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Abstract: Residential CO2 emissions (RCE) are an important component of anthropogenic CO2

emissions. In order to formulate reasonable reduction policies and measures, it is necessary to
understand the dynamics of RCE production and the factors that influence it. This paper explores the
spatiotemporal evolution characteristics of RCE from the perspectives of eastern, central, and western
China, as well as urban–rural areas, and analyzes the factors driving RCE based on the STIRPAT
model. The results indicated that between 2010 and 2019 the eastern region contributed the greatest
proportion of overall RCE and the central region saw the largest increase. Per capita RCE in urban
areas was greater than in rural areas, except in eastern China. The factors affecting RCE showed
regional and urban–rural differences. Population size and income per capita were two dominant
factors affecting RCE for all regions. The per capita income plays a more important role in developed
regions such as eastern regions and eastern urban areas. Urbanization contributed to RCE reduction
in the eastern region but promoted RCE in the central and western regions. Energy structure shows a
negative effect on RCE, particularly in central urban and western rural areas. Appropriate policies
and measures need to be put forward to local conditions. Reduction policies and measures of each
region and urban–rural area need to be based on the dominant factors driving CO2 emissions.

Keywords: residential CO2 emissions; spatiotemporal characteristics; driving factors; regional
differences; urban–rural disparity

1. Introduction

To tackle climate change, the Chinese government is striving to control carbon emis-
sions and to simultaneously increase carbon sinks in order to reach the peak of carbon
emissions by 2030 and achieve carbon neutrality by 2060. Studies have shown that the
amount of carbon sequestered by terrestrial ecosystems in China has been much smaller
than the amount of anthropogenic CO2 emissions during the same periods [1]. Therefore,
along with increasing the carbon sequestration capacity of terrestrial ecosystems, reducing
anthropogenic CO2 emissions to mitigate climate change is the key strategy for achieving
carbon neutrality goals [2].

“Realize modernization by 2035” was proposed in the report of the 19th National
Congress of the Communist Party of China. Bringing people’s well-being to a new level
is the main goal of the government’s “14th Five-year Plan”. Both modernization and
improvement of people’s living standards are based on economic development. How to
strike a balance between achieving economic development and mitigating climate change?
It’s a key problem that the Chinese government needs to solve.
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The residential sector consumes 27% of global energy and contributes 17% of CO2
emissions [3]. Residential CO2 emissions (RCE) therefore make an important contribution
to overall CO2 emissions [4,5]. China is the most populous country in the world, reaching
a total of 1.47 billion people by the end of 2020. Large-scale population consumes a lot of
energy. Residential energy consumption in China accounts for about 25% of total energy
consumption [6]. With the rapid growth of China’s economy, residential living standards
have been constantly improving. The number of household appliances rose rapidly, which
led to an increase in residential energy consumption and corresponding CO2 emissions.
Moreover, Chinese per capita CO2 emissions are much lower than those of developed
countries in Europe and North America [7]. China’s RCEs still have great potential to
increase further.

RCEs are influenced by economic development level, population size, urbanization
level, lifestyle, social values, and other factors; demographic and economic indicators
are considered as the most effective factors [8–13]. Industrialization and urbanization
development has been imbalanced in China in the past decades and population and
economic activities are concentrated in the economically developed areas. Major urban
agglomeration and economic belts enjoy high levels of economic development and shelter
large populations. However, central and western China and rural areas carry relatively
few people within the wider area. Population spatial distribution characteristics lead to
regional differences in RCE [14]. Uneven economic growth and the dramatic changes in
the living standards of urban and rural residents have also led to regional and urban–rural
differences in RCE [15,16]. RCE research needs to focus on the impact of the development
level gap on emissions.

Urban–rural differences exist within the eastern, central, and western regions and
characteristics vary from region to region. Recent studies focused solely on regional differ-
ences or urban–rural differences [5,16–21]. The policies formulated are not comprehensive
and are poorly targeted. Carrying out urban–rural RCE research from region to region is
conducive to further and accurately analyzing the influencing factors and is conducive to
more targeted policy formulation. To fill this gap, this paper analyzes the determinants
of urban–rural RCE in eastern, central, and western China, respectively, by the STIRPAT
(stochastic impacts by regression on population, affluence, and technology) model. It is
of great significance to reduce carbon emissions and to achieve carbon peak and carbon
neutrality in the future.

2. Literature Review

Carbon emission and RCE have been hot research issues at home and abroad in recent
years [3,13,22,23]. Previous studies have shown the importance of carbon emissions and
their main driving factors. Developed countries have shown a promising trend of declining
RCE [3]. However, the improvement in living standards triggers consumer demand, thus
causing rapid growth in fossil energy requirements, becoming a new source of growth in
carbon emissions. Developing countries have become a major contributor to the growth of
carbon emissions in the world [9,11].

RCEs are sensitive to regional heterogeneity due to resource endowment, economic
development levels, and lifestyles. The Beijing–Tianjin–Hebei region, the Yangtze River
Delta, and the Pearl River Delta are the main regions with high CO2 emissions, and they
are expanding outward over time [24]. From a provincial perspective, Guangdong, Jiangsu,
Hebei, Henan, Zhejiang, and Anhui are the main provinces needing to reduce greenhouse
gases in the future, which will account for more than 40% of national carbon emissions by
2040 [25]. Zhao et al., used nighttime light datasets to invert the CO2 emissions of urban
residents at the municipal level; the estimated results from which showed that provincial
capital cities in central China were the main growth centers, while low-value areas were
distributed mainly in western China [26]. Moreover, disparities in RCE continues to grow
because the gap between energy intensity and per capita income continues to widen [19].
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Spatial distribution characteristics of RCE lead to regional differentiation of the factors
driving RCE. Population size and urbanization were the main driving factors of RCE in
Beijing Municipality [21], while per capita income was the dominant factor driving the
growth of RCE in Tianjin Municipality [27]. The researchers found that increasing RCE
in Shanxi [28] and Guangdong Province [29] could be attributed mainly to an increase
in per capita income and the number of residents per household. Wang et al., using
the input–output model to calculate RCE in the Beijing–Tianjin–Hebei region and also
using the structural decomposition method to explore the main factors affecting RCE
in the same region, found that CO2 emissions intensity inhibited RCE in Beijing and
Tianjin but promoted it in Hebei [30]. Based on an empirical study using a geographically
weighted regression model, Wang et al., found that the effect of urbanization on RCE
gradually increased from the southeast to the northwest across the country [24]. Wang and
Zhao explored the regional differentiation of RCE driving factors based on the STIRPAT
model and found that family size increased RCE in eastern China but reduced it in central
China [18]. Chang et al., used the Ward clustering method to divide 30 provinces into four
types of regions, analyzing the regional differentiation of RCE driving factors based on
the STIRPAT model and found that urbanization promoted RCE in regions III and IV but
inhibited RCE in regions I and II. Energy structure had the most significant positive effect
on RCE in region IV [31].

Income is an important factor influencing RCE; consumption patterns varied among
residents of different income levels [10]. The income of urban residents in China is signif-
icantly higher than that of rural residents and there are significant differences in energy
consumption and carbon emissions between urban and rural residents. Studies have shown
that the urban sector accounts for the majority of residential energy consumption; urban
energy consumption is about three times that of the rural sector [32]. The study on the RCE
of urban and rural residents in China’s four municipalities also found similar conclusions;
total emissions of urban residents were much larger than that of rural areas, which is
the main composition of RCE [33]. Wiedenhofer et al., found that the top wealthy 5% of
the urban population were responsible for 19% of RCE in China and 75% of the increase
in RCE was due to the growing level of consumption of the urban middle class and the
wealthy [34].

Due to the gap in living standards between urban and rural residents, per capita carbon
emissions differ between urban and rural areas. Generally, urban per capita emissions are
greater than rural carbon emissions [4,18]. The implementation of the rural revitalization
strategy in recent years has accelerated rural development and the living standards of rural
residents have gradually improved. The gap between urban and rural per capita carbon
emissions is gradually narrowing [35]. In some areas, rural carbon emissions per capita are
higher than urban ones. The per capita CO2 emissions of Shanghai City are larger in rural
areas than in urban areas [33]. It is also found that the per capita carbon emissions in rural
areas are higher than those in urban areas in Guangdong Province since 2010 [29]. In the
less-developed Jiangxi Province, rural per capita carbon emissions also surpassed urban
per capita emissions in 2015 [36].

The above literature mainly discussed the spatial agglomeration characteristics of
RCEs, regional differentiation of influencing factors, the contribution of urban and rural
sectors to total, per capita RCE’s differences, and changes between urban and rural areas;
the existing research provides important reference value. Development gaps of regional
and urban–rural are in essence spatial manifestations. Few studies are reported from the
urban–rural perspective within regions. This is the research innovation of this paper.

3. Methods and Data
3.1. Methods
3.1.1. Estimating Energy-Related Residential CO2 Emissions

In this paper, RCEs include direct and indirect CO2 emissions. Direct CO2 emissions
are those generated by the combustion of fossil fuels within regional boundaries, while
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indirect CO2 emissions are those generated by the consumption of electricity and heat
within regions. The formula for calculating them is as follows [29]:

CT = CD + CI (1)

where CT represents total CO2 emissions (106 t, Mt), CD represents direct CO2 emissions
(Mt), and CI represents indirect CO2 emissions (Mt).

Referring to the 2006 IPCC National Greenhouse Gas Inventories, direct CO2 emissions
can be calculated using Equation (2) [37]:

E = ∑
i=1

[
ACi × NCVi × CCi × 10−3 × COFi ×

44
12

]
(2)

where E is the energy-related CO2 emissions (Mt), ACi is the ith fuel residential energy
consumption (104 tons, 108 m3), NCVi is the net calorific value of the ith energy (TJ), CCi is
the carbon content of the low calorific value of the ith energy, COFi is the carbon oxidation
rate of the ith energy, and 44/12 is the conversion coefficient of carbon to CO2. All types
of energy in the China Energy Statistical Yearbook were involved. The low calorific value
and the unit calorific value carbon content factor of each energy type adopted the actual
calculation value of Liu and coworkers [38,39]. In this paper, 17 types of energy were
calculated, namely: raw coal, cleaned coal, other washed coal, briquettes, coke, coke oven
gas, other gas, other coking products, crude oil, gasoline, kerosene, diesel oil, fuel oil, other
petroleum products, liquefied petroleum gas, refinery gas, and natural gas, which includes
all the energy used in the residential sector.

Indirect CO2 emissions include mainly energy consumption in the electricity and heat-
ing sectors. Electricity consumption and heat supply are multiplied by the corresponding
emission coefficients and then added together:

CI = Eele × EFele + Eheat × EFheat (3)

where CI denotes the indirect CO2 emissions of each province, Eele denotes electricity
consumption (108 kW·h), and EFele represents the emission factor of electricity (kg/kW·h).
The coefficient uses the regional average electricity emission factor [40]. In this study, the
CO2 emissions coefficient of EFheat was 110 (kg/GJ), which was obtained by a previous
study [33].

3.1.2. STIRPAT Model

The IPAT model was proposed in 1971 in order to analyze the way in which anthro-
pogenic factors affect the environment. Considering that the environment is influenced by
three main categories of factors, population, affluence, and technology [41], this relationship
can be described as follows:

I = P × A × T, (4)

where I represents the environmental pressure indicator, P represents the total population,
A represents affluence, and T represents technology. The IPAT model is very flexible and
many different factors can be selected to improve its applicability.

To overcome the unit elasticity assumption within the IPAT model and add random-
ness for the convenience of empirical analysis, the STIRPAT model was proposed by Dietz
and Rosa [42]. The standard STIRPAT model is given by Equation (5):

Ii = aPb
i Ac

i Td
i ei, (5)

After taking logarithms, the model can be expressed as follows:

ln Ii = a + b ln Pi + c ln Ai + d ln Ti + ln ei, (6)

Referring to previous studies, population size, income per capita, urbanization rate,
energy intensity, and energy structure were selected into the STIRPAT model:

ln Ii = a + b ln Pi + c ln Ai + d ln URi + e ln EIi + g ln ESi + ln ei, (7)
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where i denotes the county samples; Pi, Ai, URi, EIi, and ESi denote the population, income
per capita, urbanization rate, energy intensity, and energy structure, respectively b, c, d, e, f,
and g are the coefficients reflecting the importance of P, A, UR, EI, and ES, respectively; e is
the error term; and a is a constant. The definitions and measurement units of all variables
are shown in Table 1.

Table 1. Description of variables used in the analysis for the periods 2010–2019.

Variables Symbol Definition Unit

Population size P The amount of permanent residents 104 persons
Urbanizaton level UR The percentage of the urban population in the total population %

Economic level A Income divided by the population at the end of the year Yuan/person
Energy intensity EI Energy consumser per constant 2010 yuan GDP Tons/104 yuan

Energy consumption structure ES The share of natural gas and electricity consumption over total
energy consumption %

3.2. Data

Due to the lack of statistical data for Hong Kong, Macao, Taiwan, and Tibet, the study
area was limited to the 30 mainland provinces of China. To reveal the regional differences
in CO2 emissions and their driving factors, the study area was divided into three major
economic zones: eastern (including Liaoning, Beijing, Tianjin, Hebei, Shandong, Jiangsu,
Shanghai, Zhejiang, Fujian, Guangdong, Hainan), central (including Heilongjiang, Jilin,
Shanxi, Henan, Hubei, Hunan, Anhui, Jiangxi), and western China (including Guangxi,
Sichuan Chongqing, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Inner
Mongolia) (Figure 1) [43]. The different levels of energy consumption of the 30 provinces be-
tween 2010 and 2019 were obtained from the China Energy Statistical Yearbook (2011–2020)
(https://data.cnki.net/Yearbook/Single/N2021050066, accessed on 9 October 2021), and
the permanent resident population, urbanization rate, income, energy intensity, and pat-
tern of energy consumption of each province were obtained from the China Statistical
Yearbook (2011–2020) (https://data.cnki.net/yearbook/Single/N2020100004, accessed on
9 November 2021). The relevant provincial administrative boundaries map of China was
from the Resource and Environmental Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/, accessed on 16 January 2022). The economic indicators
were calculated at 2010-comparable prices to avoid the effects of inflation. The research
framework is shown in Figure 2.
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4. Results
4.1. Patterns of RCE

Chinese RCEs have been steadily increasing, with emissions accounting for 857.21 Mt
in 2010 but 1342.04 Mt in 2019. National RCE can be divided roughly into two stages
according to the annual rate of change. From 2010 to 2012, CO2 emissions increased steadily,
decreased in 2013, then continued to increase until the end of the study period (Figure 3).
(The Figures show 2010, 2013, 2016, and 2019 in terms of the phased characteristics of RCE
growth and the equalization of time intervals.) From a regional perspective, though the
RCE in all regions increased overall, the rates of growth presented regional differences. The
eastern region was the main contributor to RCE, accounting for the highest proportion of
46.68–49.71%, followed by the central region (26.27–28.53%), and then the western region
(23.56–24.94%) during the study period. The incremental increase in RCE of the central
region was the largest (59.91%), followed by that of the eastern region (58.86%), and western
region (48.44%). At the provincial level, Henan, Anhui, Hunan, and Jiangxi provinces in
the central region experienced substantial growth during the study period and RCE in
Hainan Province in the eastern region also increased substantially. Among the western
provinces, Xinjiang Province increased significantly (Figure 4).

From a national perspective, both urban and rural RCEs have increased. Urban RCE
increased from 554.71 Mt in 2010 to 867.41 Mt in 2019. Rural RCE increased from 302.49 Mt
in 2010 to 474.63 Mt in 2019. The urban sector was the main contributor to RCE, accounting
for approximately 64% of total RCE during the study period. Regionally, urban RCE formed
the main component of the three major regions. However, the changes in the proportions
of CO2 emissions from the urban and rural sectors in different regions had their own
characteristics during the study period. The proportion of RCE of total CO2 emissions in
the eastern region was basically stable at 65%. The proportion of urban RCE in the central
region decreased the most, from 65.15% in 2010 to 62.93% in 2019. The increase in the
proportion of rural RCE in the western region was greatest, from 62.49% in 2010 to 66.14%
in 2019.
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Per capita RCE is used to describe the differences between urban and rural regions.
The per capita RCE of urban residents was higher than those of rural residents during
the study period at the national level but the gap between urban and rural areas was
constantly shrinking. Objectively, the overall living standards of urban residents are
higher than those of rural residents. As a consequence of new rural construction and rural
revitalization in China, the development of rural areas has been accelerating, the living
standards of residents have been continuously increasing, and the gap between urban and
rural development levels has been shrinking. Hence, the differences between urban and
rural RCEs have been shrinking. It is worth noting that obvious regional differences exist
in per capita RCE between urban and rural areas. The rural RCE of the eastern region has
been higher than that of urban areas since 2014. Urban RCEs in the central and western
regions were significantly greater than those of rural areas. Rural RCE in the central region
grew rapidly, narrowing the gap with urban RCE. Although rural RCEs in the western
areas increased during the study period, they were still quite a bit lower than those of
urban areas (Figure 5). At the provincial level, the per capita RCE of urban areas was larger
than those of rural areas for all provinces, though the gap between urban and rural was
shrinking. In 2010, the per capita RCE of urban areas in the above ten provinces was more
than twice those of rural areas. By 2019, only Inner Mongolia, Heilongjiang, Ningxia, and
Xinjiang urban per capita RCEs were more than twice those of rural areas. Xinjiang, Inner
Mongolia, Ningxia, and other provinces in the west, Heilongjiang and Jilin in the central,
and Liaoning in the east had per capita RCEs greater than those of rural areas (Figure 5).

4.2. Factors Assocaited with Regional Differences of RCE
4.2.1. Unit Root Test

The panel data should take the unit root test before regression to measure its data
stationarity in order to avoid the spurious regression phenomenon in the regression analysis
of non-stationarity time series. In this study, Levin, Lin, and Chu (LLC) [44], Im, Pesaran,
and Shin (IPS) [45], Fisher-ADF, and Fisher-PP tests [46] were employed to test whether the
panel unit root exists. The null hypothesis of the above unit test is that a unit root exists,
that is, the variables are non-stationary, and the alternative hypothesis is that there is no
unit root, that is, the variables are stationary. The panel unit root test results show that a
few variables are non-stationary, but all variables become stationary at the 5% significance
level after taking first differences in each group (Table 2). The cointegration test is needed
to further identify the relationship between RCE and other independent variables.
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Figure 5. Spatial distribution of ratio of urban to rural per capita RCE in China in 2010 (a), 2013 (b),
2016 (c), and 2019 (d).
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Table 2. The panel unit root tests for different groups.

Variable
Levels First Difference

LLC IPS Fisher-ADF Fisher-PP LLC IPS Fisher-ADF Fisher-PP

Eastern
LnP 0.366 2.983 −0.010 8.313 *** −1.037 ** 0.224 ** −1.473 ** −0.296 **
LnA −3.556 *** 4.030 −2.227 4.158 *** −11.976 *** −0.347 ** −0.802 ** 25.102 ***

LnUR −1.995 ** 0.577 0.3912 15.890 *** −0.475 ** −0.088 ** 1.911 ** 4.591 ***
LnEI −5.701 *** 2.650 −2.143 −1.839 −6.452 ** −1.832 ** −1.241 ** 4.519 ***
LnES −6.373 *** −0.230 −2.285 −2.432 −6.831 *** −3.031 ** −0.912 ** 1.844 **

Eastern
Urban

LnP 18.946 *** 3.020 *** 1.083 −2.242 ** −3.632 *** −0.087 ** −0.014 ** −0.351 **
LnA −3.668 ** −1.784 ** −2.372 8.385 *** −16.866 *** −3.549 *** 60.943 *** 15.415 ***
LnEI −14.621 *** −0.203 −0.474 0.611 −15.197 *** −2.815 *** 13.109 *** 0.369 **
LnES −11.134 *** −0.327 1.893 ** 0.424 −21.196 *** −2.803 *** 16.072 *** 8.347 ***

Eastern
rural
LnP −3.758 *** 0.173 0.369 4.736 *** −4.738 ** −2.086 ** 2.009 ** 1.619 **
LnA −3.693 *** −0.526 −1.741 24.498 *** −10.428 *** −3.026 *** 25.685 *** 39.336 ***
LnEI −4.519 *** −4.100 *** 1.771 ** 6.730 *** −2.949 *** −5.009 *** 2.292 ** 4.923 ***
LnES −4.182 *** 1.418 −1.857 −0.644 −3.378 *** −3.499 *** 0.302 ** 8.460 ***

Central
LnP −5.598 *** 0.476 −0.714 −1.926 −4.834 *** −1.699 ** −0.476 ** 0.145 **
LnA −0.782 4.421 −2.076 3.809 *** −0.390 ** 0.803 ** −0.170 ** 18.848 ***

LnUR −12.055 *** 0.212 −2.135 16.284 *** −9.074 *** −1.487 ** 12.943 *** 4.225 ***
LnEI −7.736 *** 0.8628 −1.187 4.761 *** −15.772 *** −0.814 ** 8.683 *** 5.610 ***
LnES −10.155 *** −0.027 3.567 *** 3.453 *** −4.413 *** −2.414 *** 10.337 *** 1.230 **

Central
Urban

LnP −6.540 *** −1.074 −2.040 16.163 *** −18.973 *** −0.189 ** 8.403 *** 1.620 ***
LnA −0.646 −1.608 * −1.468 18.066 *** −16.019 *** −2.726 ** 49.953 *** 18.941 ***
LnEI −7.820 *** −0.752 8.213 *** 15.287 *** −4.867 *** −2.495 *** 4.861 *** 2.621 ***
LnES −6.680 *** −0.090 3.566 *** 9.269 *** −28.4646 ** −1.865 ** 12.549 *** 3.419 ***

Central
rural
LnP −8.404 *** −0.080 −2.693 −1.174 −0.144 ** −2.012** 8.155 *** 2.204 **
LnA −3.593 *** −2.201 ** −0.339 19.204 *** −20.548 *** −3.051*** −0.743 ** 6.354 ***
LnEI −9.949 *** −1.151 3.645 *** 3.483 *** −25.761 *** −1.582** 12.637 *** 1.237 **
LnES −9.913 *** −1.165 1.202 0.681 −16.732 *** −2.242** 11.402 *** 2.000 **

Western
LnP −3.361 *** 0.476 −0.714 −1.926 −7.577 *** −2.704 *** 4.006 *** 16.095 ***
LnA −2.630 *** 4.421 −2.076 3.809 *** −1.882 ** −2.859 *** 2.137 ** 10.768 ***

LnUR −11.043 *** −1.555 * −0.456 15.459 *** −11.017 *** −1.484 ** 19.435 *** 2.338 ***
LnEI −3.527 *** 0.618 0.569 8.438 *** −13.225 *** −2.158 ** 1.019 ** 2.657 ***
LnES −4.818 *** −1.184 −1.571 −2.472 −8.028 *** −2.968 *** 9.573 *** 2.721 ***

Western
Urban

LnP −8.680 *** −1.890 ** −0.860 10.700 *** −12.358 *** −1.965 ** 12.420 *** 1.703 **
LnA 0.459 0.050 1.459 * 22.195 *** −36.073 *** −3.444 *** 62.986 *** 20.129 ***
LnEI −9.942 *** −1.687 ** −1.928 −0.917 −15.197 *** −2.815 *** 13.109 *** 0.368 **
LnES −10.365 *** −1.207 3.192 *** −0.544 −21.196 *** −2.803 *** 16.072 *** 8.347 ***

Western
rural
LnP −10.286 ** −0.108 −1.646 2.286 ** −6.214 *** −1.407 ** 16.422 *** 3.614 ***
LnA −12.095 *** −2.727 *** 0.983 18.821 *** −21.879 *** −3.966 *** −0.517 ** 3.543 ***
LnEI −5.166 *** 2.559 −1.160 0.791 −8.143 *** −3.281 *** 9.629 *** 0.114 **
LnES −0.644 2.157 −1.542 −1.996 −5.725 *** −3.137 *** 2.992 *** 2.089 **

*** p < 0.01, ** p < 0.05, * p < 0.1.

4.2.2. Cointegration Test

All variables, including P, A, UR, EI, and ES, are stable after taking first differences, but
are different from the original sequence in meaning. In order to carry out the regression of
the original variable, it is necessary to test the long-term cointegration relationship between
these variables through the Pedroni test [47] and the Kao test [48]. As shown in Table 3,
there are three statistics of the Pedroni test, namely: panel v-statistic, panel rho-statistic, and
group rho-statistic, which accept the null hypothesis of no cointegration relationship in the
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three regions and urban–rural cases. However, panel PP-statistic, panel ADF-statistic, group
PP-statistic, and group ADF-statistic reject the null hypothesis at less than 1% significance
level in all the three regions as well as in their urban–rural groups. According to the
conclusion of other researchers [49], the panel ADF-statistic is the most decisive. The results
of the panel ADF-statistic test show that there is a long-term cointegration relationship
between dependent variables and independent variables. In addition, the Kao test obtained
a similar conclusion.

4.2.3. Panel Estimation Results

Based on the panel data regression model, it was found that both the fixed-effects
model and the random-effects model performed better than ordinary least squares (OLS)
regression or a choice of the fixed-effects or random-effects models according to the Haus-
man test. The random-effects model was used for the eastern, eastern rural, central, central
rural, and western urban regions and the fixed-effects model was selected for the eastern
urban, central urban, western, and western rural region.

Table 3. Panel cointegration test results.

Eastern Central Western

Total Urban Rural Total Urban Rural Total Urban Rural

Pedroni
test

Panel v-Statistic −3.715 −4.441 −4.202 −4.025 −4.453 −4.156 −4.271 −3.708 −4.454
Panel

rho-Statistic 2.207 2.516 1.683 1.356 2.725 4.086 3.861 3.392 4.358

Panel
PP-Statistic −11.248 * −19.096 *** −23.849 *** −8.941 ** −6.939 *** −10.272 *** −21.344 *** −20.219 *** −16.338 ***

Panel
ADF-Statistic −13.942 *** −15.264 *** −21.871 *** −8.364 *** −6.625 *** −8.900 *** −13.254 *** −17.184 *** −15.804 ***

Group
rho-Statistic 4.076 4.441 4.265 4.381 4.453 4.257 4.685 3.708 4.320

Group
PP-Statistic −14.365 ** −19.096 *** −22.908 *** −9.367 *** −6.939 *** −12.241 *** −19.254 *** −20.219 *** −17.647 ***

Group
ADF-Statistic −9.684 *** −15.264 *** −17.766 *** −6.625 *** −10.691 *** −17.184 *** −10.238 ***

Kao
test

ADF stat −1.761 *** −2.443 *** −1.165 *** −2.645 *** −3.038 *** −1.435 ** −2.216 *** −1.857 ** −2.531 ***
Residual
variance −0.642 −0.341 −1.526 −1.327 ** −1.704 ** 0.089 −2.156 -3.141 −0.881

HAC variance 0.257 −1.223 −4.632 −2.147 −2.719 *** −1.073 −2.351 −3.956 −2.092 **

*** p < 0.01, ** p < 0.05, * p < 0.1.

Regional differences exist in the factors driving RCE. Population, per capita income,
and energy intensity all promoted RCE in the three regions. Emissions were driven primar-
ily by per capita income in eastern China, with an elasticity coefficient of 0.851, that is, every
1% increase in per capita income resulted in a 0.851% increase in RCE. Population size
was also an important factor driving RCE in eastern China, followed by energy intensity,
with elasticity coefficients of 0.710 and 0.664, respectively. Urbanization rate and energy
structure reduced RCE; urbanization was the main factor with an elasticity coefficient
of −0.071, that is, a 1% decrease in urbanization reduced carbon emissions by 0.071%.
Energy structure also showed a small negative effect on RCE, but the relationship was not
significant (p > 0.05). Unlike those of eastern China, the RCEs of central China were driven
mainly by urbanization rate, population size, energy intensity, and per capita income, of
which urbanization rate was the most important factor with an elasticity coefficient of
1.354. Energy structure had a significant negative effect on emissions, with an elasticity
coefficient of −0.139. The contributions to the RCE were in the following order in western
China: population size > urbanization rate > income per capita > energy intensity > energy
structure, with elasticity coefficients of 1.973, 0.438, 0.289, 0.275, and −0.066, respectively
(Table 4). Energy structure inhibited the growth of RCE.



Land 2022, 11, 632 12 of 19

Table 4. Drivers of differences in RCE between the different regions of China during 2010–2019.

Eastern Central Western

LnP 0.710 *** 0.862 *** 1.973 ***
LnA 0.851 *** 0.412 *** 0.289 **

LnUR −0.071 * 1.354 *** 0.438 **
LnEI 0.664 *** 0.443 *** 0.275 ***
LnES −0.026 −0.139 ** −0.066 **

P value 0.3838 0.290 0.021
Model type RM RM FM

R2 0.988 0.890 0.878
FM—fixed-effects model; RM—random-effects model. *** p < 0.01, ** p < 0.05, * p < 0.1.

The results showed that differences existed between urban and rural sectors in the
factors driving RCE in the three regions. Per capita income was the major driver of RCE in
eastern urban areas, while population size was the dominant driver of rural RCE. Urban
and rural RCE in the central region were both driven mainly by population size, while
population, per capita income, and energy intensity in rural areas had a similar impact on
RCE. The contribution was similar for urban population size and per capita income in the
western region urban sector, while rural areas were affected primarily by population size
(Table 5).

Table 5. Determinants of RCE in urban and rural regions of China during 2010–2019.

National Eastern Central Western

Urban (FM) Rural (FM) Urban (FM) Rural (RM) Urban (FM) Rural (RM) Urban (RM) Rural (FM)

LnP 0.39 *** −0.484 ** 0.533 ** 0.984 *** 1.370 *** 0.814 *** 0.465 ** 0.962 ***
LnA 0.65 *** 0.456 *** 0.612 *** 0.709 *** 0.415 ** 0.778 *** 0.465 ** 0.641 ***
LnEI 0.229 *** 0.286 *** 0.119 * 0.420 *** 0.222 ** 0.707 *** 0.148 ** 0.19 *
LnES −0.094 ** −0.094 ** −0.118 ** −0.109 ** −0.216 ** −0.065 * −0.058 −0.162 *

P value 0.000 0.000 0.001 0.000 0.004 0.035 0.184 0.378
R2 0.808 0.605 0.842 0.964 0.844 0.897 0.801 0.656

*** p < 0.01, ** p < 0.05, * p < 0.1.

Although both urban and rural energy intensity contributed to an increase in RCE,
energy intensity in the eastern and central regions had a significantly stronger impact
in rural areas than in urban areas. In the central region, energy structure had a stronger
inhibitory effect on urban RCE than on rural, while the inhibitory effect in western rural
areas is stronger than that in urban areas.

5. Discussion
5.1. Gradient Distribution of Regional Development Level

Regional development does not spread evenly across space. Regions with advantages
such as resource endowment and geographical conditions tend to take the lead in develop-
ment. When the regional development gap begins to appear, development level presents
gradient distribution. The regions that take the lead in development have large populations
and economies. With the economic level of improvement, the living standards of residents
also improve simultaneously. The increase in population size brings an increase in energy
consumption. In addition, the level of the living demand of residents is constantly rising,
which breeds the demand for modern energy and multi-type energy consumption and
people are willing to consume more energy [50]. The gap of RCEs gradually exists between
developed and less-developed regions.

The above-mentioned gradient regional development exists in the eastern, central,
western regions, and urban–rural areas of China. At the regional level, the eastern region
is more economically developed due to the priority of opening to the outside world.
The eastern region bears the bulk of the population and economic activities in China.
Beijing–Tianjin–Hebei, Yangtze River Delta, and Pearl River Delta, the three major urban
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agglomerations, are all located in the east of the country, which are China’s three major
urban agglomerations. Therefore, the CO2 emission of residential energy consumption
in the eastern region is significantly higher than that in the central and western regions.
Similarly, compared with rural areas, advanced urban areas are the main carrying part of
population and economy. Residents’ living standards are higher than those of rural areas,
and urban areas are the main contribution area of total emissions.

RCE amounts varied among residents of different income levels due to their lifestyles [10,34].
High-quality living consumption encourages residents to consume more energy and leads
to more RCE. The living standards of residents in the eastern region are higher than those
in the central and western regions (Figure 6). Energy consumption was basically stable,
made up of basic living needs such as lighting, cooking, and bathing. However, electricity
consumption and the use of non-essential household appliances in the eastern region
increased significantly compared with the central and western regions [43]. An increase
in household income stimulated the diversified demand for electrical appliances such as
air conditioners, computers, cameras, and microwave ovens, as well as their usage time,
resulting in increased RCE from electricity consumption [13]. In addition, higher income
levels tended to demand larger-sized houses, which consumed more energy for cooling
and heating. In the pursuit of comfort, the need to open windows is often increased, which
further increases power consumption [16,51]. Higher incomes increase household private
car ownership and frequency of use, increasing energy consumption [16]. Therefore, the
impact of per capita income on RCE in the eastern part is more significant. Population size
was still the major factor driving RCE in the central and western parts of China, which
were less developed economically. These findings are similar to those of other researchers,
namely that higher per capita income encourages residents to consume more energy and
leads to increased RCE [20,29]; income is also a contributor to RCE in highly urbanized and
industrialized regions [52].
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Figure 6. Changes in per capita income of urban and rural residents in the three different regions of
China during 2010–2019.

From the perspective of urban–rural areas, the RCEs in eastern urban areas were
driven mainly by per capita income, while RCEs in rural areas were driven mainly by per
capita income and population size. RCEs in the eastern region were driven primarily by
per capita income, which is actually a reflection of eastern urban RCEs being driven by per
capita income. RCEs in central urban areas were mainly driven by population size, the
agglomeration effect brought about by the increase in population size was significant with
an elasticity coefficient greater than one, and the impact of population size increase on RCE
was greater than its own changes. The rural RCE in the western region was mainly driven
by the population size, while urban RCE was driven by both population size and per capita
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income. The possible reason was that urban residents’ living standards were higher than
that of rural areas and the effect of per capita income on RCE was more significant.

5.2. Agglomeration Effect of Urbanization

During the study period of 2010–2019, the Chinese urbanization rate rose from 49.95%
to 60.60% (Figure 7). There were two effects of urbanization on RCE. The first effect was
that rural populations became urban residents and the nature and levels of living needs
increased, which triggered increases in energy consumption and CO2 emissions [50,53]. The
second effect was that urbanization had an agglomeration effect on CO2 emissions. High-
density buildings reduce the per capita living area, improve the efficiency of infrastructures
such as heating and power supply, and improve energy efficiency [50].

Urbanization had an inhibitory effect on RCE in the eastern region during the study
period, the possible reasons for which are as follows: first, during 2010–2019, urbanization
of the eastern region was at a relatively high level, while the population levels of the
main urban areas such as Beijing were stagnant or even declining. Second, per capita CO2
emissions in rural areas in the eastern region were higher than those of urban areas. In
the process of urbanization of the eastern region, rural–urban migration by rural residents
clearly reduced the per capita energy consumption of the entire region, which benefited
energy efficiency. The agglomeration effect of urbanization on RCE dominated, thus
reducing RCE.
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A gap in residential facilities existed between urban and rural areas in the central and
western regions. During the study period, both regions experienced rapid urbanization.
The urbanization rate in the central and western regions increased from 46.95% to 57.92%,
and 43.16% to 55.29%, respectively, with a considerable number of rural residents migrat-
ing to urban areas (Figure 8). Due to improvements in the living environment, energy
consumption increased, thus leading to an increase in RCE [50]; thus, the urbanization rate
increased the RCE of central and western China. The central region was where the rate of
increase in urbanization was greatest. The rural populations in these provinces increasingly
moved to the provincial capitals and other cities. The provincial capitals were the main
growth points for RCE and thus strongly promoted increasing RCE [26]; therefore, the
urbanization rate made the greatest contribution to RCE in the central region during the
study period.

5.3. Forced Mechanism of Western Ecological Policy

The Chinese government has issued a series of energy policies since 2013. In regions
where heating based on natural gas cannot be achieved, new energy sources such as
electricity and solar energy are being used instead. Moreover, various localities have
continued to introduce detailed policies to promote the reform of the energy structure of
residents’ living conditions. The proportion of coal consumption to total residential energy
consumption has been declining [54]. Obvious regional differences exist in the energy
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consumption structure of different regions of the country. On the whole, the proportion of
natural gas and electricity of total residential energy consumption in various regions has
been rising (Figure 8). The proportion of clean energy in the western region increased the
most, followed by that of the central region, and that of the eastern region.
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of China during 2010–2019.

The initial proportion of clean energy in the study period in the eastern region was
relatively high. The eastern region is densely populated and it is difficult to increase
the proportion of new energy production, limiting the possibilities for energy structure
optimization. In the western region, the initial proportion of clean energy was the lowest.
The western region is the major source of clean energy such as solar and wind energy in
China and there the optimization of the energy structure was the most obvious. Hence, the
energy structure of the western region had the most significant inhibitory effect on RCE.

The western region is the main distribution area of China’s ecological security barrier
and there are many natural protected areas. According to the positioning of China’s
Major Function Oriented zoning, the ecological zones implement active population exit
policies [55]. Furthermore, most of the ecological areas are poor areas in China. In recent
years, the implementation of targeted poverty alleviation, rural revitalization policies, and
the relocation of poverty-stricken people has accelerated the migration of rural people
into urban areas [56,57]. The high share of clean energy in urban residents is conducive
to the optimization of energy structure in the western region. In the eastern region, the
initial value of the proportion of clean energy is high and the space for energy structure
optimization is limited. In the western region, the initial proportion of clean energy is
the lowest and the energy structure optimization is the most markable. Therefore, the
inhibitory effect of energy structure on RCE is greater in central and western regions.

From the perspective of urban–rural areas, the share was higher of clean energy for
urban residents in the western region, but the proportion of clean energy in rural areas
increases much more than in urban areas. Rural areas were the main contributors to the
energy structure optimization in the western region, therefore the inhibitory effect of rural
energy structure on RCE was significantly greater than that of urban areas. In addition,
ecological zones actively implement the exit policy of the energy and chemical industry and
strictly control the access of heavy industry [53], which limits the use of traditional fossil
energy. Furthermore, the development conditions of solar energy, wind energy, and other
clean energy in the western region are superior. Residents often use solar and wind energy
and other clean energy locally; this effectively optimizes the energy consumption structure.

Contrary to the western region, energy structure optimization in urban areas was more
obvious in central China and the increase in the proportion of clean energy in rural areas
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was relatively low. The proportion of urban energy structure had an obvious inhibitory
effect on RCE, which was due to the fact that the implementation of coal-to-natural gas
and coal-to-electricity conversion of residential energy has been effective in urban areas
in the central region [7]. Compared with rural areas, energy structure optimization had a
more significant effect on reducing RCE. In the eastern region, there was little difference
in the levels of public infrastructure construction such as urban and rural energy and
power supply. The optimization process of urban and rural energy structures was basically
synchronized. Energy structure showed an inhibitory effect on both urban and rural RCE
and the levels were similar.

During the study period, the energy intensity of all three regions showed a decrease.
Inexplicably, however, energy intensity contributed to CO2 emissions. Similar results
have been obtained based on STIRPAT model regression [18] and geographically weighted
regression (GWR) [24] studies at the provincial scale. A study based on municipal units
that employed a spatial econometric model also found that energy intensity contributed
positively to RCE [26]. This may have been because energy intensity represents the energy
utilization technology level of the social manufacturing industry, residential energy needs
belong to basic needs, and resident energy consumption is not greatly affected by the
technological level of energy utilization in the manufacturing industry.

The Chinese government should balance the goals of improving people’s living stan-
dards and strive to reduce carbon emissions for the goal of carbon neutrality. The realization
of multidimensional goals may require more precise adaptive policies to regulate. The
results of this study are worthy of attention for decision makers to clarify the priority of
RCE control in different areas. According to the total volume and growth rate of RCE in
different regions, the central region should be prioritized due to its major contributor to
RCE growth. According to different resident life development needs, more RCE quotas
could be allocated in less developed areas and reduction policies and measures could be
adjusted to local conditions based on the regional and urban–rural differences in the driving
factors for CO2 emissions. In the eastern region, especially in urban areas, the per capita
income level is the dominant factor for CO2 emissions. Low-carbon consumption should be
advocated and urban residents should develop green consumption awareness and adopt a
low-carbon lifestyle. In accordance with regulatory control, the process of urbanization
should be further promoted and the inhibitory effect of urbanization should be exerted on
RCE. In the central and western regions, more attention should be paid to the deployment
of urban high-efficiency energy technologies and high-efficiency electrical appliances in the
construction of infrastructures such as housing, heating, and power supply. Urbanization
that leads to the growth of RCE should be avoided as much as possible. The adjustment
of the energy structure should be increased in central rural areas and western urban areas
and energy consumption structure from coal to gas/electricity should be further optimized.
Due to the threshold effect of clean energy use in low-income households, it is difficult for
residents to transition to clean energy in their daily energy consumption [13]. We should
focus on low-income households, increase policy inclination, and raise the proportion of
clean energy in the residential energy consumption structure.

6. Conclusions

In the paper, RCEs were accounted for from the urban–rural perspective at the provin-
cial level. We investigated the relationship between socioeconomic indicators (population
size, urbanization, income per capita, energy intensity, and energy structure) and emissions
by the STIRPAT model. We further analyzed the regional and urban–rural differentiation
of influencing factors from the gradient distribution of regional development level, the
agglomeration effect of urbanization, and the forced mechanism of western ecological
policy. The main conclusions of our study are as follows:

1. During the study period of 2010–2019, RCE in three regions of China (eastern, central,
and western) increased overall, but RCE growth was varied among three regions,
with the largest increase (59.91%) being in the central region.
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2. Regional and urban–rural differences existed in the factors driving RCE. Population
size and income per capita were the two dominant factors affecting RCE for all regions.
The contribution of per capita income to RCE was greater in developed regions such
as eastern regions and eastern urban areas. When per capita income increased 1%,
it led to 0.851% and 0.612% growth in RCEs, respectively. Urbanization exerted a
negative effect on the RCE in the eastern region, while having a positive effect in
the central and western regions. The inhibitory effect of energy structure on RCE
decreased in sequence from the central, western, and eastern region, particularly in
the central urban and western rural areas.

3. The gradient distribution of regional development levels led to differences in RCE
characteristics among regions and between urban–rural areas. The agglomeration
effect of urbanization in developed regions led to the suppression of RCE, while
promoting emissions in less developed areas. Due to industrial policies and poverty
alleviation policies, the ecological regions in western China were forced to optimize
the energy structure and accelerate the progress of urbanization, which affected RCE.

7. Limitation and Further Research

Although this study has revealed the RCE characteristics of three regions and their
internal urban–rural differentiation and further analyzed regional and urban–rural differ-
ences of drivers on RCE at the provincial level, the paper is still a preliminary study due to
serval limitations. For example, due to data access restrictions—there is a lot of biomass that
does not include burning for cooking and heating in rural China—this paper only selected
income per capita, population, urbanization, energy structure, and energy intensity; other
influencing factors such as household size, age, and structure should be focused on in
future research. In addition, the STIRPAT model overlooks the effects of unit geographical
location on drivers; therefore, our future research is to examine the spatial effect of influ-
encing factors on RCE by employing spatial econometric models. Furthermore, residents’
living consumption level is rising along with income levels. The wealthy residents are the
main contributor of RCE growth, and how to represent high-quality consumption such as
culture consumption needs further research.
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