Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation
Abstract
:1. Introduction
2. Theoretical Framework
3. Research Method
3.1. Comprehensive Analysis Method of Evolution of TSS
3.2. Analysis Method of Evolution of TSS
3.2.1. Analysis Method of Evolution Process
3.2.2. Analysis Method of Evolution Pattern
- Gravity center shift model
- 2.
- Spatial autocorrelation analysis
3.3. Driving Analysis Method of Evolution of TSS
3.4. Simulation Method of TSS
Driving Factors | Variable | Indicator Description |
---|---|---|
Natural environment foundation | Annual average precipitation change rate | Precipitation conditions |
Annual average temperature change rate | Climatic conditions | |
Traffic location conditions | Road density change rate | Traffic accessibility |
Distance from coastline | External accessibility | |
Social living conditions | Urbanization change rate | Urbanization level |
Change rate of per capita sales of social consumer goods | Residents’ consumption level | |
Economic development level | Change rate per capita GDP | Economic development level |
Average dynamic change rate of agricultural machinery | Scientific and technological progress level | |
Proportion change rate of primary industry | Agricultural development level | |
Policy and institutional environment | Change rate of average fixed asset investment | Investment level |
Change rate of public financial expenditure | Financial expenditure level |
3.4.1. Principle of CA–Markov Model
- Markov model
- 2.
- Cellular Automata model
3.4.2. CA–Markov Model Implementation Process
3.4.3. Accuracy Test of Simulation Results
3.5. Optimization Path of TSS
4. Overview of the Study Area and Data Sources
4.1. Overview of the Study Area
4.2. Data Sources and Processing
5. Research Results
5.1. Analysis of the Overall Characteristics of TSS
5.1.1. Distribution Characteristics
5.1.2. Evolution Characteristics
5.2. Analysis of the Evolution Process of TSS
5.2.1. Analysis of Scale Characteristics
5.2.2. Atlas Feature Analysis
5.3. Analysis of the Evolution Pattern of TSS
5.3.1. Center of Gravity Migration Trajectory
5.3.2. Spatial Autocorrelation Analysis
- Univariate space autocorrelation
- 2.
- Bivariate space autocorrelation
5.4. Driving Analysis Evolution of TSS
5.4.1. Driver Detection
5.4.2. Analysis of Motivating Mechanism
5.5. Multi-Scenario Simulation and Optimization of TSS
5.5.1. Simulation Results of TSS Based on Multi-Scenarios
5.5.2. Optimization Pattern of TSS Based on Regional Function Co-Ordination
6. Discussion
6.1. The General Law of the Evolution of TSS
6.2. Optimization Path and Strategy of TSS
6.3. Theoretical Contributions, Limitations, and Future Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Galuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, 137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, F.; Li, Y. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Fu, B.; Liu, Y.; Li, Y.; Wang, C.; Li, C.; Jiang, W.; Hua, T.; Zhao, W. The research priorities of Resources and Environmental Sciences. Geogr. Sustain. 2021, 2, 87–94. [Google Scholar] [CrossRef]
- Song, X.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 7720. [Google Scholar] [CrossRef] [PubMed]
- Abd El-Kawy, O.R.; Rod, J.K.; Ismail, H.A.; Suliman, A.S. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Appl. Geogr. 2011, 31, 483–494. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Clean. Prod. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Shao, X.; Zhang, Y.; Cao, Y. Land-use changes and policy dimension driving forces in China: Present, trend and future. Land Use Policy 2012, 29, 737–749. [Google Scholar] [CrossRef]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, D.; Li, M. Farmland landscape fragmentation evolution and its driving mechanism from rural to urban: A case study of Changzhou City. J. Rural Stud. 2021, 82, 1–18. [Google Scholar]
- Sandro, L.S.; Ana Carolina, F.V.; Michelle, B.; Stefan, S.; Alexandre, S.; Marcos, L. Agricultural land use dynamics in the Brazilian part of La Plata Basin: Fromdriving forces to societal responses. Land Use Policy 2021, 107, 105519. [Google Scholar]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Song, W.; Deng, X. Land-use/land-cover change and ecosystem service provision in China. Sci. Total Environ. 2017, 576, 705–719. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.; Li, Z.; Tian, Y.; Wei, S. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Li, Y.; Wang, Y.; Chen, Z. Land use transition and its eco-environmental effects in the Beijing–Tianjin–Hebei urban agglomeration: A production–living–ecological Perspective. Land 2020, 9, 285. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Duan, Y.; Wang, H.; Huang, A.; Xu, Y.; Lu, L.; Ji, Z. Identification and spatial-temporal evolution of rural “production-living-ecological” space from the perspective of villagers’ behavior—A case study of Ertai Town, Zhangjiakou City. Land Use Policy 2021, 106, 105457. [Google Scholar] [CrossRef]
- Fu, B. Geography: From knowledge, science to decision making support. Acta Geogr. Sin. 2017, 72, 1923–1932. [Google Scholar]
- Zhao, X.; Li, S.; Pu, J.; Miao, P.; Wang, Q.; Tan, K. Optimization of the national land space based on the coordination of urban-agricultural-ecological functions in the Karst Areas of Southwest China. Sustainability 2019, 11, 6752. [Google Scholar] [CrossRef] [Green Version]
- Erb, K.H.; Haberl, H.; Jepsen, M.R.; Kuemmerle, T.; Lindner, M.; Muller, D.; Verburg, P.H.; Reenberg, A. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 2013, 5, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Aldwaik, S.Z.; Pontius, R.G. Map errors that could account for deviations from a uniform intensity of land change. Int. J. Geogr. Inf. Sci. 2013, 27, 1717–1739. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2019, 56, 249–253. [Google Scholar] [CrossRef] [PubMed]
- Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B-Biol. Sci. 2018, 285, 1881. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.P.; Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 2019, 9, 1. [Google Scholar] [CrossRef]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Aspinall, R.; Staiano, M. A conceptual model for land system dynamics as a coupled human-environment system. Land 2017, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Zhang, N.; Liao, W. How do population and land urbanization affect CO2 emissions under gravity center change? A spatial econometric analysis. J. Clean. Prod. 2018, 202, 510–523. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Ju, R.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built- up land expansion based on the geographical detector: A case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Huang, J.; Wang, J.; Bo, Y.; Xu, C.; Hu, M.; Huang, D. Identification of Health Risks of Hand, Foot and Mouth Disease in China Using the Geographical Detector Technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xu, Q.; Long, H. Spatial distribution characteristics and optimized reconstruction analysis of China’s rural settlements during the process of rapid urbanization. J. Rural Stud. 2016, 47, 413–424. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model(FLUS) for simulating multiple land use scenarios by coupling human and natural effects. J. Clean. Prod. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Wang, Z.; Ya, S.; Pu, H.; Mofakkarul, I.; Ou, L. Simulation of spatiotemporal variation of land use in mountainous-urban fringes based on improved CA-Markov model. Trans. Chin. Soc. Agric. Eng. 2020, 36, 239–248. [Google Scholar]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef] [Green Version]
- Green, R.E.; Cornell, S.J.; Scharlemann, J.P.W.; Balmford, A. Farming and the fate of wild nature. Science 2005, 307, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Angelstam, P.; Manton, M.; Green, M.; Jonsson, B.G.; Sabatini, F.M. Sweden does not meet agreed national and international forest biodiversity targets: A call for adaptive landscape planning. Landsc. Urban Plan. 2020, 202, 103838. [Google Scholar] [CrossRef]
- Li, S.; Zhao, X.; Pu, J.; Miao, P.; Tan, K. Optimize and control territorial spatial functional areas to improve the ecological stability and total environment in karst areas of southwest china. Land Use Policy 2021, 100, 104940. [Google Scholar] [CrossRef]
- Pontius, R.G.; Huang, J.; Jiang, W.; Khallaghi, S.; Lin, Y.; Liu, J.; Quan, B.; Ye, S. Rules to write mathematics to clarify metrics such as the land use dynamic degrees. Landsc. Ecol. 2017, 32, 2249–2260. [Google Scholar] [CrossRef]
- Ian, E.; Kevin, T.; Susan, E.; Mandar, T. Modelling Deforestation and Land Cover Transitions of Tropical Peatlands in Sumatra, Indonesia Using Remote Sensed Land Cover Data Sets. Land 2015, 4, 670–687. [Google Scholar]
- Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban landscape fragmentation. Landsc. Urban Plan. 2014, 121, 117–128. [Google Scholar] [CrossRef]
- Pontius, R.G.; Peethambaram, S.; Castella, J.C. Comparison of three maps at multiple resolutions: A case study of land Change simulation in Cho Don District, Vietnam. Ann. Assoc. Am. Geogr. 2011, 101, 45–62. [Google Scholar] [CrossRef]
- Varga, O.G.; Pontius, R.G.; Singh, S.K.; Szabo, S. Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata—Markov simulation model. Ecol. Indic. 2019, 101, 933–942. [Google Scholar] [CrossRef]
- Mas, J.F.; Perez-Vega, A.; Clarke, K.C. Assessing simulated land use/cover maps using similarity and fragmentation indices. Ecol. Complex. 2012, 11, 38–45. [Google Scholar] [CrossRef]
- Mcdonagh, B. Property, land and territory. J. Hist. Geogr. 2015, 50, 112–113. [Google Scholar]
- Feng, Y.; Wang, X.; Du, W.; Liu, J.; Li, Y. Spatiotemporal characteristics and driving forces of urban sprawl in China during 2003–2017. J. Clean. Prod. 2019, 241, 118061. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage inarid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Su, Y.; Qian, K.; Lin, L.; Ke, W.; Tao, G.; Mg, A. Identifying the driving forces of non-grain production expansion in rural China and its implications for policies on cultivated land protection. Land Use Policy 2020, 92, 104435. [Google Scholar] [CrossRef]
- Wang, J.; He, T.; Lin, Y. Changes in ecological, agricultural, and urban land space in 1984-2012 in China: Land policies and regional social-economical drivers. Habitat. Int. 2018, 71, 1–13. [Google Scholar] [CrossRef]
- Zhao, X.; Li, S.; Tan, K.; Miao, P.; Pu, J.; Lu, F.; Wang, Q. Land use optimization of plateau lake basin based on town-agriculture-ecological spatial coordination. Trans. Chin. Soc. Agric. Eng. 2019, 35, 296–307. [Google Scholar]
- Kong, Y.; Zhen, F.; Zhang, S.; Liu, J.; Li, Z. Evaluation on high-quality utilization of territorial space based on multi-source data. China Land Sci. 2020, 34, 115–124. [Google Scholar]
- Wu, X.; Wang, S.; Fu, B.; Liu, Y.; Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the Yanhe watershed. Land Use Policy 2018, 72, 303–312. [Google Scholar] [CrossRef]
- Marull, J.; Pino, J.; Tello, E.; Cordobilla, M.J. Social metabolism, landscape change and land-use planning in the Barcelona Metropolitan Region. Land Use Policy 2010, 27, 497–510. [Google Scholar] [CrossRef]
- Barredo, J.I.; Kasanko, M.; Mccormick, N.; Lavalle, C. Modelling dynamic spatial processes: Simulation of urban future scenarios through cellular automata. Landsc. Urban Plan. 2003, 64, 145–160. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
Territorial-Space Structure | Primary Land-Use Classification | Secondary Land-Use Classification |
---|---|---|
Ecological space | Forestry | Woodland, shrubwood, open woodland, other woodlands |
Grassland | High-coverage grassland, Medium-coverage grassland, Low-coverage grassland | |
Water | Canal, lake, reservoir pit, permanent glacier and snow, intertidal zone, beach land | |
Unused land | Sand, Gobi, saline alkali land, swamp, bare land, bare rock, other land | |
Ocean | Ocean | |
Agricultural space | Farmland | Paddy field, dry land |
Construction land | Rural residential land | |
Urban space | Construction land | Urban construction land, industrial land, mining and transportation construction |
Territorial-Space Structure | Area (km2) | Dynamic Degree (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | 2000– 2005 | 2005– 2010 | 2010– 2015 | 2015– 2020 | 2000– 2020 | |
Ecological space | 34,178 | 33,312 | 33,190 | 33,185 | 30,163 | −0.51 | −0.07 | 0.00 | −1.82 | −0.59 |
Agricultural space | 118,169 | 117,599 | 116,640 | 116,009 | 115,951 | −0.10 | −0.16 | −0.11 | −0.01 | −0.09 |
Urban space | 5648 | 7084 | 8165 | 8801 | 11,881 | 5.08 | 3.05 | 1.56 | 7.00 | 5.52 |
Territorial space | 157,995 | 157,995 | 157,995 | 157,995 | 157,995 | 0.16 | 0.09 | 0.05 | 2.23 | 0.56 |
Years | Ecological–Agriculture Space | Ecological–Urban Space | Agriculture–Urban Space |
---|---|---|---|
2000–2005 | –0.975 *** | 0.0494 | –0.2697 ** |
2005–2010 | –0.1420 ** | –0.1154 ** | –0.9151 *** |
2010–2015 | –0.0108 | 0.1334 ** | –0.4643 *** |
2015–2020 | –0.8253 *** | –0.1054 * | –0.4412 *** |
Motivating Factors | Ecological Space to Agricultural Space | Agricultural Space to Ecological Space | Agricultural Space to Urban Space | |||
---|---|---|---|---|---|---|
q | p | q | p | q | p | |
Annual average precipitation change rate | 0.61 *** | 0.000 | 0.47 *** | 0.000 | 0.43 *** | 0.000 |
Annual average temperature change rate | 0.46 *** | 0.000 | 0.39 *** | 0.000 | 0.31 *** | 0.000 |
Road density change rate | 0.39 *** | 0.000 | 0.16 *** | 0.000 | 0.48 *** | 0.000 |
Distance from coastline | 0.18 ** | 0.000 | 0.12 *** | 0.000 | 0.23 *** | 0.000 |
Urbanization change rate | 0.36 *** | 0.000 | 0.34 *** | 0.000 | 0.56 *** | 0.000 |
Change rate of per capita sales of social consumer goods | 0.34 *** | 0.000 | 0.27 *** | 0.000 | 0.43 *** | 0.000 |
Change rate per capita GDP | 0.51 *** | 0.000 | 0.24 *** | 0.000 | 0.36 *** | 0.000 |
Average dynamic change rate of agricultural machinery | 0.72 *** | 0.000 | 0.23 *** | 0.000 | 0.27 *** | 0.000 |
Proportion change rate of primary industry | 0.54 *** | 0.000 | 0.36 *** | 0.000 | 0.33 *** | 0.000 |
Change rate of average fixed asset investment | 0.33 *** | 0.000 | 0.45 *** | 0.000 | 0.66 *** | 0.000 |
Change rate of public financial expenditure | 0.46 *** | 0.000 | 0.57 *** | 0.000 | 0.59 *** | 0.000 |
Scenario Types | Ecological Space | Agricultural Space | Urban Space |
---|---|---|---|
Status quo scale in 2020 | 30,163 | 115,951 | 11,881 |
Ecological protection scenario | 35,420 | 100,644 | 21,931 |
Agricultural production scenario | 31,510 | 107,145 | 19,340 |
Urban construction scenario | 30,461 | 99,228 | 28,306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Qu, Y.; Zhao, W.; Guan, M.; Ping, Z. Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation. Land 2022, 11, 505. https://doi.org/10.3390/land11040505
Wang S, Qu Y, Zhao W, Guan M, Ping Z. Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation. Land. 2022; 11(4):505. https://doi.org/10.3390/land11040505
Chicago/Turabian StyleWang, Shilei, Yanbo Qu, Weiying Zhao, Mei Guan, and Zongli Ping. 2022. "Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation" Land 11, no. 4: 505. https://doi.org/10.3390/land11040505
APA StyleWang, S., Qu, Y., Zhao, W., Guan, M., & Ping, Z. (2022). Evolution and Optimization of Territorial-Space Structure Based on Regional Function Orientation. Land, 11(4), 505. https://doi.org/10.3390/land11040505