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Abstract: Sentinel-2A multi-spectral remote sensing image data underwent high-efficiency differential
processing to extract spectral information, which was then matched to soil organic matter (SOM)
laboratory test values from field samples. From this, multiple-linear stepwise regression (MLSR) and
partial least square (PLSR) models were established based on a differential algorithm for surface
SOM modeling. The original spectra were subjected to basic transformations with first- and second-
derivative processing. MLSR and PLSR models were established based on these methods and the
measured values, respectively. The results show that Sentinel-2A remote sensing imagery and SOM
content correlated in some bands. The correlation between the spectral value and SOM content was
significantly improved after mathematical transformation, especially square-root transformation.
After differential processing, the multi-band model had better predictive ability (based on fitting
accuracy) than single-band and unprocessed multi-band models. The MLSR and PLSR models
of SOM had good prediction functionality. The reciprocal logarithm first-order differential MLSR
regression model had the best prediction and inversion results (i.e., most consistent with the real-
world data). The MLSR model is more stable and reliable for monitoring SOM content, and provides
a feasible method and reference for SOM content-mapping of the study area.

Keywords: soil organic matter; Sentinel-2A; remote sensing; differential algorithm; multispectral
modeling; PLSR

1. Introduction

Soil organic matter (SOM), as an extensive component of soil, is an important indicator
to measure the fertility, status and degradation degree of cultivated soil [1]. It plays a role
in increasing moisture retention and, consequently, the drought tolerance of crops [2,3].
SOM also constitutes a huge organic carbon pool in terrestrial ecosystems [4,5]. It is of great
practical significance to estimate the soil organic pool by mastering the spatial distribution
information of large-scale soil organic matter content instantaneously [6]. Estimating soil
organic matter pools has a significant impact on ecology and sustainable land use in the
long term. Precision agriculture and long-term regional land development are aided by
timely monitoring of SOM data [7]. Traditional biochemical analysis methods are time-
consuming and labor-intensive, in addition to being ineffective and unsuitable for gathering
information such as soil organic matter content over a large expanse [8,9].

Soil-reflection spectroscopy has successfully enabled rapid and cost-effective SOM
estimation, assisting in fulfilling regional to global soil evaluation and monitoring require-
ments [10]. The majority of research has concentrated on soil spectral studies in controlled
indoor environments. There are concerns with test parameters, including light-source
power, light-source distance, and irradiation angle during the test. The majority of soil
samples used in the tests are stabilized soils. As a result, the spectral data is more unclear,
making it harder to share the results of known inverse models of soil characteristics. The
advantages of remote sensing technology include a vast coverage area for ground object
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information, as well as periodicity, currency, precision, and reliability [11]. The quantitative
description of soil organic matter by remote sensing technology has always been a research
hotspot of many scholars. According to research, the spectral characteristics of SOM are
primarily reflected in the absorption of incident light energy by organic matter, and soil
reflectance decreases as organic matter content increases [12,13].

There are still image factors, such as mixed pixels, water content, and spectral resolu-
tion in remote-sensing data, that must be taken into consideration for soil organic matter
analysis. Therefore, the theoretical underpinning of using existing remote-sensing data
for SOM mapping involves extracting adequate information from soil spectral data and
generating a soil spectral index [14]. Researchers have made some progress in related fields.
The application of traditional spectral index inversion theory was used to improve the
estimation model’s accuracy. Spectral indices could quantify the interrelationships between
the SOM’s characteristic bands utilizing spectral indices, enhancing weak band connections
and reducing model complexity. Preprocessing transformations used to remove image-
specific reflectance include soil moisture and particle size to transform soil spectral data,
remove signal noise, and highlight features for quantitative model estimation [15]. The
derivative algorithm is one of the common preprocessing transformations that reduces spec-
trum interference by eliminating baseline drift and improving spectral resolution, resulting
in increased separation of overlapping peaks and less spectral interference [16]. Although
a large number of studies have been carried out in related fields using differential spectral
technology [17], relatively few studies have explored the predictive ability in monitoring
soil nutrient content.

Previous studies have demonstrated that spectral preprocessing is an important com-
ponent of multivariate modeling analysis and would improve the predictive performance of
models [18–21]. A prediction model based on soil spectral information can effectively and
rapidly estimate soil physical and chemical parameters. MLSR (multiple linear stepwise
regression) has been developed on the basis of multiple linear regression. Considering the
advantage of avoiding collinearity, MLSR has been used to develop models that estimate
soil properties [22,23]. The regression equation was introduced using stepwise regression
based on the effect, significance or contribution rate of global independent variables on the
dependent variable. A linear regression model generates predictions about the dependent
variable by eliminating independent variables that are not important to the dependent
variable. PLS (partial least squares) is a widely used linear multivariate regression method
in the field of soil spectroscopy [18,24,25]. PLS was more accurate than principal compo-
nent regression or multiple linear regression in predictions of soil salinization using soil
conductance in the semi-arid region of Brazil [26]. In PLS, the correlation between principal
components is relatively insignificant, while the correlation with the dependent variable is
the largest. At the same time, PLS can overcome the strong interpretation of independent
variables by principal component analysis. It can effectively extract the comprehensive
variables with substantial explanatory power to the system and improve the estimation
ability of the model. Therefore, mathematical models are conducive to relate reflectance
spectra to SOM content to predict soil nutrients [27,28].

Sentinel-2A is a high-resolution multispectral imaging satellite that covers 13 spectral
bands. The bands vary in wavelength from 433 to 2280 nm, including ten bands in the
visible near-infrared spectrum and three in the short infrared band. Sentinel-2A has an
imaging bandwidth of 290 km, a spectral resolution of 15–180 nm and spatial resolutions
including 10, 20 and 60 m. Compared with Landsat TM and other remote-sensing images,
Sentinel-2A remote-sensing imaging has higher spectral and spatial resolutions and a
shorter revisit cycle (the cycle is five days); it is primarily utilized in global ecological
environment monitoring [29]. Morteza Sadeghi investigated soil moisture approaches using
Sentinel-2 and Landsat-8 satellites and discovered that Sentinel-2 was more appropriate for
the task [30]. Sentinel-2 is suitable for monitoring and mapping soil organic matter, but not
soil texture (clay, silt, and sand content) [31]. Qi Gao presented two methodologies for the
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retrieval of soil moisture from remotely sensed SAR images, with a spatial resolution of
100 m [32]. However, few studies have used Sentinel-2A imagery to monitor soil nutrients.

Given the enormous range of remote-sensing imagery available due to periodic up-
dates, a comprehensive grasp of image characteristics is critical when selecting which image
to employ. Different researchers come to different conclusions in terms of the reflectance
band and estimation model used to calculate organic matter content [33,34]. In order
to comprehensively understand the prediction ability and feasibility of differential spec-
troscopy in soil nutrient content, the trial used differential processing of the high-resolution
Sentinel-2A spectral data based on mathematical transformations to develop models to
predict soil organic matter content in the study area.

On the basis of the above, the research aims to construct a SOM evaluation model
based on spectral indices and compare the prediction accuracy of different methods in the
study region, using Sentinel-2A remote-sensing images as the data source and measured
test data of SOM content as analysis data. The objective of this research is: (1) to investigate
the use of Sentinel-2A remote-sensing images as a reference for estimating soil organic
matter; (2) to analyze the correlation of mathematical transformation (reciprocal, reciprocal
logarithm, square root, and square and cubic transformation) with the first- and second-
order differential of reflectance and SOM; (3) to construct single-band and multi-band MLSR
and PLSR inversion models and evaluate the spectral indices and model performance in
SOM estimation.

2. Materials and Methods
2.1. Experimental Site

The study area, Daqing, is located in the southwest of Heilongjiang Province in
northeast China (45◦46′–46◦55′ N and 124◦19′–125◦12′ E). The region is located in the
middle of the Songnen Plain, a Mesozoic subsidence area with a flat, slightly undulating,
small ground slope. The landform in the region gradually declines from north to south
and is generally plain, with a relative height difference of 10 to 35 m. It connects with the
Suihua area in the east, faces Jilin Province (Songhua River) in the south, and borders the
city of Qiqihar in the west and north. Winters are cold and snowy, whereas spring and
autumn monsoons are more humid. The frost-free season lasts only a few weeks each year.
With mean annual precipitation of 427.5 mm, a mean annual temperature of 4.2 ◦C, and
a mean evaporation amount of 1635 mm; rain and heat are in the same season, which is
beneficial for crop and forage grass growth. The cultivated land area of Daqing accounts for
roughly 20% of the whole area and consists of an established farming industry (Figure 1).
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2.2. Soil Sampling

In this study, soil sampling was conducted in Daqing in July 2021, and 19 soil samples
were randomly obtained. Five surface soil (soil depth of 20 cm) samples were collected
and mixed within a 1 m radius of a specific sampling location, and approximately 500 g of
soil per sampling site from the mixed models was used for chemical analysis. The actual
longitudes and latitudes of the samples were recorded using a global positioning system
(GPS) at the time of field sampling in order to obtain the reflectivity of the sampling point in
the remote-sensing image. In the laboratory, all samples were air-dried and ground to pass
through a 2-mm sieve to remove impurities such as gravel and animal and plant residues.

Chemical analysis was used to determine the SOM content. The concentrations of all
soil samples from each sample point were measured through the potassium dichromate
method [35]. The SOM content varied from 13.42 to 22.04 g kg−1. The coefficient of
variation (CV) was 0.15, indicating that SOM showed medium variability across all samples
(i.e., 0.1 CV 1.0). To ensure the rationality of model establishment and validation, the data
were randomly divided into 14 prediction sites and 5 validation sites. (Table 1).

Table 1. Descriptive statistics of SOM (g/kg).

Sample Set Max. Min. Range Mean SD CV

Calibration 22.02 13.42 8.60 17.59 2.70 15.4%
Validation 17.33 14.48 2.85 15.49 0.75 4.9%

Total 22.02 13.42 8.60 17.04 2.57 15.1%
Notes: SD, standard deviation; CV, coefficient of variation.

2.3. Remote-Sensing Image Processing

Based on region size, we selected six Sentinel-2A images in July 2021 for the experi-
ment. Ten visible bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12), which are near-infrared
and short-wave infrared bands with a resolution of 10 m, were selected from the images
(Table 2). The preprocessing of remote-sensing images mainly included radiometric cor-
rection, atmospheric correction, geometric correction, image mosaic, and image clipping.
Sentinel-2A remote-sensing images were processed with Sen2cor software for radiometric
and atmospheric correction, an ESA plug-in dedicated to the creation of L2A level data
that is used to reduce radiometric inaccuracies caused by atmospheric influence and to
invert the true surface reflectance of objects. Compared with the typical atmospheric correc-
tion software (SMAC and 6S), Sen2cor operation is more straightforward, without human
input parameters. The geometric correction of Sentinel-2A remote-sensing imaging was
completed with ENVI software, and the geometric correction error was less than 1 pixel.
The boundary of the research area was classified in ArcGIS software, and remote-sensing
images were clipped and arranged as a mosaic. Remote-sensing images of the original
research region were obtained by clipping remote-sensing image data of six scenes with
vector boundary data from the research area.

To properly manipulate the data from the sample points, a vector map of the adminis-
trative divisions of Daqing was obtained using the BIGEMAP map loader. Furthermore,
ArcMap and ArcGIS software were used to complete the longitude and latitude distribution
map of sampling points by clicking add data and the directory window. Then ArcMap
and ENVI were used in combination to extract Sentinel-2A images for each sampling point
corresponding to a DN (digital number) value of each band.
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Table 2. The relevant parameters of Sentinel-2A.

Sentinel-2A

Band Band Name Central Wavelength/nm Spectral Width/nm Spatial Resolution/m

1 Coastal Aerosol 433 20 60
2 Blue 490 65 10
3 Green 560 35 10
4 Red 665 30 10
5 Vegetation Red edge 705 15 20
6 Vegetation Red edge 740 15 20
7 Vegetation Red edge 783 30 20
8 NIR 842 115 10

8A Narrow NIR 865 20 20
9 Water Vapour 945 20 60

10 SWIR-Cirrus 1375 30 60
11 SWIR 1610 90 20
12 SWIR 2190 180 20

2.4. Statistical Modeling
2.4.1. Differential Algorithm

Differential spectral technology, which is a common spectrum processing approach,
can effectively dig spectral effective information and provide better resolution than the
original spectral reflectance. It also improves the correlation between spectral data and soil
parameters, allowing for better monitoring of progress in soil nutrient content research and
improved prediction accuracy. The reference formula is as follows [36].

The first derivative can be described as:

FDR(λ) =
[

R(λi+1)
− R(λi)

]
/[λi+1 − λi] (1)

The second derivative (SDR) can be described as:

SDR(λ) =
[

R′(λi+1)
− R′(λi)

]
/[λi+1 − λi] (2)

where λi is the wavelength of the i-th band, R(λi+1)
, R(λi)

are the reflectance at bands
λi+1, λi, and R′(λi+1)

, R′(λi)
are the first derivative at bands λi+1, λi, respectively.

2.4.2. Multiple Linear Stepwise Regression

MLSR is mainly a comparative analysis of all independent variables according to
influence or contribution size to all dependent variables through the F test [23]. Variables
significant by the sum of squares are selected for the regression equation. Only one variable
is introduced for each step. When a variable is introduced, the partial regression sum of
squares of each variable is then tested. If the introduced variable is found to be insignificant,
it is removed from the partial regression equation. If more than two variables are introduced
in successive steps, it is determined whether or not any existing variables can be removed.
Further, when no independent variables can be eliminated, a new independent variable
with significant influence is selected for evaluation. This process is repeated until none of
the introduced variables can be removed. The original independent variable is also tested,
and the gradual regression equation ends.

The formula of the gradual regression equation is:

SOM = a0 + ∑n
i=1 aiRλi (3)

where a0, a1 = 1, n is the regression coefficient, i is the number of bands used for modeling, λi
is the wavelength of the ith modeling band, and Rλi is the reflectance value at wavelength λi.
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2.4.3. Partial Least Squares Regression

PLSR adopts the idea of extracting principal components from principal component
analysis, which can simplify the data structure [25]. There are p dependent variables and
m independent variables considered. The basic practice is to extract the first component
xi in the independent variable set and the first component ui in the dependent variable
set, requiring maximum correlation between xi and ui. The regression of the dependent
variable with xi is then established, and the algorithm is terminated until the equation
reaches satisfactory accuracy. Otherwise, the extraction of the second pair component
continues to achieve satisfactory accuracy. If the n components are finally extracted from
the independent variable set from the independent variable set, the partial least squares
regression will establish the regression equation between the dependent variable and
x1, x2 , . . . , xn. This represents the regression equation between the dependent variable and
the original independent variable: the partial least squares regression equation. In PLS
calibration, significant wavelengths can be assessed on the basis of variable important in
projection (VIP), If the VIP score of a specific wavelength exceeds 1, then the wavelength is
considered important [37,38].

2.5. Construction of Spectral Indexes

SOM exhibits unique spectral response properties in visible and near-infrared bands,
and the soil spectral reflectivity and SOM content are generally significantly negatively
correlated [39,40]. The increase and decrease of SOM content can be reflected from the
soil reflection spectrum to a certain extent. The determination of soil spectral reflectance
becomes a novel approach to assessing SOM content due to the particular response relation-
ship. Furthermore, the soil spectrum and SOM content show a nonlinear variation caused
by the interaction of soil structure and the spectral measurement environment, making
the absorption belt and reflection belt of the spectral curve not visible. On the other hand,
low-order (first-order, second-order) differential transformation of the spectrum is less
sensitive to noise, eliminating some of the background and noise influence and improving
the correlation between spectral data and organic matter content.

Therefore, the spectral data are processed by conventional mathematical transforma-
tion and differential processing to increase sensitivity to the SOM content of the spectral
index. The original spectrum was subjected to six different types of traditional mathemat-
ical transformations and respective first and second derivatives. Spectral characteristic
indicators were screened using the Pearson correlation analysis method. SOM content
measured in the laboratory is the dependent variable of the function, with the characteristic
spectral index as the independent variable. The model was constructed between SOM con-
tent and the transformed spectral data of the reflection spectrum. The correlation between
SOM content and the reflectance of remotely sensed images was analyzed in SPSS. The
correlation coefficient was calculated by Formula (4):

r = ∑n
i=1(xi − x)(yi − y)/

√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2 (4)

where r is the correlation coefficient of SOM and reflectence, and xi and x are the measured
value and mean value of reflectivity, respectively; yi and y are the measured value and
mean value of SOM content, respectively. When r > 0, reflectivity is positively correlated
with SOM, and when r < 0, reflectivity is negatively correlated with SOM. The closer r is to
1, the more stable the model is and the better the fit is [41].

The prediction of SOM model stability is measured by the determination coefficient R2;
the larger the R2, the more stable the model; the accuracy is tested by RMSE. The smaller
the RMSE, the higher the model accuracy [42,43].

The calculation formula is shown in (5) and (6):

R2 = ∑n
i=1 (yi − ŷi)

2/ ∑n
i=1 (yi − y)2 (5)
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RMSE = 1/n ∑n
i=1 (yi − ŷi)

2 (6)

where ŷi indicates the values estimated by the model; yi indicates the measured values; y
indicates the average of the measured values; and n is the number of observations of the
variable to be modelled.

2.6. Flow Chart

Figure 2 shows the flowchart of the research to estimate the model between SOM
content and spectral index with differential transformations.
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3. Results and Analysis
3.1. Differential Analysis of the Multispectral Data

The first-order differential and second-order differential are processed by IDL soft-
ware, with a remote-sensing third band image as an example (Figure 3). The image can
better express the real situation of the object, and the first-order differential image better
distinguishes the water body from the soil. Raw remote-sensing images contain much
information, including noise, which can be excluded by differential image processing
of remote-sensing images. However, the meaning of the information in the differential
processing image cannot be seen directly, so it needs to be further analyzed based on
actual data.
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3.2. Correlation between SOM Content and Spectral Metrics

The remote-sensing estimation and inversion of site parameters are based on the
relationship between remote-sensing data and site parameters. The correlation between
multispectral reflectance data and measured SOM data was analyzed in SPSS to clarify the
relationship and to find the spectral information sensitive to SOM content. All original
remote-sensing bands exhibited a high degree of correlation (Table 3). According to the
first-derivative image data, B3′ and B4′ have a higher correlation to SOM (Table 4), whereas
the overall correlation was relatively low in the second-derivative image data (Table 5). In
general, many bands have a high correlation with the original remote-sensing data, and the
correlation value of the band is relatively large.

Table 3. The correlation between original image data and SOM.

B3 B4 B5 B6 B7 B8 B8A B11 SOM

B3 1 0.993 ** 0.934 ** 0.708 ** 0.670 ** 0.636 * 0.485 * 0.459 −0.738 **
B4 1 0.960 ** 0.822 ** 0.705 ** 0.674 ** 0.531 0.514 −0.779 **
B5 1 0.947 ** 0.866 ** 0.843 ** 0.730 ** 0.706 ** −0.852 **
B6 1 0.972 ** 0.964 ** 0.895 ** 0.868 ** −0.854 **
B7 1 0.995 ** 0.953 ** 0.905 ** −0.763 **
B8 1 0.960 ** 0.919 ** −0.762 **

B8A 1 0.982 ** −0.635 *
11 1 −0.640 **

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Through the correlation table of each dataset and SOM content, the correlation of
each band of original image data is more significant than 0.6, with B5 and B6 reaching
0.8. However, the first-derivative image data was less-associated with SOM content, with
only 0.7 in the B3 band. No sensitive band exists with the SOM after the second-derivative
image data. The correlation was significantly reduced compared to the original data
in the differential image. According to the aforementioned relationship, the differential
processing single-band model results in significant spectral information loss, and the
relationship between multispectral data and SOM analysis is not ideal.
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Table 4. The correlation between first-derivative image data and SOM.

B3′ B4′ B5′ B6′ B7′ B8′ B8A′ B11′ SOM

B3′ 1 0.428 −0.364 −0.016 0.144 0.184 −0.108 0.193 −0.770 **
B4′ 1 0.286 0.210 −0.313 0.364 0.420 0.252 −0.595 **
B5′ 1 0.847 ** 0.142 0.633 * 0.687 ** 0.066 −0.058
B6′ 1 0.400 0.753 ** 0.589 * 0.113 −0.354
B7′ 1 0.721 0.880 0.685 −0.177
B8′ 1 0.570 * −0.038 −0.209

B8A′ 1 0.643 * −0.095
B11′ 1 −0.263

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Table 5. The correlation between second-derivative image data and SOM.

B3” B4” B5” B6” B7” B8” B8A” B11” SOM

B3” 1 −0.847 ** −0.336 0.695 ** −0.276 0.156 −0.627 ** 0.758 ** −0.485
B4” 1 0.077 −0.617 * 0.132 0.053 0.432 −0.626 * 0.504
B5” 1 −0.742 ** 0.087 −0.135 0.355 −0.517 −0.292
B6” 1 −0.335 0.153 −0.530 0.749 ** −0.088
B7” 1 −0.911 ** 0.490 −0.237 0.394
B8” 1 −0.494 0.139 −0.202

B8A” 1 −0.873 ** 0.089
B11” 1 −0.109

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

3.3. Single-Band Inversion Model

The spectral reflectance of the different variation processing was correlated with SOM
content to determine the sensitive bands according to the magnitude of the correlation
coefficient using SPSS software (Figure 4). SOM exhibited significant spectral response
properties in the visible and near-infrared wavelengths and was negatively correlated with
spectral reflectance in Sentinel-2A remote-sensing images. The correlation coefficient of the
original spectral reflectance peaked at around 740 nm (r = −0.854, p < 0.001). The fifth and
sixth bands had remarkable correlation coefficients for the transformed converted spectral
index. The correlation between the spectral index of the first-order differential (R′) and
SOM content was significant in the third waveband, with the weakest correlation coefficient
(r = −0.770, p < 0.05). Differential processing significantly reduces the correlation com-
pared to the other forms of the spectral index, which were linked considerably with SOM
(|r| > 0.800, p < 0.001). Square root processing (R1/2) showed the most-significant correla-
tion occurring at 705 nm (r = −0.858, p < 0.001).
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The bands with a correlation r > 0.5 with SOM were employed as independent vari-
ables to develop separate SOM prediction models, while the measured SOM contents
were used as the dependent variable (Table 6). The correlation coefficient of calibration
determination (R2

c ) and root mean square error of calibration (RMSEC) were used as an
assessment indicator. The prediction coefficient of determination (R2

p) and the root mean
square error of the validation (RMSEP) set were used to assess accuracy of the final model.
The single-band model based on the original spectrum’s sensitive band reflectance and
SOM produced satisfactory accuracy. In addition, the model with square root processing
(R1/2) had the best modeling efficiency (R2

c = 0.74, RMSEC = 1.50), but in validation sets
performed poorly (R2

p = 0.69, RMSEP = 1.31). The single-band model based on the R′ and
1/R processed spectra with SOM had inferior modeling (R2

c = 0.60 and 0.61, RMSEP = 1.86
and 1.75, respectively). The other five models (1/R, log R−1, R1/2, R2, R3) all showed
stronger modeling (R2

c > 0.68, RMSEP < 1.66). Compared to the original reflectivity, the
R′ transformation showed the best prediction, with an increase in R2 of 0.03 (R2

p = 0.82),
but showed extreme uncertainty (RMSECP = 3.72). The modeling of the organic matter
single-band model was enhanced, but not dramatically, by spectral processing. Preprocess-
ing of the original spectrum was used in the best suitable model utilizing the single-band
(R2

p = 0.79, RMSEP = 2.18).

Table 6. Single-band inversion model of soil organic matter content based on spectral index.

Spectral
Index

Sensitive
Band

Correlation
Coefficient Inversion Model

Calibration Validation

R2
c RMSEC R2

p RMSEP

R 6 −0.854 ** Y = −34.206R + 25.651 0.71 ** 1.52 0.79 ** 2.18
1/R 5 −0.800 ** Y = 0.832/R + 12.289 0.61 ** 1.75 0.74 * 1.66

logR−1 5 −0.853 ** Y = 14.507 logR−1 + 6.375 0.70 * 1.53 0.71 1.35
R1/2 5 −0.858 ** Y = 30.729 − 31.491R1/2 0.74 ** 1.50 0.69 * 1.31
R2 6 −0.847 ** Y = −67.546R + 79.856R2 + 26.838 0.72 ** 1.55 0.77 * 2.40

R3 6 −0.822 ** Y = −12.333R − 261.662R2 +
642.675R3 + 24.151

0.68 * 1.66 0.75 * 2.66

R′ 3 −0.770 ** Y = −149.981R + 18.636 0.60 ** 1.86 0.82 3.72

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

3.4. Performance of Multiple Linear Stepwise Regression

MLSR models were utilized to evaluate the correlation between SOM content and
spectral index, referring to the results of the single-band correlation analysis. Table 7
showed the sensitive band combinations used in the regression analysis. A variable variance
significance level of 0.05 was set as the criterion for variable selection and exclusion. The
maximum variance invasion factor (VIF) of each spectral band was less than 10, indicating
no multicollinearity between bands. By comparing model accuracy, six better models
were selected.

The band reflectance in the basic mathematical transformation was excluded as an
opt-in variable to conduct the MLSR model, except for the raw spectra. However, the
modeling is well-based on the differential treatment of mathematical transformations
(Figure 5). The multi-band model demonstrated better predictive results than the single-
band model in terms of accuracy and stability. Predictions of raw spectral data under MLSR
models outperformed all single-band models (R2

c = 0.78, RMSEC = 1.32) in the calibration
set. The raw and first-order differential processing (R′) of the spectral indices resulted
in a significantly improved model, but the effect of validation was poor and unstable
(R2

p = 0.16 and 0.55, respectively). The MLSR models based on (1/R)′ and (1/R)” showed
better performance than the original spectrum. The inverse first-order differential (1/R)′

verification set, on the other hand, was poor at predicting and hence was not taken into
account (R2

p = 0.37). The MLSR model constructed by (logR−1)′ and (logR−1)” were slightly
less effective than the original spectrum modeling in terms of modeling performance



Land 2022, 11, 608 11 of 18

(R2
c = 0.71 and 0.69, RMSEC = 1.51 and 1.71, respectively), but the accuracy and stability of

validation sets were significantly improved (R2
p = 0.93 and 0.76). Overall, the second-order

differential (1/R)” model performed the best (R2
c = 0.91, RMSEPC = 1.54). However, the

validation model performed a little worse (R2
P = 0.84, RMSEP = 1.23), but was considered

to be unsuccessful at prediction. The validation of the model based on (logR−1)′ performed
incredibly well, with the R2 improving by 0.09 and the RMSE reducing by 0.43 compared
to the (1/R)” transformation, even though it did not get the best match and model stability
(R2

c = 0.71, RMSEC = 1.51, R2
p = 0.93, RMSEP = 1.11). The pre-processing method of the

reciprocal logarithm first-order differential spectrum was used in the best suitable model
utilizing the MLSR.

Table 7. Multi-band inversion model of soil organic matter content based on spectral index.

Sensitive
Band

Spectral
Index Inversion Model

Calibration Validation

R2
c RMSEC R2

p RMSEP

R6, R8A R Y = −34.206a − 57.592b + 25.651 0.78 * 1.32 0.16 2.55

R3, R6, R8, R4 R′ Y = −146.835a − 75.734b + 184.192c
− 110.819d + 24 0.89 ** 0.92 0.55 * 2.04

R6, R11 (1/R)′ Y = −3.179a + 0.159b + 13.273 0.80 ** 1.27 0.37 1.29
R8A, R3, R4 (1/R)” Y = 1.53a − 1.138b − 1.157c + 14.502 0.91 ** 0.87 0.84 ** 1.23

R8A, R7 (logR−1)′ Y = 46.497a − 69.465b + 11.418 0.71 * 1.51 0.93 ** 1.11
R8A, R4 (logR−1)” Y = 47.412a − 43.495b + 13.005 0.69 * 1.71 0.76 * 1.86

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

3.5. Performance of Partial Least Square Regression

PLSR was established for the eighteen spectral transformations using the Unscrambler
software. The results showed that the number of factors obtained by PLSR analysis varies
considerably. We performed a full cross-validation before establishing a predictive model.
Cross-validation is a method of predicting how well a model will fit the hypothesis valida-
tion set. The number of PLSR factors based on the original reflectance was three, increasing
to nine after reciprocal transformation. The correlation coefficient of cross-validation de-
termination (R2

cv) and root mean square error of cross-validation (RMSECV) were used
as assessment metrics to optimize various spectrum post approaches. R2

p and RMSEP
were used to assess the final effect [22,44]. PLSR regression models based on mathematical
transformation with differentiation gave disappointing outcomes.

Among the basic processing, the R2 model showed the most prediction accuracy in
cross-validation (R2

cv = 69, RMSECV = 1.62) and in independent validation (RMSEP = 11.93),
in which the prediction stability was not reliable (Table 8). Similarly, the PLSR model based
on 1/R method also performed well in cross-validation (R2

cv = 0.68, RMSECV = 1.65) but
had poor accuracy in independent validation (R2

p = 0.51). Prediction was worst using the
R3 method (R2

cv = 0.50, RMSECV = 2.06). A PLSR model based on logR−1 yielded the best
prediction results (R2

cv = 0.66, RMSECV = 1.70, R2
p = 0.79, RMSEP = 1.55).

For the first-order derivative processing method, the accuracy and stability were re-
duced to varying degrees compared to the basic processing (Table 9). The prediction when
using the (1/R)′ method was best in cross-validation (R2

cv = 0.65, RMSECV = 1.8) and in in-
dependent validation (though with poor prediction stability) (R2

p = 0.67, RMSEP = 0.84). In
terms of the prediction results of the six calibration models, the (logR−1)′ model validations
performed the best (R2

cv = 0.62, RMSECV = 1.80, R2
p = 0.90, RMSEP = 0.51). Furthermore,

PLSR regression models based on second-order derivative processing against SOM content
had no practical significance (R2

cv < 0.60). The model based on (logR−1)” performed best
among the processed sets (R2

cv = 0.57, RMSECV = 1.92, R2
p = 0.83, RMSEP = 1.28), suggesting

that the PLSR model was not suitable for estimating the organic matter content of the region
(Table 10).
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Figure 5. Model validation. (a) Original multi-band measured value; (b) First derivative of the multi-
band measured value; (c) First derivative of reciprocal multi-band measured value; (d) Second derivative
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Table 8. Results of partial least squares regression analysis of the original spectral data and soil
organic matter content.

Spectral
Index

PLR Factors
Cross-Validation Validation

R2
cv RMSECV R2

p RMSEP

R 0.63 * 1.78 0.78 * 1.81
1/R 0.68 ** 1.65 0.51 1.65

logR−1 0.66 1.70 0.79 * 1.55
R1/2 0.63 1.76 0.78 ** 1.63
R2 0.69 * 1.62 0.87 * 11.93
R3 0.50 2.06 0.61 2.98

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Table 9. Results of partial least squares regression analysis of first-derivate transformation and soil
organic matter content.

Spectral
Index

PLR Factors
Cross-Validation Validation

R2
cv RMSECV R2

p RMSEP

R′ 0.56 1.93 0.91 * 2.57
(1/R)′ 0.65 ** 1.72 0.67 * 0.84

(logR−1)′ 0.62 * 1.79 0.90 ** 0.51
(R1/2)′ 0.33 2.38 0.89 * 2.58
(R2)′ 0.64 * 1.75 0.22 3.14
(R3)′ 0.54 * 1.98 0.05 3.66

Notes: * and ** represent the confidence level at 0.05 and 0.001, respectively.

Table 10. Results of partial least squares regression analysis of second-derivate transformation and
soil organic matter content.

Spectral
Index

PLR Factors
Calibration Validation

R2
cv RMSE R2

p RMSEP

R” —— 2.26
(1/R)” 0.25 2.52 1.07 0.90

(logR−1)” 0.57 * 1.92 1.41 0.83 1.08
(R1/2)” 0.26 2.50 1.08 0.01 0.35
(R2)” ——
(R3)” ——

Notes: * represents the confidence level at 0.05.

The PLSR model under the reciprocal logarithm first-order differential spectrum
transformation showed the best correlation with SOM among the three methods. The
information above indicates that 1/R transformation performed satisfactorily in data
representing spectral features and quantitative inversion models. The results of multi
spectral model conducted by PLS show that the prediction capability of PLSR modeling is
high using different spectral pretreatment methods.

3.6. Spatial Pattern Analysis of Soil Organic Matter Content

The accuracy of the above single-band, MLSR and PLSR inversion models was in-
vestigated. The models created by MLSR and PLSR both had satisfactory prediction
performance. The accuracy using PLSR is higher than that of MLSR, with excellent pre-
diction. According to the validation sample detection model, the accuracy and stability
of the MLSR model are relatively stable. This shows that MLSR regression is more stable
and meets the application needs in predicting the SOM content in Daqing. Reciprocal
logarithm first-order differential by MLSR regression model is the optimal model. The
SOM content-inversion model based on the Sentinel-2A image spectral index was selected
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to invert and map the SOM content in the study area to obtain the SOM spatial distribution
in Daqing (Figure 6).
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4. Discussion

The inversion results are in line with the actual spatial distribution of SOM. The SOM
content in the study area was generally low and uneven, with large spatial differences. The
content was gradually distributed from northeast to southwest, and the SOM content in
the northeast was generally higher than that in the southwest. According to the soil field
survey, surface runoff accumulates in low-lying areas to form intermittent and permanent
puddles due to concentrated precipitation. Poor drainage accelerates the process of salt
accumulation, and the complex micro-topography causes uneven evaporation of soil water.
The salt above the micro-topography is aggravated by strong evaporation and rainfall
and irrigation water containing a certain amount of salt flow from high places to places in
areas with poor soil permeability. Soil salinization occurs in low-lying areas after fraction
evaporation. In addition, the Daqing area is located in a seasonally frozen soil area, and the
freezing and thawing of the soil promotes the accumulation of salt. These aspects combined
can lead to serious soil salinization. The high salt content of the soil is not conducive to
the survival of vegetation, and the small amount of vegetation means that the content of
humus is low and is not conducive to the survival of general decomposers [45]. Higher
salinity in soil masks the spectral signature of SOM, resulting in a low inversion value of
SOM content in the southwest of the study area [46,47].

The above results showed that Sentinel-2A remote-sensing images had a good cor-
relation with SOM content in visible and near-infrared bands. The effect of multi-band
modeling is better than that of single-band modeling. It is found that there is a sensitive
band in the correlation between the first-order differential data and SOM content. The
original remote-sensing data had the highest correlation in Band 6 (r = −0.730). In single-
band modeling, the correlation between square root transformation and SOM is best, but
the modeling is not as good as the original spectrum. The results of differential process-
ing in the PLSR model are not satisfactory, probably because the differentially processed
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image eliminates some of the information of the original image. The correlation between
reflectance and SOM is improved after basic transformation and differential processing in
MLSR models. The single-band model only uses a very small amount of information, while
for remote sensing, the data-rich multi-spectral band can only express extremely limited
SOM information in a single band, which can easily cause the loss of some key information.
The MLSR and PLSR models achieve convincing results, and the MLSR model has better
predictive ability (based on fitting accuracy). The PLSR model, based on second-order
differential processing, is ideal and relevant in practice. Reciprocal transformation will
improve model prediction in MLSR and PLSR regression. Based on the reciprocal logarithm
first-order derivative MLSR regression model, the inversion of SOM in the study area was
carried out. The inversion result is in accordance with the actual situation, which is suitable
for spectral inversion of soil organic matter content in a certain geographical area.

Compared to direct contact, remote sensing has advantages in the estimation of SOM
content, such as predicting soil fertility without direct contact with the object of study,
forecasting crop yields from visible and near-infrared bands, accessing the information
on the surface of the earth more efficiently and affordably, and updating soil databases in
many fields. The previous study found that for most places, the forecast accuracy based
on high-resolution satellite was satisfactory for SOM content prediction, and mapped the
soil organic matter more precisely than the airborne sensors [32]. The univariate model
only considers a single variable to participate in the modeling [48], and the current research
is mainly aimed at soil and crops. In this study, the single-band model built using the
original spectra worked best—the mathematical transformed form reduced the model
prediction—indicating the applicability of Sentinel-2A for predictions. The accuracy of
SOM estimation using the MLSR model established by simple mathematical transforma-
tion and derivative transformation is higher than that of univariate model. Differential
transformation is more beneficial to extract sensitive features in the soil spectrum [49].
The multivariable model integrates the features of multiple sensitive bands, alleviates the
“multicollinearity” to a large extent, and improves the applicability and stability of the
model. In previous studies, there have been inconsistencies between PLSR models and
MLSR predictions [22,23,50,51]. The MLSR model possesses better prediction results than
the PLSR model in this study, and high soil salinity in the study area may be a significant
factor. In future work, we intend to develop the method further, for example, by expand-
ing the number of soil samples, diversifying the soil types, and taking into account soil
moisture and microorganisms. The multispectral examination of SOM by Sentinel-2A has
received little attention and has not been thoroughly investigated. Future spectral modeling
of the SOM could be integrated with different spectrum indices (e.g., salinity indices) to
screen high-precision spectral parameters. Furthermore, indoor light sources can be used to
generate reflectance spectra and provide a complete set of measurement data to eliminate
the weather impact of spectral acquisition.

5. Conclusions

To maximize the correlation between spectral metrics and soil organic matter content,
MLSR and PLSR modeling were applied to establish the SOM content model based on
Sentinel-2A remote-sensing images. The effective and predictive capacities of different
models, which combined basic transformation with differential processing, were validated.
Sentinel-2A remote-sensing images had a good correlation with SOM content in visible and
near-infrared bands. MLSR and PLSR models of SOM in the study area were established
based on different processing and measured values, respectively. The correlation between
SOM content and spectral data was improved by multi-spectral modeling after differential
processing. However, the correlation between SOM content and reflectance was reduced
after first-order differential, indicating that spectral information was partially lost due
to differential treatment, and the relationship between spectral data and SOM was not
ideal. Multi-band modeling made superior predictions compared to single-band. SOM
content could be well-estimated using MLSR models. The MLSR model is more accurate
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and stable than PLSR, verified by the calibration and validation samples. The accuracy
of the modeling results is high and can meet research requirements. These findings give
a theoretical foundation and technological support for utilizing spectroscopy to estimate
soil organic matter concentration, and indicates this method can substitute traditional
experimental methods for measuring organic matter, thus enabling a larger scale of long-
term monitoring of changes in soil organic matter content. In this study, Sentinel-2A
images made it possible to retrieve surface soil organic matter with a high spatial and
temporal resolution. For soil ecosystem observations, these prediction models will need to
be assessed, optimized, and used more broadly.
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