
����������
�������

Citation: Comber, A.; Harris, P. The

Importance of Scale and the MAUP

for Robust Ecosystem Service

Evaluations and Landscape

Decisions. Land 2022, 11, 399.

https://doi.org/10.3390/

land11030399

Academic Editor: Benjamin

Burkhard

Received: 4 February 2022

Accepted: 3 March 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

land

Article

The Importance of Scale and the MAUP for Robust Ecosystem
Service Evaluations and Landscape Decisions
Alexis Comber 1,* and Paul Harris 2

1 School of Geography, University of Leeds, Leeds LS2 9JT, UK
2 Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Okehampton EX20 2SB, UK;

paul.harris@rothamsted.ac.uk
* Correspondence: a.comber@leeds.ac.uk

Abstract: Spatial data are used in many scientific domains including analyses of Ecosystem Services
(ES) and Natural Capital (NC), with results used to inform planning and policy. However, the
data spatial scale (or support) has a fundamental impact on analysis outputs and, thus, process
understanding and inference. The Modifiable Areal Unit Problem (MAUP) describes the effects
of scale on analyses of spatial data and outputs, but it has been ignored in much environmental
research, including evaluations of land use with respect to ES and NC. This paper illustrates the
MAUP through an ES optimisation problem. The results show that MAUP effects are unpredictable
and nonlinear, with discontinuities specific to the spatial properties of the case study. Four key
recommendations are as follows: (1) The MAUP should always be tested for in ES evaluations. This
is commonly performed in socio-economic analyses. (2) Spatial aggregation scales should be matched
to process granularity by identifying the aggregation scale at which processes are considered to be
stable (stationary) with respect to variances, covariances, and other moments. (3) Aggregation scales
should be evaluated along with the scale of decision making (e.g., agricultural field, farm holding,
and catchment). (4) Researchers in ES and related disciplines should up-skill themselves in spatial
analysis and core paradigms related to scale to overcome the scale blindness commonly found in
much research.

Keywords: spatial support; land use; genetic algorithm

1. Introduction

Spatial scale—the spatial scale of measurement or in geostatistics, spatial support—
has huge impacts on spatial analyses, model outputs and, thus, process understanding.
The impacts of scale are well understood in quantitative social sciences to the point where
any research in this domain is expected to be able to describe the impacts of their choice of
aggregation scale on their analysis, results and derived understanding [1]. However, little
land use research and related studies of the goods and services provided by land based
systems such as agricultural production, biodiversity, flood protection and other elements
related to concepts of Natural Capital (NC) and Ecosystem Service (ES) has considered
the impacts of spatial data scales on their analyses. In fact, there are many examples of
blindness to the analytical impacts of scale, where processes captured at one scale are
applied to another without considering the inferential impacts of these differing scales.
For example, Spake et al. [2] applied forest models captured over stands (a specific spatial
unit in forestry) to 10 km gridded data and Finch et al. [3] used a nutrient delivery model
constructed over a 50 m grid to make inferences on 1 km squares. Such scale mismatches
affect the robustness of the results and have implications for the reliability of any policy or
planning recommendations arising from them. This paper seeks to highlight the importance
of considering and evaluating the impact of scale using a hypothetical ES optimisation
problem. In so doing, it addresses this key methodological gap in current approaches to
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landscape, land use, NC and ES evaluations related to scale and specifically the impacts of
the Modifiable Areal Unit Problem or MAUP [4–6].

In brief, MAUP posits that statistical distributions, relationships and trends exhibit
very different properties when the same data are aggregated or combined over different
reporting units at different spatial scales. It describes the process of distortion in results
or models that is driven by the aggregation scale and generates differences in statistical
relationships. In one of the few examples of research that has examined the MAUP in
the context of ESs, differences of up to 329% were found when timber production was
quantified using data at different spatial scales [7]. For geographers, MAUP is a core
consideration when working with spatial data but one that is frequently overlooked by
the many disciplines now routinely using such data and making recommendations to
decision makers. Through a land use optimization problem, this paper seeks to illustrate
the challenges related to analyses of spatial data and to show how representations and
understandings of landscape processes are fundamentally affected by MAUP. It shows the
need for landscape decisions to take account of scale in order to provide robust evaluations
of, for example, NC, ESs or climate-resilient land uses.

2. Background

Ecosystem service evaluations are inherently linked to the spatial data of land use and
social and environmental factors. ES evaluations use statistical methods to quantify ES
values and to suggest alternative spatial distributions of land use to enhance ES. Data may
be from Earth Observation (EO) such as satellite imagery, from surveys and censuses
(e.g., population, socio-economic and agricultural) or spatially interpolated data (e.g., soil,
water and nutrient status). The inferential robustness of the outputs of models and analyses
constructed in this manner is affected by uncertainties derived from the use of data with
varying spatial scales. All spatial data (including EO data) are constrained by their spatial
sampling scales or the spatial support of their measurements.

All analyses of spatial data are affected by spatial scale and, thus, the MAUP. Spatial
scale encompasses spatial support and the spatial extent of analysis [8]. Spatial support is
the area that each observation occupies—the space on which an observation is made—and
is defined by size, shape, orientation and position [9]. For example, for an EO-derived land
use dataset, the spatial support is the spatial resolution of EO data (e.g., 30 m Landsat image
data). MAUP-related issues arise from the following: (1) the spatial support of spatial
data and (2) the aggregation or interpolation of data to specific scales. The spatial support
may be physically constrained but aggregation is not. Under MAUP, the spatial support of
data affects statistically determined relationships between them, such as process modelling
through some form of regression or characterisation through classification. Thus, statistical
analyses of spatial data with different spatial supports will result in different model results,
different correlations, different classifications, different coefficient estimates in regressions,
etc. [1,5,10,11]. Some research [12–14] show the effects of varying spatial support: as sup-
port changes (up-scaling and down-scaling or aggregation and disaggregation) statistical
and other relationship changes. MAUP is a core geographical consideration. Some do-
mains have extensively investigated the consequences of ignoring its effects, particularly
demographics [15] and epidemiology [16], but it is often overlooked in landscape systems
modelling or has only recently been discovered [17,18]. In the context of ESs, NC and land
use decisions, the support of spatial data affects patterns identified in any analysis for a
given spatial extent (e.g., farm field, farm holding and catchment). As of yet, little work
has considered the impacts of varying spatial supports in the analyses and evaluations of
ESs. Yet MAUP’s implications for any landscape or land use evaluation framework are
profound: it results in divergent evaluations [7], mis-specification of ES trade-offs and
synergies [17] and the mislocation of hot spots [19] compounding an already difficult task
of identifying locally appropriate land use scenarios [20].
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3. Methods

This paper uses a land use allocation case study to explore the impact of scale on
evaluations of ESs. It provides a novel demonstration of the effects of scale, spatial support
and MAUP. A vector land use data set was extracted from commonly available data, which
contains real field boundaries and real land use classes. These were aggregated to a set of
regular grids at different spatial resolutions. A set of hypothetical ES gradients (grids) were
also created at different spatial resolutions. The problem used to exemplify the impacts of
scales was the need to reallocate current land use for the study area in order to optimise the
delivery of benefits under a single ES.

3.1. Data

Land use data were created from the UK Land Cover Map 2015 vector layer [21] and
the Land Cover plus: Crops (2018) layer both at 1:25,000 scale and downloaded from the
EDINA Environment Digimap Service (https://digimap.edina.ac.uk, accessed on 16 April
2019). These were merged to ensure that the crop layer populated the agricultural land
cover classes and a 2 km square area in the Vale of Belvoir in the East Midlands of the UK
was extracted. The original land cover, land use, habitat or land type—the terms are used
interchangeably here—were reclassified by using the look-up table in Table 1, as shown in
Figure 1.

Table 1. The look-up table used to reclassify land cover and crop data.

Original Classes New Label

Spring barley, Winter barley Barley
Broadleaf woodland Broadleaf

Coniferous woodland Coniferous
Grass, Improved grassland Grass

Neutral grassland Natural Grass
Field beans, Maize, Oilseed rape OSR/Maize/Beans

Arable and horticulture, pother crops, Potatoes Other Crops
Suburban, Urban Urban

Freshwater Water
Spring Wheat, Winter wheat (includes winter oats) Wheat

327000

327500

328000

328500

329000

460000 460500 461000 461500 462000

Land Use:   
Barley

Broadleaf

Grass

OSR/Maize/Beans

Other Crops

Urban

Water

Wheat

Figure 1. The land use data projected to OSGB 1936 (CRS 27700).

https://digimap.edina.ac.uk
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It is common for land use optimisation analyses to work with gridded data at different
scales. Land cover and land use data are frequently derived from remote sensing at different
resolutions from medium scale (10–50 m) to coarse scale (500 m to 1 km). An example
includes the UK Land Cover maps that are available as a vector product (as in Figure 1), as
a 25 m raster grid [22] and at 1 km summaries [23]

To evaluate the impacts of variations in scale, a series of land use optimisations was
undertaken using the land use data in Figure 1 and aggregated to 40, 50, 67, 100, 200, 400,
500 and 1000 m resolutions, some of which are illustrated in Figure 2. These resolutions
were chosen to illustrate a range of aggregation scales. The land use class for each grid
cell was determined from the field data in Figure 1 using a spatial intersection in which
the grid cell was labelled with the land use class with the greatest intersecting area. Notice
how smaller land use parcels are excluded at coarser scales—the Barley and Water parcels
at 200 m, for example.

50 m 67 m 100 m

200 m 400 m 500 m

Land Use:   
Barley

Broadleaf

Grass

OSR/Maize/Beans

Other Crops

Urban

Water

Wheat

Figure 2. Examples of the land use data aggregated to different scales.

In ES analyses, different land use types are conceptualised as supporting any given
ES to differing degrees. In this study, ES scores were assigned to each land use class as in
Table 2. These were derived from a local ES study [24] and are broadly related to some sort
of regulating ES.

Table 2. The degree of Ecosystem Service provided by each land use class.

Land Use ES Score

Barley 1
Broadleaf 5

Grass 2
Natural Grass 3

OSR/Maize/Beans 1
Other Crops 1

Urban 1
Water 3
Wheat 1
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In order to examine the interactions of land use with ES, an ES gradient, ES, was also
defined. This has greater intensity in the south and the east and uses a nonlinear decay
function to create ES values:

ES = 2/exp((X − 0.5)2)− 2/exp((X + 0.5)2 + Y2) (1)

where X and Y are the relative locations of each grid cell on a scale [0, 1]. The resulting
ES gradient was aggregated over different scales, as shown in Figure 3. These surfaces
could represent Provisioning, Regulating or Cultural ESs, such as Soil Fertility, Flood Risk
or Wilderness, respectively.

50 m 67 m 100 m

200 m 400 m 500 m

1 2 3 4 5
ES gradient

Figure 3. Examples of an ecosystem service gradient aggregated to different scales.

3.2. Land Use Optimisation

The aims of the analyses described and undertaken below is to determine land use
configurations that maximise ES provision to support some land use allocation decision
and to examine how these are affected by data aggregation scales. In the allocation, the
counts of the existing land use objects—the field parcels in Figure 1 or the grid cells or
pixels in Figure 2—were retained, and the task is to identify the best set of locations for
each land use object. This is a high dimensional search space: Each land use object can
be allocated to each location, which in the case of the 200 m grid with 100 cells requires
9.3 × 10157 permutations to evaluate and in the case of the 100 m grid with 400 cells
involving 6.4 × 10868 permutations.

A Genetic Grouping Algorithm (GGA) was used to explore this search space. GGAs
were first proposed by [25] as an extension of classic Genetic Algorithms (GAs).

Optimisation with a GA first creates a set of potential solutions or chromosome, which
are composed of genes, which in this case represents a set of specific locations (grid cells
or fields) for specific land uses. The chromosomes or individual is then evaluated using
some fitness criteria to assess the performance of the individual. Genes (locations) from
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successful individuals are interchanged in a crossover operation which combines two
chromosomes to create new individuals, which are, in effect, offspring or children. To avoid
stagnation, some gene mutation is introduced and, in this manner, the idea behind GAs
is that they breed optimal solutions by creating and selecting fitter generations and, hence,
the analogy with natural selection: Crossover creates new chromosomes from successful
ones, and mutation ensures diversity. GGAs are a modification to classical GAs. They
evaluate groups or subsets of individuals rather than only individuals and maintain group
membership during the crossover operation for members that may have been displaced
by other operations. GGAs have been found to be suited to location problems [26] due
to the manner that GGAs approach the search space and the partitioning of potential
solutions. Overviews of GGAs can be found in Comber et al. and Sasaki et al. [26,27], and
comparisons of GAs and GGAs can be found in [28]. In this work, the algorithm described
in Comber et al. and Sasaki et al. [26,27], itself based on the genalg R package [29], was
further modified for land use allocation.

The key to any optimisation or search heuristic is the evaluation function. Here,
this was to maximise the overall ES score. The reallocated land uses were evaluated by
calculating the area weighted ES score using the land use specific scores in Table 2, the
intersecting area weighted mean ES gradient values as in Figure 3 and the area of the field
or grid cell as in Figures 1 and 2. Thus, the objective was to maximise the following:

∑
i−G

S × W × A (2)

where i indexes the grid cells or fields G with allocated land use class, S is the ES score
associated with land use as in Table 2, W is the underlying ES gradient value as in Figure 3
calculated from the area weighted mean of the intersection between the land use data (field
or gridded) and ES gradients and A is the area of the field or grid cell in metres.

Land use reallocation analyses were undertaken using field (vector) data in Figure 1
and gridded (raster) data in Figure 2. In this case, no new land uses were introduced,
rather, existing land use counts could be allocated to different fields or grid cells. In all
analyses, a degree of elitism was used in which the top 30% of the current population
was carried forward to the next and the probability of mutation was set at 0.0002. Initial
populations of 1.2× the number of observations (fields as in Figure 1 or grid cells as in
Figure 2) were created, from which the optimised set of land use reallocations was bred to
allow the selection of a stronger population. The number of iterations was set to 3000 in
each case, which was sufficient to ensure convergence for each reallocation. In each analysis,
observations pertaining to Urban, Broadleaf and Water land uses were held in fixed locations
and not reallocated as these classes cannot be easily transposed to another location.

The ES gradients in Figure 3 were used to optimise (re-allocate) the spatial distribution of
land use using both the field data in Figure 1 and the gridded land use data in Figure 2. Thus,
the analysis sought to optimise the field data and gridded land use data aggregated to 50, 67
100, 200, 400, 500 and 1000 m, with ES gradients at 25, 40 50, 67, 100, 200, 400, 500 and 1000 m.

Full details of the code, the data and functions used to undertake the analysis and to
generate and map the results can be found at https://github.com/lexcomber/lu_maup/.

4. Results
4.1. Vector (Field) Land Use Data with Gridded ES Surfaces

A series of optimisation analyses were undertaken that allocated land use in Figure 1
using ES aggregations illustrated in Figure 3. The original and optimised ES scores gener-
ated from ES gradients aggregated to different scales are shown in Figure 4 for field (vector)
data. The original and optimised ES scores on the y axis are the sum of the land use scores
in Table 2, multiplied by the area weighted mean of the intersecting ES gradients illustrated
in Figure 3 and the area of the land use parcel, as in Equation (2). Optimised ES scores are
consistently higher than the original ES scores.

https://github.com/lexcomber/lu_maup/
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Figure 4. Examples of an Ecosystem Service gradient aggregated at different scales.

Unsurprisingly, both original and optimised overall ES scores generally decline with
increasing aggregation scale. This is because the information content and granularity of the
ES gradient reduces as resolution increases. For example, the 400 m ES grid has 25 cells
(see Figure 3), with a ES mean value of 2.44, compared to the 50 m grid with 1600 cells
and an ES mean value of 2.69 and, in the extreme case, the 1000 m grid, with four cells
with ES values of 0.05, 0.12, 1.84 and 5 and a mean ES value of 1.75. The result is that ES
scores generated over gradients at coarser resolutions will necessarily result in coarser, less
nuanced evaluations of ES, whether used for original land use configurations or optimised
ones, regardless of whether the land use is in field (vector) format or gridded.

The second feature evident in Figure 4 is the distinct peak in the optimised ES scores
when they are evaluated using the 100 m grid. This perfectly highlights aggregation
effects associated with MAUP, for which its effects are frequently non-nested and non-
hierarchical and intrinsically related to the scales of assessment and evaluation. It is possible
to hypothesise that the peak in ES score at 100 m may be due to the combined impacts of
land use reallocation driven by the aggregation of the ES gradient. To unpack this a bit
more, Figure 5 shows the proportions of the case study area occupied by reallocated land
use and the contribution of each land use class to the overall ES score. Here, the influence
of reallocating the Grass class is evident, particularly at ES aggregation scales between 67
and 200 m. Of the arable related classes that were subject to reallocation (recall that Urban,
Broadleaf, Water and Coniferous land uses were not reallocated), the Grass class has the
highest degree of ES provision, and this is reflected in reallocation across scales, where
essentially Grass replaces Wheat. Interestingly, the peak for Grass proportions is not at
100 m but at 25 m and the effect of the ES grid resolution can be seen in the decline in Grass
proportions after 400 m and an associated increase in Wheat allocations.

These scale effects are reflected in the different optimised land use configurations
when undertaken using ES gradients at different scales (Figure 6). This also reflects the
effects of MAUP: the aggregated ES gradients at coarser resolutions are not sufficiently
granular to ‘pull’ land uses with higher degrees of ES benefit towards the area to the south
and east with high value areas of the ES gradient.

The results in Figures 4 and 6 highlight the importance of understanding the influence
of aggregation scales in the way that processes are represented in models and the need to
match process with measurement scale. This is a key point. For example, agricultural land
use data recorded for each field parcel have an inherent grain where the fundamental unit of
analysis is the field parcel itself. The concept of granularity or grain in this context includes
the inherent properties of objects, which in the case of a field includes the boundary (in the
UK fields are commonly demarked by hedges, fences and or ditches), access via gates, etc.
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Figure 5. The proportions of different land use classes in the study area (solid line) and the proportion
of the total ES score associated with each land use (dashed line) when optimised using an ES gradient
aggregated to different resolutions.

25 m 40 m 50 m

67 m 100 m 200 m

400 m 500 m 1000 m

Land Use:   
Barley

Broadleaf

Grass

OSR/Maize/Beans

Other Crops

Urban

Water

Wheat

Figure 6. The land use allocations arising from ES gradients aggregated to different scales.
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4.2. Aggregated Land Use Data with Gridded ES Surfaces

A second set of land use optimisation analyses was undertaken by using aggregated
land use data in Figure 2 and aggregated ES data in Figure 3. The aim here was to examine
the effects of aggregation scale when analysing land use data in a regular gridded format,
as is commonly the case in many ES and land cover/land use analyses. Evidently, there
is some information loss with conversion from vector data in Figure 1, as each grid cell is
allocated to a single land use class. However, many land use datasets and analyses adopt
this ‘pixel’ view of the world [30].

The optimisation scores using data aggregated to different scales are shown in Figure 7.
Interestingly, the patterns are similar for each of the analyses:

• The ES score trends for the different scales of land use aggregation are similar under
each ES gradient aggregation scale;

• The ES scores generally decline with increased ES gradient aggregation scale, for both
the original and optimised allocations;

• These overall decreasing trends in ES score for optimised land use allocation are
disturbed under the ES grids of 100 m and 500 m (sharp increase);

• These patterns are replicated when optimisation is undertaken using land use data
and ES gradients are aggregated to the same spatial scales.

The results in Figure 7 strongly indicate that the variations in ES scores are generally
being driven by ES aggregation rather than land use aggregations as similar trends are
observed for each land use aggregation scale with ES aggregation as well as the trends
in Figure 4. However, they also indicate the presence of scale related processes when ES
gradients are aggregated to 100 m and 500 m that may be specific to this land use dataset
and to these aggregation scales. These are also suggested in Figure 5. To investigate these,
Figure 8 summarises the distributions of land use parcel perimeters (boundaries) and the
square root of the parcel areas. It shows that the most frequent values in the distributions
are land use parcels with an area of 10,000 m2 (1 ha) and a boundary of around 500 m.
These indicate the origins of peak ES scores when ES gradients are aggregated to 100 m
and 500 m in Figure 7, and thereby the impact of the specific spatial configuration of the
field parcels on ES evaluations.

LU @ 400 m LU @ 500 m LU @ 1000 m LU scale equals ES scale

LU @ 50 m LU @ 67 m LU @ 100 m LU @ 200 m

0 250 500 750 10000 250 500 750 10000 250 500 750 10000 250 500 750 1000

800

1000

1200
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1000
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1400

1600

Agrregation scale (m)

O
ve

ra
ll 

E
S

 S
co

re

ES Score Optimised Original

Figure 7. The original and optimised ecosystem service scores (y-axis) of the gridded land use data,
evaluated over different ES gradients (x-axis) aggregated over different scales.
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Figure 8. Histograms of the square root of area and boundary length of the original land use parcels.

It is instructive to examine the allocated land use distributions. Figures 9 and 10 show
optimised land uses for the land use grids at 100, 200 and 500 m, using all nine of the ES
gradients aggregated at different scales. The same trends as in Figure 7 are evident: the
overall efficacy of the optimisation and the ES score both decreased as the ES gradient
aggregation scale increased. This is because as ES granularity decreases (i.e., aggregation
scale increases), they are increasingly unable to generate ES scores for land use objects
that allow them to be reallocated, for example, by pulling the Grass land use objects (with
high ES scores) towards the southeast corner of the study area (the region with high ES
gradient values).

It important to recall what is being shown and what is being performed with the data.
Land use data are at single aggregated scale, as shown by the grid cells in Figures 9 and 10.
The ES score for each object is generated from an area weighted mean of the intersection
between the land use and the ES gradient. Thus, in Figure 10 there are 16 land use cells, for
which its ES score is evaluated by 1600 ES gradient cells at 25 m (top left in Figure 10) but
by four ES gradient cells at 1000 m (bottom right in Figure 10).

Consider the allocations in Figure 10 for the ES gradients aggregated to 25 m, 100 m
and 500 m. These have the the same ES configurations but have different overall ES scores.
They would have the same scores if they were evaluated over the same ES gradient, but
they do not, as shown by the grid cell values in Figure 10. This illustrates the context of
the better performance of land use allocations under the 500 m ES gradient in Figure 7
compared to 400 m; for example, it highlights the non-nested, non-hierarchical behaviours
of scale under MAUP and the unpredictable nature of aggregation effects.
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25 m 40 m 50 m

67 m 100 m 200 m

400 m 500 m 1000 m

Land Use:   
Barley

Broadleaf

Grass

OSR/Maize/Beans

Other Crops

Urban

Water
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25 m 40 m 50 m

67 m 100 m 200 m

400 m 500 m 1000 m

Land Use:   
Broadleaf

Grass

OSR/Maize/Beans

Other Crops

Urban

Wheat

Figure 9. Optimised land use allocations for the 100 m land use grid (right hand side) and 200 m land use grid (left hand side) under different scales of ES
gradient aggregation.
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Figure 10. Optimised land use allocations for the 500 m land use grid under different scales of ES
gradient aggregation. The cell values are the land use grid cell ES scores that are summed to generate
the overall ES score.

5. Discussion

The results of the case studies in this paper demonstrate the impacts of decision making
on different scales of spatial aggregation and spatial support. The analyses reallocated
land use in order to improve (optimise) the delivery of a single hypothetical ES over
a small case study area. In this context, the land use reallocation and ES optimisation
procedure illustrate issues associated with different scales of spatial support. A search
heuristic (in this case a Grouping Genetic Algorithm) was used to optimise the spatial
configurations of land use parcels in vector format and aggregated to grids of different
resolutions. The land use reallocations and configurations were evaluated using an ES
gradient aggregated over varying spatial supports and the GGA sought to maximise the
overall ES score for the case study area. The aim of the analyses was to illustrate the
effect of different scales of spatial support on decision making. For this reason, the case
study was small and only a single ES was evaluated. In reality, ES evaluations were
undertaken over larger scales (e.g., catchments) and considered multiple ES objectives (e.g.,
provisioning, cultural and regulating) and their interactions. To support such evaluations,
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ESs are commonly bundled [31,32] into groups of synergistic ESs, which co-vary to social
and ecological pressures [33].

The results of this paper show first that, generally, as the scale of ES gradient aggre-
gation increases (becomes coarser), the allocation evaluations are less effective due to the
decreased resolving power and granularity of the ES gradient at increased aggregation
scales. This overall trend was evident for land use in vector format (Figure 4) and grid
formats (Figure 7) when reallocated using ES gradients aggregated to different scales to
evaluate potential allocations.

A second feature of the reallocation results was that the overall trends of decreasing
ES evaluation with increasing ES gradient aggregation were interrupted when the ES
gradients were aggregated to 100 m and 500 m, as shown in Figures 4 and 7 for vector
and gridded land use. For this case study, the highest ES score results were generated
under ES gradients aggregated to 100 m. There is the possibility that this non-hierarchical
behaviour may be due to the arbitrary positioning of ES grids, although the same trends
were observed in the analyses of both field (vector) and gridded land use data, suggesting
that the agriculture-related processes in this study are best captured at that resolution.

Third, these trend discontinuities were shown to be due to the spatial interaction of the
original land use data and the gridded ES gradients at these scales, as shown in Figure 8.
This indicates that the “best” aggregation scale is driven by the spatial scale (support) of the
underling case study data. It suggests that a different case study, containing field parcels
with different typical spatial properties would be expected to show the same overall trends
(of declining allocation effectiveness with increasing ES gradient aggregation) but with
trend discontinuities at aggregation scales specific to case study data. However, this has
not been substantiated in this study and suggests an area for further investigation.

Together, these results clearly indicate how decisions around land allocation and ES,
whether at the field, grid, catchment or landscape scale, are mediated by the spatial support
of data. The effects of the spatial support were shown to be nonlinear, non-nested and
non-hierarchical and sensitive to the spatial properties and grain of the underlying objects
(e.g., agricultural fields) and the data used to represent them in ES analyses (as shown in
the trends in Figures 4 and 7). In turn, this makes the impacts of scale difficult to predict.
It indicates that the evaluations of process spatial scale (in this case land use) should be
undertaken at different scales of aggregation as part of any ES analyses and evaluation.

Extending this further, this also suggests that land use evaluations may benefit from
locally varying scales of aggregation to reflect the spatial variation in the processes that are
examined—in this case, land use. Figure 11 shows a quadtree representation of the data in
Figure 1, suggesting how scales of aggregation could be locally determined to reflect locally
varying spatial proprieties of the objects being evaluated. However, this is very much an
area for further research.
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Figure 11. A simple quadtree representation of the parcel data, indicating the spatial variation and
distribution of potentially ‘appropriate’ scales of aggregation (grid cell dimensions).

6. Conclusions

There are a number of recommendations arising from this work for research that
incorporates analyses of land use, ES and NC evaluations:

1. MAUP should always be tested for. Any analysis of spatial data should routinely test
for MAUP in order to understand the specific impacts of aggregations scales relative to
the spatial support of the process being investigated. This is a common consideration
in socio-economic analyses of spatial data [1] but has yet to be adopted in the ES
domain and in work seeking to evaluate NC and to inform landscape decisions, land
use planning and ES delivery.

2. The scale of spatial data aggregations should be matched to the granularity of the
processes being evaluated. This requires the identification of spatial scales at which
the processes being investigated are considered to be stationary (stable) with respect
to their variances, covariances and other moments in order to ensure that the results
of any analyses, such as land use allocation in this study, are not affected by inherent
scale mismatches. Here, these were observed under ES gradients aggregated to scales
other than 100 and 500 m and can be determined by using local indicators of spatial
association [34,35] or local spatial covariances [36].

3. The impact of MAUP and aggregation scales should be evaluated alongside the scale
of decision making. The support size and shape of the spatial units being used in
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spatial data analysis affect the patterns identified in the evaluations of ES and related
concepts such as NC for a given spatial extent such as an agricultural field, a farm
holding or river catchment.

4. ES researchers and those in related disciplines (land use planning, landscape-scale de-
cisions, etc.) should up-skill themselves in spatial analysis techniques. It is important
that those undertaking research in these domains understand core paradigms associ-
ated with working with spatial data and understand techniques that are frequently
used in spatial statistics. Scale blindness is commonly found in published ES research
(as indicated above), where, for example, models constructed over one scale of spatial
support are applied to data over another. Up-skilling is needed because powerful
analytical tools that were previously the reserve of domain experts are now included
in many off-the-shelf software environments and are easily applied in a naive manner.
Such tools include those for spatial data aggregation (both up and down scaling),
location allocation and spatial data integration. They will generate results without
requiring the user to understand how to best parameterise them. Examples of similar
misuse have been observed in the renewable energy literature with respect to land
use [37].

The dangers of not undertaking such investigations into these MAUP and scale related
considerations are erroneous inference and decision making. In the realm of ES and
landscape decision making, there is a need to examine cross-scale sensitivities driven by
the size and shape of areal units, as these relate to the scale component and aggregation or
zoning component of the MAUP, respectively. Such investigations are needed to explicitly
mitigate MAUP and to better handle different scales of decision making and response in
models and decision tools. To perform this, there is a need to transfer and adapt concepts
and methods from (i) Geostatistics [38,39], (ii) Spatial Ecology [35] and (iii) Quantitative
Geography [40,41]. MAUP can be mitigated against by analysing data at the finest possible
meaningful scale or unit [42]. Here, Geostatistics provides predictive tools to down-scale
with an associated variance [43] and statistical tests of sensitivity relative to MAUP can
inform on this ideal scale [44].

However, a ‘solution’ to the MAUP poses a very different challenge: spatial scales
need to be identified where the study processes are considered stable with respect to
their variances, covariances and higher moments in context of the intended data analysis.
Such local scale stability has strong links to the notion of process non-stationarity, where
investigations, for example, by using local indicators of spatial association [34,35] or local
spatial covariances (variograms) [36] have the potential to provide ‘solutions’ to MAUP.
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