hill, J.E. Direct seeding of rice in Asia: Emerging issues and strategic research needs for the 21st century. In Direct Seeding: Research Strategies and Opportunities; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopez, K., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2002; pp. 15–42. [Google Scholar]
- Balasubramanian, V.; Ladha, J.K.; Gupta, R.K.; Naresh, R.K.; Mehla, R.S.; Yadvinder-Singh, B.-S. Technology options for rice in the rice-wheat system in South Asia. In Improving the Productivity and Sustainability of Rice–Wheat Systems: Issues and Impacts; Ladha, J.K., Hill, J.E., Duxbury, J.M., Gupta, R.K., Buresh, R.J., Eds.; ASA Special Publication: Madison, WI, USA, 2003. [Google Scholar]
- Tuong, T.P.; Pablico, P.P.; Yamauchi, M.; Confesor, R.; Moody, K. Increasing water productivity and weed suppression of wet seeded rice: Effect of water management and rice genotypes. Exp. Agric. 2000, 36, 71–89. [Google Scholar] [CrossRef]
- Gupta, R.K.; Ladha, J.K.; Singh, S.; Singh, R.J.; Jat, M.L.; Saharawat, Y.; Singh, V.P.; Singh, S.S.; Sah, G.; Gill, M.S.; et al. Production technology for direct seeded rice. In Rice Wheat Consortium Technical Bulletin 8; ICAR-Agricultural Technology Application Research Institute: New Delhi, India, 2006. [Google Scholar]
- Ladha, J.K.; Pathak, H.; Padre, A.T.; Dawe, D.; Gupta, R.K. Productivity trends in intensive rice-wheat cropping systems in Asia. In Improving the Productivity and Sustainability of Rice–Wheat Systems: Issues and Impacts; JASA Special Publication No. 65.; Ladha, K., Hill, J.E., Buresh, R.J., Duxbury, J., Gupta, R.K., Eds.; ASA, CSSA and SSSA: Madison, WI, USA, 2003; pp. 45–76. [Google Scholar]
- Gathala, M.K.; Ladha, J.K.; Kumar, V.; Saharawat, Y.S.; Kumar, V.; Sharma, P.K.; Sharma, S.; Pathak, H. Tillage and Crop Establishment Affects Sustainability of South Asian Rice–Wheat System. Agron. J. 2011, 103, 961–971. [Google Scholar] [CrossRef]
- Jat, R.K.; Sapkota, T.; Singh, R.G.; Jat, M.; Kumar, M.; Gupta, R.K. Seven years of conservation agriculture in a rice–wheat rotation of Eastern Gangetic Plains of South Asia: Yield trends and economic profitability. Field Crop. Res. 2014, 164, 199–210. [Google Scholar] [CrossRef]
- Fanish, S.A. Enhancing resource use efficiency (RUE) under direct seeded rice (DSR) system: A review. Am. Eurasian J. Agric. Env. Sci. 2016, 16, 1534–1544. [Google Scholar]
- Akhgari, H.; Kaviani, B. Assessment of direct seeded and transplanting methods of rice cultivars in the northern part of Iran. Afr. J. Agric. Res. 2011, 6, 6492–6498. [Google Scholar]
- Gangwar, K.S.; Tomar, O.K.; Pandey, D.K. Productivity and economics of transplanted and direct-seeded rice (Oryza sativa) based cropping systems in Indo-Gangetic plains. Indian J. Agric. Sci. 2008, 78, 655–658. [Google Scholar]
- Setter, T.; Laureles, E.; Mazaredo, A. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis. Field Crop. Res. 1997, 49, 95–106. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, A. Direct Seeded Rice: Prospects, Problems/Constraints and Researchable Issues in India. Curr. Agric. Res. J. 2017, 5, 13–32. [Google Scholar] [CrossRef]
- Pathak, H.; Sankhyan, S.; Dubey, D.S.; Bhatia, A.; Jain, N. Dry direct-seeding of rice for mitigating greenhouse gas emission: Field experimentation and simulation. Paddy Water Environ. 2013, 11, 593–601. [Google Scholar] [CrossRef]
- Ogata, T.; Matsue, Y. Studies on direct sowing culture of rice in northern Kyushu. Jpn. J. Crop Sci. 1996, 65, 87–92. [Google Scholar] [CrossRef] [Green Version]
Attributes | One-Tail t-Test | |
---|---|---|
t-Value | p-Value | |
Growth attributes | ||
Plant height | 1.73 | 0.50 |
Effective tillers | 1.73 | 4.17274 × 10−21 |
Panicle length | 1.73 | 0.000504524 |
Yield attributes | ||
No of grains per panicle | 1.73 | 3.08195 × 10−12 |
1000 grain weight | 1.73 | 0.147245633 |
Rice grain yield | 1.73 | 0.001877866 |
Crop lodging | ||
18 to 19 September 2021 | 1.73 | 1.17906 × 10−14 |
1 to 3 October 2021 | 1.73 | 3.46266 × 10−19 |
8 October 2021 | 1.73 | 5.4795 × 10−25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jat, R.K.; Meena, V.S.; Kumar, M.; Jakkula, V.S.; Reddy, I.R.; Pandey, A.C. Direct Seeded Rice: Strategies to Improve Crop Resilience and Food Security under Adverse Climatic Conditions. Land 2022, 11, 382. https://doi.org/10.3390/land11030382
Jat RK, Meena VS, Kumar M, Jakkula VS, Reddy IR, Pandey AC. Direct Seeded Rice: Strategies to Improve Crop Resilience and Food Security under Adverse Climatic Conditions. Land. 2022; 11(3):382. https://doi.org/10.3390/land11030382
Chicago/Turabian StyleJat, Raj K., Vijay S. Meena, Manish Kumar, Vijay S. Jakkula, Illathur R. Reddy, and Avinash C. Pandey. 2022. "Direct Seeded Rice: Strategies to Improve Crop Resilience and Food Security under Adverse Climatic Conditions" Land 11, no. 3: 382. https://doi.org/10.3390/land11030382
APA StyleJat, R. K., Meena, V. S., Kumar, M., Jakkula, V. S., Reddy, I. R., & Pandey, A. C. (2022). Direct Seeded Rice: Strategies to Improve Crop Resilience and Food Security under Adverse Climatic Conditions. Land, 11(3), 382. https://doi.org/10.3390/land11030382