Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Non-Stationarity Process Analysis
2.2.2. Generalized Additive Models (GAMs)
- GAM for cobble-stones
- GAM for concrete slabs
- GAM for the difference in evaporation between cobble-stones and concrete slabs
3. Results
3.1. Descriptive Analyses of the Evaporation and Its Drivers
3.2. Temporal Trends, Variability, and Interactions between Evaporation and Its Environmental Drivers
3.3. Generalized Additive Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, J.; Meng, W.; Liu, Y.; Ti, J. A framework of pavement management system based on IoT and big data. Adv. Eng. Inform. 2021, 47, 101226. [Google Scholar] [CrossRef]
- Crocker-Buque, T.; Mindra, G.; Duncan, R.; Mounier-Jack, S. Immunization, urbanization and slums — A systematic review of factors and interventions. BMC Public Health 2017, 17, 556. [Google Scholar] [CrossRef] [PubMed]
- Haase, D. Effects of urbanisation on the water balance—A long-term trajectory. Environ. Impact Assess. Rev. 2009, 29, 211–219. [Google Scholar] [CrossRef]
- Pistocchi, A.; Calzolari, C.; Malucelli, F.; Ungaro, F. Soil sealing and flood risks in the plains of Emilia-Romagna, Italy. J. Hydrol. Reg. Stud. 2015, 4, 398–409. [Google Scholar] [CrossRef]
- Qin, H.-P.; Li, Z.-X.; Fu, G. The effects of low impact development on urban flooding under different rainfall characteristics. J. Environ. Manag. 2013, 129, 577–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayazıt, Y.; Koç, C.; Bakış, R. Urbanization impacts on flash urban floods in Bodrum Province, Turkey. Hydrol. Sci. J. 2021, 66, 118–133. Available online: https://www.tandfonline.com/doi/abs/10.1080/02626667.2020.1851031 (accessed on 18 March 2022). [CrossRef]
- Rodríguez, M.C.; Dupont-Courtade, L.; Oueslati, W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K. Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh. Renew. Energy 2021, 172, 1063–1072. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate development in open urban spaces: The influence of form and materials. Energy Build. 2015, 108, 156–174. [Google Scholar] [CrossRef]
- Kwok, Y.T.; Schoetter, R.; de Munck, C.; Lau, K.K.-L.; Wong, M.S.; Ng, E. High-resolution mesoscale simulation of the microclimatic effects of urban development in the past, present, and future Hong Kong. Urban Clim. 2021, 37, 100850. [Google Scholar] [CrossRef]
- Mansell, M.; Rollet, F. The effect of surface texture on evaporation, infiltration and storage properties of paved surfaces. Water Sci. Technol. 2009, 60, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Nehls, T.; Menzel, M.; Wessolek, G. Depression storage capacities of different ideal pavements as quantified by a terrestrial laser scanning-based method. Water Sci. Technol. 2015, 71, 862–869. [Google Scholar] [CrossRef] [PubMed]
- Nehls, T.; Peters, A.; Kraus, F.; Rim, Y.N. Water dynamics at the urban soil-atmosphere interface—rainwater storage in paved surfaces and its dependence on rain event characteristics. J. Soils Sediments 2021, 21, 2025–2034. [Google Scholar] [CrossRef]
- Jin, L.; Yang, B.; Yuan, S. Investigation of Evaporation and Cracking of Soil Reinforced with Natural and Polypropylene Fibers. J. Nat. Fibers 2021, 1–15. [Google Scholar] [CrossRef]
- Hibbs, B.J.; Sharp, J.M., Jr. Hydrogeological Impacts of Urbanization. Environ. Eng. Geosci. 2012, 18, 3–24. [Google Scholar] [CrossRef]
- Starke, P.; Göbel, P.; Coldewey, W.G. Urban evaporation rates for water-permeable pavements. Water Sci. Technol. 2010, 62, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Starke, P.; Göbel, P.; Coldewey, W.G. Effects on evaporation rates from different water-permeable pavement designs. Water Sci. Technol. 2011, 63, 2619–2627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flöter, O. Wasserhaushalt Gepflasterter Straßen und Gehwege: Lysimeterversuche an Drei Aufbauten Unter Praxisnahen Bedingungen Unter Hamburger Klima. Ph.D. Thesis, Verein zur Förderung der Bodenkunde in Hamburg, Hamburg, Germany, 2006. [Google Scholar]
- Rim, Y.-N. Analyzing Runoff Dynamics of Paved Soil Surface Using Weighable Lysimeters. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2011. [Google Scholar]
- Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J.D. Experimental study of water fluxes in a residential area: Road infiltration, runoff and evaporation. Hydrol. Process. 2003, 17, 2423–2437. [Google Scholar] [CrossRef]
- Xiang, W.; Si, B.; Li, M.; Li, H.; Lu, Y.; Zhao, M.; Feng, H. Stable isotopes of deep soil water retain long-term evaporation loss on China’s Loess Plateau. Sci. Total Environ. 2021, 784, 147153. [Google Scholar] [CrossRef] [PubMed]
- Timm, A. Water and Heat Transport of Paved Surfaces. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Wessolek, G.; Duijnisveld, W.; Trinks, S. Hydro-pedotransfer functions (HPTFs) for predicting annual percolation rate on a regional scale. J. Hydrol. 2008, 356, 17–27. [Google Scholar] [CrossRef]
- Yamagata, H.; Nasu, M.; Yoshizawa, M.; Miyamoto, A.; Minamiyama, M. Heat island mitigation using water retentive pavement sprinkled with reclaimed wastewater. Water Sci. Technol. 2008, 57, 763–771. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Nagler, P.; Borujeni, S.C.; Munez, A.B.; Alaghmand, S.; Noori, B.; Galindo, A.; Didan, K. Effect of spatial resolution of satellite images on estimating the greenness and evapotranspiration of urban green spaces. Hydrol. Processes 2020, 34, 3183–3199. [Google Scholar] [CrossRef]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M. A review of ET measurement techniques for estimating the water requirements of urban landscape vegetation. Urban Water J. 2013, 10, 247–259. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Ding, N.; Qin, K.; Yang, X. Simulating the Impact of Urban Surface Evapotranspiration on the Urban Heat Island Effect Using the Modified RS-PM Model: A Case Study of Xuzhou, China. Remote Sens. 2020, 12, 578. [Google Scholar] [CrossRef] [Green Version]
- Vulova, S.; Meier, F.; Rocha, A.D.; Quanz, J.; Nouri, H.; Kleinschmit, B. Modeling urban evapotranspiration using remote sensing, flux footprints, and artificial intelligence. Sci. Total Environ. 2021, 786, 147293. [Google Scholar] [CrossRef] [PubMed]
- Zeiada, W.; Abu Dabous, S.; Hamad, K.; Al-Ruzouq, R.; Khalil, M.A. Machine Learning for Pavement Performance Modelling in Warm Climate Regions. Arab. J. Sci. Eng. 2020, 45, 4091–4109. [Google Scholar] [CrossRef]
- Nehls, T.; Rim, Y.N.; Wessolek, G. Technical note on measuring run-off dynamics from pavements using a new device: The weighable tipping bucket. Hydrol. Earth Syst. Sci. 2011, 15, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Nehls, T.; Wessolek, G. Technical note: Improving the AWAT filter with interpolation schemes for advanced processing of high resolution data. Hydrol. Earth Syst. Sci. 2016, 20, 2309–2315. [Google Scholar] [CrossRef] [Green Version]
- RC Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Hastie, T.; Tibshirani, R. Generalized Additive Models: Some Applications. J. Am. Stat. Assoc. 1987, 82, 371. [Google Scholar] [CrossRef]
- Polansky, L.; Robbins, M.M. Generalized additive mixed models for disentangling long-term trends, local anomalies, and seasonality in fruit tree phenology. Ecol. Evol. 2013, 3, 3141–3151. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.N. Generalized Additive Models: An Introduction with R; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Ramsay, T.O.; Burnett, R.T.; Krewski, D. The Effect of Concurvity in Generalized Additive Models Linking Mortality to Ambient Particulate Matter. Epidemiology 2003, 14, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper. FAO Rome 1998, 300, D05109. [Google Scholar]
- Yang, H.; Yang, K.; Miao, Y.; Wang, L.; Ye, C. Comparison of Potential Contribution of Typical Pavement Materials to Heat Island Effect. Sustainability 2020, 12, 4752. [Google Scholar] [CrossRef]
- Cao, X.J.; Tang, B.M.; Zou, X.L.; He, L.H. Analysis on the cooling effect of a heat-reflective coating for asphalt pavement. Road Mater. Pavement Des. 2015, 16, 716–726. [Google Scholar] [CrossRef]
- Brocklebank, J.C.; Dickey, D.A. SAS for Forecasting Time Series; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
Accumulation of Precipitation over 10 h | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | 9 h | 10 h | |
Evaporation from cobble stone | 0.01 | 0.01 | 0.10 | 0.17 | 0.21 | 0.26 | 0.32 | 0.37 | 0.41 | 0.43 |
Evaporation from concrete slabs | 0.01 | 0.06 | 0.15 | 0.20 | 0.24 | 0.26 | 0.26 | 0.26 | 0.27 | 0.28 |
Cobble-Stones | Concrete Slabs | |||||||
---|---|---|---|---|---|---|---|---|
Precipitation mm | Infiltration mm (%) | Runoff mm (%) | Evaporation mm (%) | Precipitatoin mm | Infiltration mm (%) | Runoff mm (%) | Evaporation mm (%) | |
Annual | 414.51 | 257.07 (62.2) | 10.74 (2.5) | 156.82 (34.5) | 422.72 | 261.88 (61.9) | 74.8 (17.6) | 93.92 (22.21) |
Summer | 192.29 | 79.89 (42.54) | 7.58 (3.9) | 112.07 (58.28) | 193.01 | 90.03 (46.64) | 52.21 (27.03) | 51.18 (26.5) |
Winter | 222.22 | 177.18 (79) | 3.16 (1.4) | 44.75 (20.13) | 229.71 | 171.45 (74.63) | 22.59 (9.83) | 42.74 (18.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljoumani, B.; Sanchez-Espigares, J.A.; Kluge, B.; Wessolek, G.; Kleinschmit, B. Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models. Land 2022, 11, 508. https://doi.org/10.3390/land11040508
Aljoumani B, Sanchez-Espigares JA, Kluge B, Wessolek G, Kleinschmit B. Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models. Land. 2022; 11(4):508. https://doi.org/10.3390/land11040508
Chicago/Turabian StyleAljoumani, Basem, Jose A. Sanchez-Espigares, Björn Kluge, Gerd Wessolek, and Birgit Kleinschmit. 2022. "Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models" Land 11, no. 4: 508. https://doi.org/10.3390/land11040508
APA StyleAljoumani, B., Sanchez-Espigares, J. A., Kluge, B., Wessolek, G., & Kleinschmit, B. (2022). Analyzing Temporal Trends of Urban Evaporation Using Generalized Additive Models. Land, 11(4), 508. https://doi.org/10.3390/land11040508