Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology for the Collection and Selection of the Literature
2.2. Approach to Analyse the Selected Literature
2.2.1. Criteria for LCA Phase 1—Goal and Scope
2.2.2. Criteria for LCA Phase 2—Life Cycle Inventory
2.2.3. Criteria for LCA Phase 3—Life Cycle Impact Assessment
2.2.4. Criteria for LCA Phase 4—Interpretation
3. Results
3.1. LCA Phase 1—Goal and Scope
3.2. LCA Phase 2—Life Cycle Inventory (LCI)
3.3. LCA Phase 3—Life Cycle Impact Assessment (LCIA)
3.4. LCA Phase 4—Interpretation
4. Discussion
4.1. NBS Coverage in LCA Literature
4.2. Use of the Ecosystem Services (ES) Concept to Classify and Quantify the FUs of NBS
4.3. Perspectives to Deal with the Multifunctionality of NBS
4.4. Pros and Cons of a “Surface Area” Function
4.5. Baseline Scenario and Comparison of NBS with Grey Solutions
4.6. Recommended System Boundaries and Time Scale of the System
4.7. Consideration of Emissions in the Environment from the Application of Fertilisers and Pesticides
4.8. Carbon Dioxide Sequestration and Carbon Balance
4.9. Differentiation between the Impacts to Ease the Decision-Making Process
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grimm, N.B.; Faeth, S.H.; Golubiewski, N.E.; Redman, C.L.; Wu, J.; Bai, X.; Briggs, J.M. Global Change and the Ecology of Cities. Science 2008, 319, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations. World Urbanization Prospects-The 2018 Revision; United Nations: New York, NY, USA, 2018; ISBN 9789211483192. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being-Synthesis; Island Press: Washington, DC, USA, 2005; ISBN 1597260401. [Google Scholar]
- IUCN. IUCN Global Standard for Nature-Based Solutions: A User-Friendly Framework for the Verification, Design and Scaling Up of NbS, 1st ed; IUCN: Fontainebleau, France, 2020; ISBN 978-2-8317-2058-6. [Google Scholar]
- Dhyani, S.; Gupta, A.K.; Karki, M. Nature-Based Solutions for Resilient Ecosystems and Societies, 1st ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; ISBN 978-981-15-4711-9. [Google Scholar]
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing the Framework for Achieving Climate Neutrality and Amending Regulation (EU) 2018/1999 (European Climate Law); European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Le Monde Green Wave for 2020 French Municipal Elections. Available online: https://www.lemonde.fr/politique/article/2020/06/29/municipales-2020-une-vague-verte-historique-deferle-sur-les-grandes-villes-francaises_6044496_823448.html (accessed on 1 October 2020).
- International Union for Conservation of Nature IUCN Definition of NBS. Available online: https://www.iucn.org/commissions/commission-ecosystem-management/our-work/nature-based-solutions (accessed on 8 July 2021).
- Eggermont, H.; Balian, E.; Azevedo, J.M.N.; Beumer, V.; Brodin, T.; Claudet, J.; Fady, B.; Grube, M.; Keune, H.; Lamarque, P.; et al. Nature-Based Solutions: New Influence for Environmental Management and Research in Europe. GAIA 2015, 24, 243–248. [Google Scholar] [CrossRef]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-walters, L.; Keune, H.; Kovacs, E.; et al. The Science, Policy and Practice of Nature-Based Solutions: An Interdisciplinary Perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- TOTAL The Shareholders’ Newsletter - SN #64 - Fall 2020 - Total, Increasing Energy While Decreasing Emissions. Available online: https://total.publispeak.com/shareholders-newsletter-64/doc/documents/1056/pdf/download/Total-JDA64-EN-00-dis.pdf (accessed on 1 February 2021).
- Babí Almenar, J.; Elliot, T.; Rugani, B.; Philippe, B.; Navarrete Gutierrez, T.; Sonnemann, G.; Geneletti, D. Land Use Policy Nexus between Nature-Based Solutions, Ecosystem Services and Urban Challenges. Land Use Policy 2021, 100, 104898. [Google Scholar] [CrossRef]
- Romanovska, L. Urban Green Infrastructure: Perspectives on Life-Cycle Thinking for Holistic Assessments Urban Green Infrastructure: Perspectives on Life-Cycle Thinking for Holistic Assessments. In Proceedings of the IOP Conference Series: Earth and Environmental Science 294; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Von Döhren, P.; Haase, D. Ecosystem Disservices Research: A Review of the State of the Art with a Focus on Cities. Ecol. Indic. 2015, 52, 490–497. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental management–Life Cycle assessment–Principles and Framework. ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental management–Life Cycle assessment–Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment—Theory and Practice; Springer: Cham, Switzerland, 2018; ISBN 9783319564746. [Google Scholar]
- Curran, M.A. Life Cycle Assessment Handbook—A Guide for Environmentally Sustainable Products; Wiley Publishing: New York, NY, USA, 2012; ISBN 9781118099728. [Google Scholar]
- Boano, F.; Caruso, A.; Costamagna, E.; Ridolfi, L.; Fiore, S.; Demichelis, F.; Galvão, A.; Pisoeiro, J.; Rizzo, A.; Masi, F. A Review of Nature-Based Solutions for Greywater Treatment: Applications, Hydraulic Design, and Environmental Benefits. Sci. Total Environ. 2020, 711, 134731. [Google Scholar] [CrossRef]
- Casal-campos, A.; Fu, G.; Butler, D. The Whole Life Carbon Footprint of Green Infrastructure: A Call for Integration. In Proceedings of the NOVATECH 2013—8th International Conference on Planning and Technologies for Sustainable Management of Water in the City, Lyon, France, 23–27 June 2013; pp. 1–9. [Google Scholar]
- Kavehei, E.; Jenkins, G.A.; Adame, M.F.; Lemckert, C. Carbon Sequestration Potential for Mitigating the Carbon Footprint of Green Stormwater Infrastructure. Renew. Sustain. Energy Rev. 2018, 94, 1179–1191. [Google Scholar] [CrossRef]
- Xu, C.; Jia, M.; Xu, M.; Long, Y.; Jia, H. Progress on Environmental and Economic Evaluation of Low-Impact Development Type of Best Management Practices through a Life Cycle Perspective. J. Clean. Prod. 2019, 213, 1103–1114. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; Cabeza, L.F. Life Cycle Assessment of Green Roofs. In Nature Based Strategies for Urban and Building Sustainability; Pérez, G., Perini, K., Eds.; Elsevier Butterworth-Heinemann: Oxford, UK, 2018; pp. 341–351. ISBN 9780128123249. [Google Scholar]
- Shafique, M.; Azam, A.; Rafiq, M.; Ateeq, M.; Luo, X. An Overview of Life Cycle Assessment of Green Roofs. J. Clean. Prod. 2020, 250, 119471. [Google Scholar] [CrossRef]
- Loiseau, E.; Saikku, L.; Antikainen, R.; Droste, N.; Hansjürgens, B.; Pitkänen, K.; Leskinen, P.; Kuikman, P.; Thomsen, M. Green Economy and Related Concepts: An Overview. J. Clean. Prod. 2016, 139, 361–371. [Google Scholar] [CrossRef]
- Petit-boix, A.; Llorach-massana, P.; Sanjuan-delmás, D.; Sierra-pérez, J.; Vinyes, E.; Gabarrell, X.; Rieradevall, J.; Sanyé-mengual, E. Application of Life Cycle Thinking towards Sustainable Cities: A Review. J. Clean. Prod. 2017, 166, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Başoğlu, D.; Yöntem, E.; Yöntem, S.; Şenyurt, B.; Yılmaz, Ö. Dynamic Assessment of Nature Based Solutions Through Urban Level LCA. In Designing Sustainable Technologies, Products and Policies; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 293–305. ISBN 9783319669816. [Google Scholar]
- Gezelius, S.S.; Refsgaard, K. Barriers to Rational Decision-Making in Environmental Planning. Land Use Policy 2007, 24, 338–348. [Google Scholar] [CrossRef]
- Cerema; Hungarian Society for Urban Planning; Ekodenge; Luxembourg Institute of Science and Technology; Green4Cities; ACCIONA Infraestructuras; Fundación CARTIF; Agrocampus Ouest; University of Szeged; NOBATEK/INEF4; et al. Deliverable 1.1 of the Nature4Cities Project: NBS Multi-Scalar and Multi-Thematic Typology and Associated Database. 2018. Available online: https://www.list.lu/fr/news/nature-based-solutions-for-re-naturing-cities-latest-project-results/ (accessed on 11 May 2020).
- Bhatt, A.; Bradford, A.; Abbassi, B.E. Cradle-to-Grave Life Cycle Assessment (LCA) of Low-Impact-Development (LID) Technologies in Southern Ontario. J. Environ. Manage. 2019, 231, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Bixler, T.S.; Houle, J.; Ballestero, T.; Mo, W. A Dynamic Life Cycle Assessment of Green Infrastructures. Sci. Total Environ. 2019, 692, 1146–1154. [Google Scholar] [CrossRef]
- Byrne, D.M.; Grabowski, M.K.; Benitez, A.C.B.; Schmidt, A.R.; Guest, J.S. Evaluation of Life Cycle Assessment (LCA) for Roadway Drainage Systems. Environ. Sci. Technol. 2017, 51, 9261–9270. [Google Scholar] [CrossRef]
- Hengen, T.J.; Sieverding, H.L.; Stone, J.J. Lifecycle Assessment Analysis of Engineered Stormwater Control Methods Common to Urban Watersheds. J. Water Resour. Plan. Manag. 2016, 142, 4016016. [Google Scholar] [CrossRef]
- Jeong, H.; Broesicke, O.A.; Drew, B.; Li, D.; Crittenden, J.C. Life Cycle Assessment of Low Impact Development Technologies Combined with Conventional Centralized Water Systems for the City of Atlanta, Georgia. Front. Environ. Sci. Eng. 2016, 10, 1. [Google Scholar] [CrossRef]
- Moore, T.L.C.; Hunt, W.F. Predicting the Carbon Footprint of Urban Stormwater Infrastructure. Ecol. Eng. 2013, 58, 44–51. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Z.; Hu, M.; Li, J.; Wang, Y.; Lu, Z.; Chen, S.; Xia, B. Environmental Performances and Energy Efficiencies of Various Urban Green Infrastructures: A Life-Cycle Assessment. J. Clean. Prod. 2019, 248, 119244. [Google Scholar] [CrossRef]
- Wang, R.; Eckelman, M.J.; Zimmerman, J.B. Consequential Environmental and Economic Life Cycle Assessment of Green and Gray Stormwater Infrastructures for Combined Sewer Systems. Environ. Sci. Technol. 2013, 47, 11189–11198. [Google Scholar] [CrossRef]
- Xu, C.; Hong, J.; Jia, H.; Liang, S.; Xu, T. Life Cycle Environmental and Economic Assessment of a LID-BMP Treatment Train System: A Case Study in China. J. Clean. Prod. 2017, 149, 227–237. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre; Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook-General Guide for Life Cycle Assessment-Detailed Guidance, 1st ed.; Publications Office of the European Union: Luxembourg, 2010; ISBN 978-92-79-19092-6. [Google Scholar]
- Joint Research Centre (JRC). Suggestions for Updating the Product Environmental Footprint (PEF) Method; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Bare, J.C.; Hofstetter, P.; Pennington, D.W.; Udo De Haes, H.A. Midpoints Versus Endpoints: The Sacrifices and Benefits. Int. J. Life Cycle Assess. 2000, 5, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Rosenbaum, R.K. Overview of Existing LCIA Methods—Annex to Chapter 10. In Life Cycle Assessment—Theory and Practice; Hauschild, M., Rosenbaum, R.K., Olsen, S., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Pérez-Neira, D.; Grollmus-Venegas, A. Life-Cycle Energy Assessment and Carbon Footprint of Peri-Urban Horticulture. A Comparative Case Study of Local Food Systems in Spain. Landsc. Urban Plan. 2018, 172, 60–68. [Google Scholar] [CrossRef]
- Agrobiofilm Consortium. Agrobiofilm: Compostable Films for Agriculture; Silvex Biobag & ICSE, Ed.; Guide Artes Gráficas: Odivelas, Portugal, 2013. [Google Scholar]
- De Schryver, A.; Guignard, C.; Rossi, V.; Humbert, S. Comparative Life Cycle Assessment of Certified and Non-Certified Wood-Final Report; Quantis: Lausanne, Switzerland, 2012. [Google Scholar]
- Smetana, S.M.; Crittenden, J.C. Landscape and Urban Planning Sustainable Plants in Urban Parks: A Life Cycle Analysis of Traditional and Alternative Lawns in Georgia, USA. Landsc. Urban Plan. 2014, 122, 140–151. [Google Scholar] [CrossRef]
- Rufí-Salís, M.; Calvo, M.J.; Petit-boix, A.; Villalba, G.; Gabarrell, X. Exploring Nutrient Recovery from Hydroponics in Urban Agriculture: An Environmental Assessment. Resour. Conserv. Recycl. 2020, 155, 104683. [Google Scholar] [CrossRef]
- Golkowska, K.; Rugani, B.; Koster, D.; Van Oers, C. Environmental and Economic Assessment of Biomass Sourcing from Extensively Cultivated Buffer Strips along Water Bodies. Environ. Sci. Policy 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Rothwell, A.; Ridoutt, B.; Page, G.; Bellotti, W. Feeding and Housing the Urban Population: Environmental Impacts at the Peri-Urban Interface under Different Land-Use Scenarios. Land Use Policy 2015, 48, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Huang, Y.; Ye, Q.; Zhang, W.; Meng, F.; Zhang, S. Multi-Objective Optimization Integrated with Life Cycle Assessment for Rainwater Harvesting Systems. J. Hydrol. 2018, 558, 659–666. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Arnold, E.; Haase, D. The Carbon Footprint of Urban Green Space—A Life Cycle Approach. Landsc. Urban Plan. 2012, 104, 220–229. [Google Scholar] [CrossRef]
- Tidåker, P.; Wesström, T.; Kätterer, T. Energy Use and Greenhouse Gas Emissions from Turf Management of Two Swedish Golf Courses. Urban For. Urban Green. 2017, 21, 80–87. [Google Scholar] [CrossRef]
- Risch, E.; Boutin, C.; Roux, P.; Gillot, S.; Héduit, A. LCA in Wastewater Treatment -Applicability and Limitations for Constructed Wetland Systems: Using Vertical Reed Bed Filters. In Proceedings of the LCM 2011 International Conference on Life Cycle Management, Berlin, Germany, 28–31 August 2011. [Google Scholar]
- Roux, P.; Boutin, C.; Risch, E.; Heduit, A. Life Cycle Environmental Assessment (LCA) of Sanitation Systems Including Sewerage: Case of Vertical Flow Constructed Wetlands versus Activated Sludge. In Proceedings of the 12th IWA International Conference on Wetland Systems for Water Pollution Control, Venise, Italy, 4–8 October 2010; pp. 879–887. Available online: https://hal.archives-ouvertes.fr/hal-00572479 (accessed on 23 August 2021).
- Maranghi, S.; Parisi, M.L.; Basosi, R. Potentialities of LCA for Urban Systems Sustainability Assessment. In Proceedings of the 10th Convegno dell’ Associazione Rete Italiana LCA 2016: Life Cycle Thinking, Sostenibilità ed Economia Circolar, Ravenna, Italy, 23–24 June 2016; pp. 55–62. [Google Scholar]
- Loiseau, E.; Junqua, G.; Roux, P.; Bellon-Maurel, V. Environmental Assessment of a Territory: An Overview of Existing Tools and Methods. J. Environ. Manage. 2012, 112C, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Aquije, C.; Schmidt, H.P.; Draper, K.; Joseph, S.; Ladd, B. Low Tech Biochar Production Could Be a Highly Effective Nature-Based Solution for Climate Change Mitigation in the Developing World. Plant Soil. 2021, 1–7. [Google Scholar] [CrossRef]
- Keith, H.; Vardon, M.; Obst, C.; Young, V.; Houghton, R.A.; Mackey, B. Evaluating Nature-Based Solutions for Climate Mitigation and Conservation Requires Comprehensive Carbon Accounting. Sci. Total Environ. 2021, 769, 144341. [Google Scholar] [CrossRef] [PubMed]
- Roman, L.A.; Conway, T.M.; Eisenman, T.S.; Koeser, A.K.; Ordóñez Barona, C.; Locke, D.H.; Jenerette, G.D.; Östberg, J.; Vogt, J. Beyond “trees Are Good”: Disservices, Management Costs, and Tradeoffs in Urban Forestry. Ambio 2021, 50, 615–630. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Santillan, J.; Miranda, A.; Lara, A.; Sepulveda-Jauregui, A.; Zamorano-Elgueta, C.; Gómez-González, S.; Vásquez-Lavín, F.; Garreaud, R.D.; Rojas, M. Diversifying Chile’s Climate Action Away from Industrial Plantations. Environ. Sci. Policy. 2021, 124, 85–89. [Google Scholar] [CrossRef]
- Stankovic, M.; Ambo-Rappe, R.; Carly, F.; Dangan-Galon, F.; Fortes, M.D.; Hossain, M.S.; Kiswara, W.; Van Luong, C.; Minh-Thu, P.; Mishra, A.K.; et al. Quantification of Blue Carbon in Seagrass Ecosystems of Southeast Asia and Their Potential for Climate Change Mitigation. Sci. Total Environ. 2021, 783, 146858. [Google Scholar] [CrossRef]
- Goll, D.S.; Ciais, P.; Amann, T.; Buermann, W.; Chang, J.; Eker, S.; Hartmann, J.; Janssens, I.; Li, W.; Obersteiner, M.; et al. Potential CO2 Removal from Enhanced Weathering by Ecosystem Responses to Powdered Rock. Nat. Geosci. 2021, 14, 545–549. [Google Scholar] [CrossRef]
- Kuittinen, M.; Hautamäki, R.; Tuhkanen, E.M.; Riikonen, A.; Ariluoma, M. Environmental Product Declarations for Plants and Soils: How to Quantify Carbon Uptake in Landscape Design and Construction? Int. J. Life Cycle Assess. 2021, 26, 1100–1116. [Google Scholar] [CrossRef]
- Ariluoma, M.; Ottelin, J.; Hautamäki, R.; Tuhkanen, E.M.; Mänttäri, M. Carbon Sequestration and Storage Potential of Urban Green in Residential Yards: A Case Study from Helsinki. Urban For. Urban Green. 2021, 57, 126939. [Google Scholar] [CrossRef]
- Agostini, A.; Serra, P.; Giuntoli, J.; Martani, E.; Ferrarini, A.; Amaducci, S. Biofuels from Perennial Energy Crops on Buffer Strips: A Win-Win Strategy. J. Clean. Prod. 2021, 297, 126703. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Biswal, B.K.; Adam, M.G.; Soh, S.H.; Tsen-Tieng, D.L.; Davis, A.P.; Chew, S.H.; Tan, P.Y.; Babovic, V.; Balasubramanian, R. Bioretention Systems for Stormwater Management: Recent Advances and Future Prospects. J. Environ. Manage. 2021, 292, 112766. [Google Scholar] [CrossRef] [PubMed]
- Peñacoba-Antona, L.; Senán-Salinas, J.; Aguirre-Sierra, A.; Letón, P.; Salas, J.J.; García-Calvo, E.; Esteve-Núñez, A. Assessing METland® Design and Performance Through LCA: Techno-Environmental Study With Multifunctional Unit Perspective. Front. Microbiol. 2021, 12, 1331. [Google Scholar] [CrossRef] [PubMed]
- Ghafourian, M.; Stanchev, P.; Mousavi, A.; Katsou, E. Economic Assessment of Nature-Based Solutions as Enablers of Circularity in Water Systems. Sci. Total Environ. 2021, 792, 148267. [Google Scholar] [CrossRef] [PubMed]
- Koroxenidis, E.; Theodosiou, T. Comparative Environmental and Economic Evaluation of Green Roofs under Mediterranean Climate Conditions – Extensive Green Roofs a Potentially Preferable Solution. J. Clean. Prod. 2021, 311, 127563. [Google Scholar] [CrossRef]
- Takavakoglou, V.; Georgiadis, A.; Pana, E.; Georgiou, P.E.; Karpouzos, D.K.; Plakas, K.V. Screening Life Cycle Environmental Impacts and Assessing Economic Performance of Floating Wetlands for Marine Water Pollution Control. J. Mar. Sci. Eng. 2021, 9, 1345. [Google Scholar] [CrossRef]
- Gómez Martín, E.; Máñez, M.; Schwerdtner Máñez, K. An Operationalized Classification of Nature Based Solutions for Water-Related Hazards: From Theory to Practice. Ecol. Econ. 2020, 167, 106460. [Google Scholar] [CrossRef]
- Alejandre, E.M.; van Bodegom, P.M.; Guinée, J.B. Towards an Optimal Coverage of Ecosystem Services in LCA. J. Clean. Prod. 2019, 231, 714–722. [Google Scholar] [CrossRef] [Green Version]
- Bruel, A.; Troussier, N.; Guillaume, B.; Sirina, N. Considering Ecosystem Services in Life Cycle Assessment to Evaluate Environmental Externalities. Procedia CIRP. 2016, 48, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Callesen, I. Biodiversity and Ecosystem Services in Life Cycle Impact Assessment—Inventory Objects or Impact Categories? Ecosyst. Serv. 2016, 22, 94–103. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Hellweg, S.; Azapagic, A. Accounting for Land Use, Biodiversity and Ecosystem Services in Life Cycle Assessment: Impacts of Breakfast Cereals. Sci. Total Environ. 2018, 645, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Koellner, T.; de Baan, L.; Beck, T.; Brandão, M.; Civit, B.; Margni, M.; Mila i Canals, L.; Saad, R.; de Souza, D.M.; Müller-Wenk, R. UNEP-SETAC Guideline on Global Land Use Impact Assessment on Biodiversity and Ecosystem Services in LCA. Int. J. Life Cycle Assess. 2013, 18, 1188–1202. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Charles, M.; Bakshi, B.R.; Stief, P.; Dantan, J.; Etienne, A.; Siadat, A. Including Ecosystem Services in Life Cycle Assessment: Methodology and Application to Urban Farms. Procedia CIRP. 2019, 80, 287–291. [Google Scholar] [CrossRef]
- Othoniel, B.; Rugani, B.; Heijungs, R.; Beyer, M.; Machwitz, M.; Post, P. An Improved Life Cycle Impact Assessment Principle for Assessing the Impact of Land Use on Ecosystem Services. Sci. Total Environ. 2019, 693, 133374. [Google Scholar] [CrossRef]
- Raymundo Pavan, L.A.; Ometto, A.R. Ecosystem Services in Life Cycle Assessment: A Novel Conceptual Framework for Soil. Sci. Total Environ. 2018, 643, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Rugani, B.; de Souza, D.M.; Weidema, B.P.; Bare, J.; Bakshi, B.; Grann, B.; Johnston, J.M.; Raymundo Pavan, L.A.; Liu, X.; Laurent, A.; et al. Towards Integrating the Ecosystem Services Cascade Framework within the Life Cycle Assessment (LCA) Cause-Effect Methodology. Sci. Total Environ. 2019, 690, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Singh, S.; Bakshi, B.R. Accounting for Ecosystem Services in Life Cycle Assessment, Part I: A Critical Review. Environ. Sci. Technol. 2010, 44, 2232–2242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Baral, A.; Bakshi, B.R. Accounting for Ecosystem Services in Life Cycle Assessment, Part II: Toward an Ecologically Based LCA. Environ. Sci. Technol. 2010, 44, 2624–2631. [Google Scholar] [CrossRef]
- Bjørn, A.; Owsianiak, M.; Laurent, A.; Olsen, S.I.; Corona, A.; Hauschild, M.Z. Chapter 8: Scope Definition. In Life Cycle Assessment—Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Laurent, F. Optimisation Fonctionnelle et Spatiale de Scénarios de Méthanisation Centralisée Selon Une Approche Systémique Territoriale Couplée À L’analyse Du Cycle de Vie. Ph.D. Thesis, Université Rennes 1, Rennes, Frence, 2015. Available online: https://hal.archives-ouvertes.fr/tel-02601344/ (accessed on 18 May 2021).
- Loiseau, E.; Roux, P.; Junqua, G.; Maurel, P.; Bellon-Maurel, V. Implementation of an Adapted LCA Framework to Environmental Assessment of a Territory: Important Learning Points from a French Mediterranean Case Study. J. Clean. Prod. 2014, 80, 17–29. [Google Scholar] [CrossRef]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial Life Cycle Assessment (LCA): What Exactly Is It about? A Proposal towards Using a Common Terminology and a Research Agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef] [Green Version]
- Loiseau, E.; Roux, P.; Junqua, G.; Maurel, P.; Bellon-Maurel, V. Adapting the LCA Framework to Environmental Assessment in Land Planning. Int. J. Life Cycle Assess. 2013, 18, 1533–1548. [Google Scholar] [CrossRef]
- Boone, L.; Roldán-ruiz, I.; Van linden, V.; Muylle, H.; Dewulf, J. Environmental Sustainability of Conventional and Organic Farming: Accounting for Ecosystem Services in Life Cycle Assessment. Sci. Total Environ. 2019, 695, 133841. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhou, S.; Wang, M.; Zhang, D. Cost-Benefit Analysis of Low-Impact Development at Hectare Scale for Urban Stormwater Source Control in Response to Anticipated Climatic Change. J. Environ. Manage. 2020, 264, 110483. [Google Scholar] [CrossRef] [PubMed]
- Brudler, S.; Arnbjerg-Nielsen, K.; Hauschild, M.Z.; Rygaard, M. Life Cycle Assessment of Stormwater Management in the Context of Climate Change Adaptation. Water Res. 2016, 106, 394–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Zhang, D.; Adhityan, A.; Ng, W.J.; Dong, J.; Tan, S.K. Assessing Cost-Effectiveness of Bioretention on Stormwater in Response to Climate Change and Urbanization for Future Scenarios. J. Hydrol. 2016, 543, 423–432. [Google Scholar] [CrossRef]
- Spatari, S.; Yu, Z.; Montalto, F.A. Life Cycle Implications of Urban Green Infrastructure. Environ. Pollut. 2011, 159, 2174–2179. [Google Scholar] [CrossRef]
- De Sousa, M.R.C.; Montalto, F.A.; Spatari, S. Using Life Cycle Assessment to Evaluate Green and Grey Combined Sewer Overflow Control Strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Global Footprint Network. Ecological Footprint Standards 2009; Kitzes, J., Ed.; Global Footprint Network: Oakland, CA, USA, 2009. [Google Scholar]
- Luck, G.W.; Daily, G.C.; Ehrlich, P.R. Population Diversity and Ecosystem Services. Trends Ecol. Evol. 2003, 18, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Syrbe, R.; Walz, U. Spatial Indicators for the Assessment of Ecosystem Services: Providing, Benefiting and Connecting Areas and Landscape Metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Schmidt Rivera, X.C.; Bacenetti, J.; Fusi, A.; Niero, M. The Influence of Fertiliser and Pesticide Emissions Model on Life Cycle Assessment of Agricultural Products: The Case of Danish and Italian Barley. Sci. Total Environ. 2016, 592, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Van Zelm, R.; Larrey-Lassalle, P.; Roux, P. Bridging the Gap between Life Cycle Inventory and Impact Assessment for Toxicological Assessments of Pesticides Used in Crop Production. Chemosphere 2014, 100, 175–181. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Anton, A.; Bengoa, X.; Bjorn, A.; Brain, R.; Bulle, C.; Cosme, N.; Dijkman, T.J.; Fantke, P.; Felix, M.; et al. The Glasgow Consensus on the Delineation between Pesticide Emission Inventory and Impact Assessment for LCA. Int. J. Life Cycle Assess. 2015, 20, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Weidema, B.P.; Schmidt, J.; Fantke, P.; Pauliuk, S. On the Boundary between Economy and Environment in Life Cycle Assessment. Int. J. Life Cycle Assess. 2018, 23, 1839–1846. [Google Scholar] [CrossRef]
- Larrey-Lassalle, P.; Catel, L.; Roux, P.; Rosenbaum, R.K.; Lopez-Ferber, M.; Junqua, G.; Loiseau, E. An Innovative Implementation of LCA within the EIA Procedure: Lessons Learned from Two Wastewater Treatment Plant Case Studies. Environ. Impact Assess. Rev. 2017, 63, 95–106. [Google Scholar] [CrossRef]
Analysis Grid | |||
---|---|---|---|
LCA phase 1—Goal and Scope | |||
Functions and functional unit(s) considered | System boundaries considered (life cycle stages) | Lifetime of the system or period of analysis | Geographic location of the study |
LCA phase 2—Life Cycle Inventory (LCI) | |||
Is CO2 sequestration considered? (if so, value) | Is it explicitly stated that the mass balance is respected for the carbon? | Are emissions in the environment considered after application of mineral/organic fertilisers or pesticides? Is the model/source mentioned, or details on calculation given? | |
LCA phase 3—Life Cycle Impact Assessment (LCIA) | |||
Impact and damages categories considered and LCIA method(s) used | Climate change impact (value) | Normalisation of the results (Yes/No) | Weighting of the results (Yes/No) |
LCA phase 4—Interpretation | |||
Contribution analysis (Yes/No) | Main contributors | Sensitivity or uncertainty analysis (Yes/No) | Main limitations of the study |
NBS Typologies | Functions (Functional Units) | ||
---|---|---|---|
On the ground | Parks and Gardens | Urban space with specific uses (recreational areas, safari park, sports fields) | - Source of biomass to produce bioenergy (mass/year) - Operational use of a safari park (activity/year) - To provide a sports field (area of field/year) |
Lawn | - To provide a surface of lawn/to manage lawn (area of lawn/year) | ||
Large urban public park/public urban green space | - To treat wastewater—wetland park (water flow/day) - To provide park service facilities (energy consumption in the park/year) - To sequestrate carbon (mass of CO2) | ||
Single tree/wood | - To incorporate/grow single trees in urban landscape (1 single tree during its lifespan) - To provide a grove (area of wood) | ||
Urban network structures | Green strip (Buffer strip) | - To protect the water body and to mobilize locally sourced biomass for electricity production (area of buffer strip or energy produced) - To provide greenway (area of buffer strip) - To control stormwater runoff/to treat discharge (impervious drainage area) | |
Food and resources production | Vegetable garden | - To produce vegetables (mass of vegetable/year) | |
Urban farm | - To deliver agricultural products (mass of product or area of land/roof or number of kcal/capita/day) - To use land for multiple functions: food production, housing, and afforestation (area of land) | ||
Ecological restoration/systems for erosion control/works on soil | Management of polluted area by plants (phytoremediation) | - To reduce leachate (volume of leachate treated/year) - To remediate a contaminated site (one site of a certain area) - To produce biomass (mass of dry biomass) - To provide energy from biomass cultivated on a contaminated site (area/year) | |
Soil and slope revegetation/mulching/use of pre-existing vegetation | - To stabilise failed slope (area of failed slope) - To mulch agricultural land (area of mulched land) - To landscape an open space (area of open space) | ||
Water | Rain/infiltration garden | - Detention and treatment of stormwater (volume of water treated or water storage capacity) - Stormwater treatment (impervious drainage area) | |
Swales | - To store and transport water for stormwater management (volume of stormwater) - To control stormwater runoff (impervious drainage/catchment area) - To convey discharge (length) | ||
Constructed wetland for wastewater treatment | - To treat wastewater (volume of treated water, or number of person equivalents of treated wastewater with an effluent discharge requirement) - To reduce emissions of nutrients and biochemical oxygen demand (BOD) to acceptable levels (mass of daily organic load of domestic sewage treated to legal standards) | ||
Remeander rivers | - To supply potable water to the end users (volume of supplied water) | ||
Excavation of new waterbodies (ponds, lakes) | - To provide clean, potable water (volume of water delivered to consumers) - To control stormwater runoff/to treat discharge (impervious drainage area) - To store water (storage volume) | ||
On building and structures | Intensive/extensive green roofs | - To serve as a roof = building component (rooftop area, or volume stratigraphy) - To produce vegetables (mass of vegetables) - To minimise runoff quantity and improve runoff quality (volume of runoff, or impervious drainage area) - To transfer energy (energy, or area with a given thermal transmittance, also known as U-value) | |
Green facade | - To serve as a facade = building component (facade area) | ||
Strategies and Actions | Composting | - To manage organic waste (mass of waste) | |
Sustainable use of fertilisers | - To produce fertiliser (mass of fertiliser) - To fertilise arable land (mass of fertiliser with a specific nutrient composition per land area) - To manage a nutrient-containing substrate (mass of substrate) - To harvest crop (crop response = (mass of crop/ha)/(mass fertiliser)) - To produce seaweed extract (mass of product) |
Type of NBS | Number of Studies | Minimum | Maximum | Average | Standard Deviation |
---|---|---|---|---|---|
On the ground | 7 | 7.81 × 10−2 | 3.00 × 101 | 5.18 | 1.10 × 101 |
Water | 5 | 3.39 × 10−1 | 2.32 | 7.95 × 10−1 | 8.59 × 10−1 |
Building | 3 | 4.89 × 10−2 | 1.88 × 10−1 | 1.11 × 10−1 | 7.04 × 10−2 |
Category (Number of Studies) | On the Ground (44) | Water-Related (43) | On Building and Structures (33) | Strategies and Actions (10) | TOTAL (130) | |
---|---|---|---|---|---|---|
Impact Category | ||||||
Midpoint categories | ||||||
Global Warming | 41 | 41 | 29 | 10 | 123 | |
Energy/energy consumption/cumulative energy demand | 12 | 10 | 5 | 0 | 27 | |
Non-renewable resource depletion (metals/minerals and fossils) | 17 | 24 | 18 | 8 | 68 | |
Acidification | 20 | 28 | 20 | 9 | 78 | |
Nutrient enrichment/eutrophication (fresh and sea water) | 24 | 34 | 20 | 10 | 89 | |
Photochemical ozone formation/smog formation | 11 | 21 | 14 | 7 | 54 | |
Particulate matter/respiratory effects | 11 | 16 | 8 | 5 | 40 | |
Human toxicity | 14 | 22 | 15 | 7 | 59 | |
Ecotoxicity (soil, fresh and sea water) | 12 | 24 | 14 | 5 | 55 | |
Ozone layer depletion | 9 | 24 | 16 | 6 | 56 | |
Ionising radiation | 3 | 8 | 2 | 4 | 17 | |
Land use (both agricultural and urban) | 7 | 8 | 4 | 4 | 23 | |
Water use/depletion/scarcity | 11 | 8 | 2 | 3 | 24 | |
Endpoint categories | ||||||
Human Health | 5 | 6 | 4 | 0 | 15 | |
Ecosystems | 5 | 6 | 5 | 0 | 16 | |
Resources | 4 | 6 | 4 | 0 | 14 | |
Aggregated impacts | ||||||
Single score | 7 | 4 | 4 | 2 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larrey-Lassalle, P.; Armand Decker, S.; Perfido, D.; Naneci, S.; Rugani, B. Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature. Land 2022, 11, 649. https://doi.org/10.3390/land11050649
Larrey-Lassalle P, Armand Decker S, Perfido D, Naneci S, Rugani B. Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature. Land. 2022; 11(5):649. https://doi.org/10.3390/land11050649
Chicago/Turabian StyleLarrey-Lassalle, Pyrène, Stéphanie Armand Decker, Domenico Perfido, Serkan Naneci, and Benedetto Rugani. 2022. "Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature" Land 11, no. 5: 649. https://doi.org/10.3390/land11050649
APA StyleLarrey-Lassalle, P., Armand Decker, S., Perfido, D., Naneci, S., & Rugani, B. (2022). Life Cycle Assessment Applied to Nature-Based Solutions: Learnings, Methodological Challenges, and Perspectives from a Critical Analysis of the Literature. Land, 11(5), 649. https://doi.org/10.3390/land11050649