Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Biophysical and Socioeconomic Conditions
2.2. Data
2.3. Mapping the Land Cover
2.4. Quantifying Spatial Aspects of the Landscape over Time
- Land type diversity, with relative marginal entropy. Relative entropy quantifies the diversity of land types relative to the maximum value. It attains its maximum of one when relative cover is evenly distributed among the land types, whereas the minimum of zero is taken when one land type covers everything.
- Largest patch cover, with the largest patch index. This index gives the area of the largest patch divided by the total area. Its maximum is one when the largest patch is the landscape itself, and its minimum approaches zero in larger landscapes that are more spatially disaggregated and rich in land types.
- Edge type diversity, with the interspersion and juxtaposition index. This index measures the diversity of edge types relative to its maximum value. It is maximally one when relative edge length is evenly distributed among different types of edge between any possible pair of land types. It is minimally zero when there is only a single edge type, i.e., between two specific land types.
- Spatial aggregation, with the relative mutual information. It quantifies the information that a focal raster cell’s land type provides for the prediction of an adjacent cell’s land type, relative to its maximum value. Its maximum of one is attained when the landscape is of one land type, and its minimum approaches zero when the land type prediction of a neighbouring cell can be, at best, random.
Aspect | Metric | Equation 1 | Ref. |
---|---|---|---|
Land type diversity | Relative marginal entropy | [37] | |
Largest patch cover | Largest Patch Index | [36] | |
Edge type diversity | Interspersion and Juxtaposition Index | [36] | |
Spatial aggregation | Relative mutual information | [37] |
2.5. Analysing the Rates of Land Cover Change
Lv. | Absolute Gain | Absolute Loss | Relative Gain | Relative Loss |
---|---|---|---|---|
Overall | ||||
Mean relative gain and loss: | ||||
Land type | ||||
Mean relative gain and loss: | ||||
Transition | ||||
Mean relative gain and loss: |
2.6. Modelling the Occurrence of the Land Types
2.7. Modelling the Intensity of Farmland and Grassland Succession
2.8. Displaying the Results of the Random Forest Models
3. Results
3.1. History of Land Cover, Landscape Aspects, and Land Cover Change
3.2. Conditions Related to the Occurrence of the Land Types
3.3. Conditions Related to the Intensity of Farmland and Grassland Succession
4. Discussion
4.1. History of Land Cover, Landscape Aspects, and Land Cover Change
4.2. Conditions Related to The Occurrence of the Land Types, and the Succession Intensity
4.3. Management Implications
4.4. Study Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janssen, J.A.M.; Rodwell, J.S. European Red List of Habitats: Part 2. Terrestrial and Freshwater Habitats; Publications Office of the European Union: Luxembourg, 2016; pp. 1–38. ISBN 978-92-79-61588-7. [Google Scholar]
- Valkó, O.; Venn, S.; Żmihorski, M.; Biurrun, I.; Labadessa, R.; Loos, J. The Challenge of Abandonment for the Sustainable Management of Palaearctic Natural and Semi-Natural Grasslands. Hacquetia 2018, 17, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Prévosto, B.; Kuiters, L.; Bernhardt-Römermann, M.; Dölle, M.; Schmidt, W.; Hoffmann, M.; Van Uytvanck, J.; Bohner, A.; Kreiner, D.; Stadler, J.; et al. Impacts of Land Abandonment on Vegetation: Successional Pathways in European Habitats. Folia Geobot. 2011, 46, 303–325. [Google Scholar] [CrossRef] [Green Version]
- Navarro, L.M.; Pereira, H.M. Rewilding Abandoned Landscapes in Europe. Ecosystems 2012, 15, 900–912. [Google Scholar] [CrossRef] [Green Version]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland Abandonment: Threat or Opportunity for Biodiversity Conservation? A Global Review. Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Plieninger, T.; Hui, C.; Gaertner, M.; Huntsinger, L. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis. PLoS ONE 2014, 9, e98355. [Google Scholar] [CrossRef] [PubMed]
- Zakkak, S.; Kakalis, E.; Radović, A.; Halley, J.M.; Kati, V. The Impact of Forest Encroachment after Agricultural Land Abandonment on Passerine Bird Communities: The Case of Greece. J. Nat. Conserv. 2014, 22, 157–165. [Google Scholar] [CrossRef]
- Benayas, J.R.; Martins, A.; Nicolau, J.M.; Schulz, J.J. Abandonment of Agricultural Land: An Overview of Drivers and Consequences. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 1–14. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, D.; Crabtree, J.R.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez Lazpita, J.; Gibon, A. Agricultural Abandonment in Mountain Areas of Europe: Environmental Consequences and Policy Response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Mitsuda, Y.; Ito, S. A Review of Spatial-Explicit Factors Determining Spatial Distribution of Land Use/Land-Use Change. Landsc. Ecol. Eng. 2011, 7, 117–125. [Google Scholar] [CrossRef]
- Debussche, M.; Lepart, J.; Dervieux, A. Mediterranean Landscape Changes: Evidence from Old Postcards. Glob. Ecol. Biogeogr. 1999, 8, 3–15. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of Agricultural Land Abandonment in Post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Xystrakis, F.; Psarras, T.; Koutsias, N. A Process-Based Land Use/Land Cover Change Assessment on a Mountainous Area of Greece during 1945–2009: Signs of Socio-Economic Drivers. Sci. Total Environ. 2017, 587–588, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.A. Multifunctional Agriculture: A Transition Theory Perspective; CABI: Trowbridge, UK, 2007; pp. 1–328. ISBN 978-1-84593-256-5. [Google Scholar]
- Pinto-Correia, T.; Primdahl, J.; Pedroli, B. Introduction: A Landscape in Disequilibrium. In European Landscapes in Transition: Implications for Policy and Practice; Cambridge Studies in Landscape Ecology; Cambridge University Press: Cambridge, UK, 2018; pp. 1–41. ISBN 978-1-107-70756-6. [Google Scholar]
- Crowley, E. The Evolution of the Common Agricultural Policy and Social Differentiation in Rural Ireland. Econ. Soc. Rev. 2003, 34, 65–85. Available online: http://hdl.handle.net/2262/60518 (accessed on 16 February 2022).
- Wilson, G.A.; Rigg, J. “Post-Productivist” Agricultural Regimes and the South: Discordant Concepts? Prog. Hum. Geogr. 2003, 27, 681–707. [Google Scholar] [CrossRef]
- Evans, N.; Morris, C.; Winter, M. Conceptualizing Agriculture: A Critique of Post-Productivism as the New Orthodoxy. Prog. Hum. Geogr. 2002, 26, 313–332. [Google Scholar] [CrossRef] [Green Version]
- Zomeni, M.; Tzanopoulos, J.; Pantis, J.D. Historical Analysis of Landscape Change Using Remote Sensing Techniques: An Explanatory Tool for Agricultural Transformation in Greek Rural Areas. Landsc. Urban Plan. 2008, 86, 38–46. [Google Scholar] [CrossRef]
- Peet, R.K.; Roberts, D.W. Classification of Natural and Semi-Natural Vegetation. In Vegetation Ecology, 2nd ed.; van der Maarel, E., Franklin, J., Eds.; John Wiley & Sons: Chichester, UK, 2013; pp. 28–70. ISBN 978-1-118-45259-2. [Google Scholar]
- Barbour, M.G.; Burk, W.D.; Pitts, W.D.; Gilliam, F.S.; Schwartz, M.W. Terrestrial Plant Ecology, 3rd ed.; Addison Wesley Longman: Menlo Park, CA, USA, 1999; ISBN 978-0-8053-0004-8. [Google Scholar]
- Bohn, U.; Zazanashvili, N.; Nakhutsrishvili, G.; Ketskhoveli, N. The Map of the Natural Vegetation of Europe and Its Application in the Caucasus Ecoregion. Bull. Georgian Natl. Acad. Sci. 2007, 175, 112–121. Available online: http://science.org.ge/old/moambe/2007-vol1/112-120.pdf (accessed on 16 February 2022).
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- R: A Language and Environment for Statistical Computing (Version 4.0.2). Available online: https://www.r-project.org (accessed on 16 February 2022).
- EU-DEM of the Copernicus Land Monitoring Service (Version 1.1). Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 16 February 2022).
- Hijmans, R.J.; van Etten, J.; Sumner, M.; Cheng, J.; Baston, D.; Bevan, A.; Bivand, R.; Busetto, L.; Canty, M.; Fasoli, B.; et al. “raster”: Geographic Data Analysis and Modeling (Version 3.5-15). Available online: https://cran.r-project.org/web/packages/raster/index.html (accessed on 16 February 2022).
- Nakos, G. Site Classification, Mapping and Evaluation: Technical Specifications; Institute of Mediterranean Forest Ecosystems and Forest Products Technology, Ministry of Agriculture: Athens, Greece, 1991. (In Greek) [Google Scholar]
- Hijmans, R.J.; Phillips, S.; Elith, J.; Leathwick, J. “dismo”: Species Distribution Modeling (Version 1.3-5). Available online: https://cran.r-project.org/web/packages/dismo/index.html (accessed on 16 February 2022).
- De Cáceres, M.; Martin-StPaul, N.; Turco, M.; Cabon, A.; Granda, V. Estimating Daily Meteorological Data and Downscaling Climate Models over Landscapes. Environ. Model. Softw. 2018, 108, 186–196. [Google Scholar] [CrossRef]
- De Cáceres, M.; Martin-StPaul, N.; Granda, V.; Cabon, A. “meteoland”: Landscape Meteorology Tools (Version 1.0.2). Available online: https://cran.r-project.org/web/packages/meteoland/index.html (accessed on 28 February 2022).
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Ragkos, A.; Koutsou, S.; Karatassiou, M.; Parissi, Z.M. Scenarios of Optimal Organization of Sheep and Goat Transhumance. Reg. Environ. Change 2020, 20, 13. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority (ELSTAT). Available online: https://www.statistics.gr/en/home (accessed on 20 February 2022).
- Chuvieco, E.; Vega, J.M. Visual versus Digital Analysis for Vegetation Mapping: Some Examples on Central Spain. Geocarto Int. 1990, 5, 21–30. [Google Scholar] [CrossRef]
- Pereira, J.; Chuvieco, E.; Beaudoin, A.; Desbois, N. Remote Sensing of Burned Areas: A Review. In A Review of Remote Sensing Methods for the Study of Large Wildland Fires; Chuvieco, E., Ed.; Universidad de Alcala: Alcala de Henares, Spain, 1997; pp. 127–183. [Google Scholar]
- Pleniou, M.; Koutsias, N. Sensitivity of Spectral Reflectance Values to Different Burn and Vegetation Ratios: A Multi-Scale Approach Applied in a Fire Affected Area. ISPRS J. Photogramm. Remote Sens. 2013, 79, 199–210. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Categorical and Continuous Maps; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2012. [Google Scholar]
- Nowosad, J.; Stepinski, T.F. Information Theory as a Consistent Framework for Quantification and Classification of Landscape Patterns. Landsc. Ecol. 2019, 34, 2091–2101. [Google Scholar] [CrossRef] [Green Version]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. “landscapemetrics”: An Open-Source R Tool to Calculate Landscape Metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Aldwaik, S.Z.; Pontius, R.G. Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Exavier, R.; Zeilhofer, P. “OpenLand”: Software for Quantitative Analysis and Visualization of Land Use and Cover Change. R J. 2021, 12, 359–371. Available online: https://journal.r-project.org/archive/2021/RJ-2021-021/index.html (accessed on 16 February 2022). [CrossRef]
- Eisinga, R.; Heskes, T.; Pelzer, B.; Te Grotenhuis, M. Exact P-Values for Pairwise Comparison of Friedman Rank Sums, with Application to Comparing Classifiers. BMC Bioinform. 2017, 18, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biau, G.; Scornet, E. A Random Forest Guided Tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Mariano, C.; Mónica, B. A Random Forest-Based Algorithm for Data-Intensive Spatial Interpolation in Crop Yield Mapping. Comput. Electron. Agric. 2021, 184, 106094. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random Forest as a Generic Framework for Predictive Modeling of Spatial and Spatio-Temporal Variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; R Core Team; et al. “caret”: Classification and Regression Training (Version 6.0-90). Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 16 February 2022).
- Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest. J. Mach. Learn. Res. 2018, 18, 1–18. Available online: http://jmlr.org/papers/v18/17-269.html (accessed on 20 January 2022).
- Goldstein, A.; Kapelner, A.; Bleich, J.; Pitkin, E. Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation. J. Comput. Graph. Stat. 2015, 24, 44–65. [Google Scholar] [CrossRef]
- Greenwell, B.M. “pdp”: An R Package for Constructing Partial Dependence Plots. R J. 2017, 9, 421–436. Available online: https://journal.r-project.org/archive/2017/RJ-2017-016/index.html (accessed on 16 February 2022). [CrossRef] [Green Version]
- Pueyo, Y.; Beguería, S. Modelling the Rate of Secondary Succession after Farmland Abandonment in a Mediterranean Mountain Area. Landsc. Urban Plan. 2007, 83, 245–254. [Google Scholar] [CrossRef] [Green Version]
- García-Ruiz, J.M.; Lasanta, T.; Nadal-Romero, E.; Lana-Renault, N.; Álvarez-Farizo, B. Rewilding and Restoring Cultural Landscapes in Mediterranean Mountains: Opportunities and Challenges. Land Use Policy 2020, 99, 104850. [Google Scholar] [CrossRef]
- Sitzia, T.; Semenzato, P.; Trentanovi, G. Natural Reforestation Is Changing Spatial Patterns of Rural Mountain and Hill Landscapes: A Global Overview. For. Ecol. Manag. 2010, 259, 1354–1362. [Google Scholar] [CrossRef]
- Diogo, V.; Koomen, E. Land-Use Change in Portugal, 1990–2006: Main Processes and Underlying Factors. Cartogr. Int. J. Geogr. Inf. Geovisualization 2012, 47, 237–249. [Google Scholar] [CrossRef]
- Müller, D.; Leitão, P.J.; Sikor, T. Comparing the Determinants of Cropland Abandonment in Albania and Romania Using Boosted Regression Trees. Agric. Syst. 2013, 117, 66–77. [Google Scholar] [CrossRef]
- Sluiter, R.; de Jong, S.M. Spatial Patterns of Mediterranean Land Abandonment and Related Land Cover Transitions. Landsc. Ecol. 2007, 22, 559–576. [Google Scholar] [CrossRef]
- Papailias, M.T. Research on the Social and Economic Differentiations in the Greek Rural Sector During the Period 1830–2030. Sci. J. Warsaw Univ. Life Sci. SGGW 2014, 14, 116–122. Available online: http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.cejsh-from-agro-5355f6d8-c577-4c1c-adf1-498e077502a6 (accessed on 16 February 2022).
- Micha, E.; Areal, F.J.; Tranter, R.B.; Bailey, A.P. Uptake of Agri-Environmental Schemes in the Less-Favoured Areas of Greece: The Role of Corruption and Farmers’ Responses to the Financial Crisis. Land Use Policy 2015, 48, 144–157. [Google Scholar] [CrossRef]
- Hinojosa, L.; Napoléone, C.; Moulery, M.; Lambin, E.F. The “Mountain Effect” in the Abandonment of Grasslands: Insights from the French Southern Alps. Agric. Ecosyst. Environ. 2016, 221, 115–124. [Google Scholar] [CrossRef]
- Feurdean, A.; Ruprecht, E.; Molnár, Z.; Hutchinson, S.M.; Hickler, T. Biodiversity-Rich European Grasslands: Ancient, Forgotten Ecosystems. Biol. Conserv. 2018, 228, 224–232. [Google Scholar] [CrossRef]
- Vrahnakis, M.; Nasiakou, S.; Soutsas, K. Public Perception on Measures Needed for the Ecological Restoration of Grecian Juniper Silvopastoral Woodlands. Agrofor. Syst. 2021, 95, 1–13. [Google Scholar] [CrossRef]
- Valkó, O.; Zmihorski, M.; Biurrun, I.; Loos, J.; Labadessa, R.; Venn, S. Ecology and Conservation of Steppes and Semi-Natural Grasslands. Hacquetia 2016, 15, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Sil, Â.; Fernandes, P.M.; Rodrigues, A.P.; Alonso, J.M.; Honrado, J.P.; Perera, A.; Azevedo, J.C. Farmland Abandonment Decreases the Fire Regulation Capacity and the Fire Protection Ecosystem Service in Mountain Landscapes. Ecosyst. Serv. 2019, 36, 100908. [Google Scholar] [CrossRef] [Green Version]
- Buisson, E.; De Almeida, T.; Durbecq, A.; Arruda, A.J.; Vidaller, C.; Alignan, J.-F.; Toma, T.S.P.; Hess, M.C.M.; Pavon, D.; Isselin-Nondedeu, F.; et al. Key Issues in Northwestern Mediterranean Dry Grassland Restoration. Restor. Ecol. 2021, 29, e13258. [Google Scholar] [CrossRef]
- Kristensen, L. Agricultural Change in Denmark between 1982 and 1989: The Appearance of Post-Productivism in Farming? Geogr. Tidsskr. Dan. J. Geogr. 2001, 101, 77–86. [Google Scholar] [CrossRef]
- Uthes, S.; Matzdorf, B.; Müller, K.; Kaechele, H. Spatial Targeting of Agri-Environmental Measures: Cost-Effectiveness and Distributional Consequences. Environ. Manag. 2010, 46, 494–509. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Olivencia, Y.; Ibáñez-Jiménez, Á.; Porcel-Rodríguez, L.; Zimmerer, K. Land Use Change Dynamics in Euro-Mediterranean Mountain Regions: Driving Forces and Consequences for the Landscape. Land Use Policy 2021, 109, 105721. [Google Scholar] [CrossRef]
- Cocca, G.; Sturaro, E.; Gallo, L.; Ramanzin, M. Is the Abandonment of Traditional Livestock Farming Systems the Main Driver of Mountain Landscape Change in Alpine Areas? Land Use Policy 2012, 29, 878–886. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiziridis, D.A.; Mastrogianni, A.; Pleniou, M.; Karadimou, E.; Tsiftsis, S.; Xystrakis, F.; Tsiripidis, I. Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications. Land 2022, 11, 406. https://doi.org/10.3390/land11030406
Kiziridis DA, Mastrogianni A, Pleniou M, Karadimou E, Tsiftsis S, Xystrakis F, Tsiripidis I. Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications. Land. 2022; 11(3):406. https://doi.org/10.3390/land11030406
Chicago/Turabian StyleKiziridis, Diogenis A., Anna Mastrogianni, Magdalini Pleniou, Elpida Karadimou, Spyros Tsiftsis, Fotios Xystrakis, and Ioannis Tsiripidis. 2022. "Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications" Land 11, no. 3: 406. https://doi.org/10.3390/land11030406
APA StyleKiziridis, D. A., Mastrogianni, A., Pleniou, M., Karadimou, E., Tsiftsis, S., Xystrakis, F., & Tsiripidis, I. (2022). Acceleration and Relocation of Abandonment in a Mediterranean Mountainous Landscape: Drivers, Consequences, and Management Implications. Land, 11(3), 406. https://doi.org/10.3390/land11030406