AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models
Abstract
:1. Introduction
2. Methods
2.1. Data Requirements
2.2. Detection Functions in Distance Sampling
2.3. Environmental Variables for Species Distribution Models
2.4. Predicting Species Abundance Using Species Distribution Models
2.5. Adjusting Model Prediction
2.6. Estimation Uncertainty
3. Results
4. Discussion
5. Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iijima, H. A review of wildlife abundance estimation models: Comparison of models for correct application. Mammal Study 2020, 45, 177–188. [Google Scholar] [CrossRef]
- Seber, G.A.F. A review of estimating animal abundance. Int. Stat. Rev. 1992, 60, 129–166. [Google Scholar] [CrossRef]
- Schwarz, C.J.; Seber, G.A.F. Estimating animal abundance: Review III. Stat. Sci. 1999, 14, 427–456. [Google Scholar] [CrossRef]
- Marchowski, D.; Jankowiak, Ł.; Ławicki, Ł.; Wysocki, D. Waterbird counts on large water bodies: Comparing ground and aerial methods during different ice conditions. PeerJ 2018, 6, e5195. [Google Scholar] [CrossRef]
- Haus, J.M.; Eyler, T.B.; Bowman, J.L. A spatially and temporally concurrent comparison of popular abundance estimators for white-tailed deer. Northeast. Nat. 2019, 26, 305–324. [Google Scholar] [CrossRef]
- Harley, S.J.; Myers, R.A.; Dunn, A. Is catch-per-unit-effort proportional to abundance? Can. J. Fish. Aquat. Sci. 2001, 58, 1760–1772. [Google Scholar] [CrossRef]
- Delargy, A.J.; Lambert, G.I.; Kaiser, M.J.; Hiddink, J.G. Potential highly variable catch efficiency estimates complicate estimation of abundance. Fish. Res. 2022, 245, 106138. [Google Scholar] [CrossRef]
- Pradel, R. Utilization of capture-mark-recapture for the study of recruitment and population growth rate. Biometrics 1996, 52, 703–709. [Google Scholar] [CrossRef]
- Besbeas, P.; Freeman, S.N.; Morgan, B.J.T.; Catchpole, E.A. Integrating mark-recapture-recovery and census data to estimate animal abundance and demographic parameters. Biometrics 2002, 58, 540–547. [Google Scholar] [CrossRef]
- Loonam, K.E.; Ausband, D.E.; Lukacs, P.M.; Mitchell, M.S.; Robinson, H.S. Estimating abundance of an unmarked, low-density species using cameras. J. Wildl. Manag. 2021, 85, 87–96. [Google Scholar] [CrossRef]
- Moeller, A.K.; Lukacs, P.M.; Horne, J.S. Three novel methods to estimate abundance of unmarked animals using remote cameras. Ecosphere 2018, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Borchers, D.L.; Efford, M.G. Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 2008, 64, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Jolly, G.M. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 1965, 52, 225–247. [Google Scholar] [CrossRef] [PubMed]
- Rowcliffe, J.M.; Field, J.; Turvey, S.T.; Carbone, C. Estimating animal density using camera traps without the need for individual recognition. J. Appl. Ecol. 2008, 45, 1228–1236. [Google Scholar] [CrossRef]
- Li, X.; Tian, H.; Piao, Z.; Wang, G.; Xiao, Z.; Sun, Y.; Gao, E.; Holyoak, M. CameratrapR: An R package for estimating animal density using camera trapping data. Ecol. Inform. 2022, 69, 101597. [Google Scholar] [CrossRef]
- Buckland, S.T.; Anderson, D.R.; Burnham, K.P.; Laake, J.L. Distance Sampling: Estimating Abundance of Biological Populations; Chapman and Hall: London, UK, 1993; pp. i–xii, 1–446. [Google Scholar]
- Krebs, C.J. Ecological Methodology; Benjamin/Cummings: Menlo Park, CA, USA, 1999; Volume 620. [Google Scholar]
- Hothorn, T.; Mueller, J.; Schroeder, B.; Kneib, T.; Brandl, R. Decomposing environmental, spatial, and spatiotemporal components of species distributions. Ecol. Monogr. 2011, 81, 329–347. [Google Scholar] [CrossRef]
- Royle, J.A. N− mixture models for estimating population size from spatially replicated counts. Biometrics 2004, 60, 108–115. [Google Scholar] [CrossRef]
- Guisan, A.; Zimmermann, N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000, 135, 147–186. [Google Scholar] [CrossRef]
- Li, X.; Ma, L.; Hu, D.; Ma, D.; Li, R.; Sun, Y.; Gao, E. Potential range shift of snow leopard in future climate change scenarios. Sustainability 2022, 14, 1115. [Google Scholar] [CrossRef]
- Mi, C.; Huettmann, F.; Guo, Y.; Han, X.; Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj 2017, 5, e2849. [Google Scholar] [CrossRef] [Green Version]
- Boyce, M.S.; McDonald, L.L. Relating populations to habitats using resource selection functions. Trends Ecol. Evol. 1999, 14, 268–272. [Google Scholar] [CrossRef]
- Boyce, M.S.; Johnson, C.J.; Merrill, E.H.; Nielsen, S.E.; Solberg, E.J.; van Moorter, B. Can habitat selection predict abundance? J. Anim. Ecol. 2016, 85, 11–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stauffer, G.E.; Roberts, N.M.; Macfarland, D.M.; Van Deelen, T.R. Scaling occupancy estimates up to abundance for wolves. J. Wildl. Manag. 2021, 85, 1410–1422. [Google Scholar] [CrossRef]
- Santos, A.J.B.; Vieira, D.H.G.; Bellini, C.; Corso, G.; Ceriani, S.A.; Fuentes, M.M.P.B. Using data from nesting beach monitoring and satellite telemetry to improve estimates of marine turtle clutch frequency and population abundance. Mar. Biol. 2021, 168, 1–16. [Google Scholar] [CrossRef]
- Teton, B.S.; Lewis, J.S.; Wright, C.T.; White, M.; Young, H. Using natural pelt patterns to estimate population abundance with mark-resight models. Wildl. Soc. Bull. 2020, 44, 695–704. [Google Scholar] [CrossRef]
- Shertzer, K.W.; Bacheler, N.M.; Pine, W.E., III; Runde, B.J.; Buckel, J.A.; Rudershausen, P.J.; MacMahan, J.H. Estimating population abundance at a site in the open ocean: Combining information from conventional and telemetry tags with application to gray triggerfish (Balistes capriscus). Can. J. Fish. Aquat. Sci. 2020, 77, 34–43. [Google Scholar] [CrossRef]
- Howard, A.L.; Clement, M.J.; Peck, F.R.; Rubin, E.S. Estimating mountain lion abundance in arizona using statistical population reconstruction. J. Wildl. Manag. 2020, 84, 85–95. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Miller, D.L.; Rexstad, E.; Thomas, L.; Marshall, L.; Laake, J.L. Distance Sampling in R. J. Stat. Softw. 2019, 89, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar. Isprs J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild. Bioscience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, J.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Lehner, B. Global Lakes and Wetlands Database, Level 3; World Wildlife Fund US: Grang, Switzerland, 2004. [Google Scholar]
- Iverson, L.R.; Prasad, A.M.; Matthews, S.N.; Peters, M. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For. Ecol. Manag. 2008, 254, 390–406. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Valavi, R.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Modelling species presence-only data with random forests. Ecography 2021, 44, 1731–1742. [Google Scholar] [CrossRef]
- Liaw, M.A. Package ‘Randomforest’; University of California, Berkeley: Berkeley, CA, USA, 2018. [Google Scholar]
- Ketz, A.C.; Johnson, T.L.; Monello, R.J.; Mack, J.A.; George, J.L.; Kraft, B.R.; Wild, M.A.; Hooten, M.B.; Hobbs, N.T. Estimating abundance of an open population with an N-mixture model using auxiliary data on animal movements. Ecol. Appl. 2018, 28, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Ganley, L.C.; Brault, S.; Mayo, C.A. What we see is not what there is: Estimating North Atlantic right whale Eubalaena glacialis local abundance. Endanger. Species Res. 2019, 38, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gao, E.; Li, B.; Zhan, X. Estimating abundance of Tibetan wild ass, Tibetan gazelle and Tibetan antelope using species distribution models and distance sampling. Sci. Sin. Vitae 2019, 49, 151–162. [Google Scholar] [CrossRef]
- Figueiredo, M.S.L.; Grelle, C.E.V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 2009, 15, 117–121. [Google Scholar] [CrossRef]
- Kery, M. Estimating abundance from bird counts: Binomial mixture models uncover complex covariate relationships. Auk 2008, 125, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Dodd, C.K.; Dorazio, R.M. Using counts to simultaneously estimate abundance and detection probabilities in a salamander community. Herpetologica 2004, 60, 468–478. [Google Scholar] [CrossRef]
- Pérez, J.M.; Serrano, E.; Alpízar-Jara, R.; Granados, J.; Soriguer, R. The potential of distance sampling methods to estimate abundance of mountain ungulates: Review of usefulness and limitations. Pirineos 2002, 157, 15–24. [Google Scholar] [CrossRef] [Green Version]
Species | Size | Distance | Side | Lat | Lon | Elev | Date | Time |
---|---|---|---|---|---|---|---|---|
kiang | 9 | 130 | e | 34.83078 | 98.37612 | 4217 | 17 July 2017 | 13:28:43 |
kiang | 32 | 150 | e | 34.84620 | 98.44160 | 4223 | 17 July 2017 | 13:22:53 |
kiang | 7 | 600 | e | 34.85080 | 98.29750 | 4225 | 17 July 2017 | 13:37:12 |
kiang | 8 | 350 | e | 34.85908 | 98.45139 | 4232 | 17 July 2017 | 13:18:01 |
kiang | 1 | 210 | e | 34.87584 | 98.47288 | 4236 | 17 July 2017 | 13:15:24 |
kiang | 3 | 200 | e | 34.89577 | 98.49666 | 4244 | 17 July 2017 | 13:12:01 |
Source of Errors | Lower 95% CI | Upper 95% CI | R Code |
---|---|---|---|
survey, model, adjustment | 13,339 | 178,215 | CI(EST[4], survey.uncertainty, model.uncertainty, error.adjust) |
model, adjustment | 22,456 | 144,376 | CI(EST[4], 0.001, model.uncertainty, adjust.uncertainty) |
survey, adjustment | 15,452 | 158,504 | CI(EST[4], survey.uncertainty, 0.001, adjust.uncertainty) |
survey, model | 18,283 | 149,844 | CI(EST[4], survey.uncertainty, model.uncertainty, 0.001) |
adjustment | 28,369 | 123,030 | CI(EST[4], 0.001, 0.001, adjust.uncertainty) |
model | 37,986 | 113,024 | CI(EST[4], 0.001, model.uncertainty, 0.001) |
survey | 23,622 | 127,671 | CI(EST[4], survey.uncertainty, 0.001, 0.001) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, N.; Li, B.; Sun, Y.; Gao, E. AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models. Land 2022, 11, 660. https://doi.org/10.3390/land11050660
Li X, Li N, Li B, Sun Y, Gao E. AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models. Land. 2022; 11(5):660. https://doi.org/10.3390/land11050660
Chicago/Turabian StyleLi, Xinhai, Ning Li, Baidu Li, Yuehua Sun, and Erhu Gao. 2022. "AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models" Land 11, no. 5: 660. https://doi.org/10.3390/land11050660
APA StyleLi, X., Li, N., Li, B., Sun, Y., & Gao, E. (2022). AbundanceR: A Novel Method for Estimating Wildlife Abundance Based on Distance Sampling and Species Distribution Models. Land, 11(5), 660. https://doi.org/10.3390/land11050660