A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District
Abstract
:1. Introduction
2. Study Area and Data Gathering
2.1. Study Area
2.2. Data Gathering and Processing
3. Methodology
3.1. Driving Force Model Construction of the RSILUS Change
3.1.1. Selection of the Driving Factors
3.1.2. Construction of the Driving Force Model
3.2. Simulation of the RSILUS
3.3. Analysis of the RSILUS Characteristics
3.3.1. Land Use Combination Characteristics
3.3.2. Spatial Agglomeration Characteristics
4. Results and Analysis
4.1. Analyzing the Driving Factors of RSILUS Evolution
4.2. Simulation Results of the RSILUS
4.3. Changes in the RSILUS in Pinggu District
4.3.1. Changes in Quantity Structure of RSILUS in Pinggu District
4.3.2. Spatial Changes of the RSILUS in Pinggu District
5. Discussion
5.1. A Striking Regional Difference Exists in the RSILUS Change
5.2. The Clear Declining Trend of the RSILUS
5.3. Changes in the RSILUS Epitomize the Impact of Socioeconomic Development
5.4. Contributions, Limitations, and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2018, 655, 707–719. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, M.; Lundholm, E. Restructuring of rural Sweden—Employment transition and out-migration of three cohorts born 1945–1980. J. Rural Stud. 2015, 42, 123–132. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Zhai, R. Geographical research and optimizing practice of rural hollowing in China. Acta Geophica Sin. 2009, 64, 1193–1202. [Google Scholar] [CrossRef]
- Markey, S.; Halseth, G.; Manson, D. Challenging the inevitability of rural decline: Advancing the policy of place in northern British Columbia. J. Rural Stud. 2008, 24, 409–421. [Google Scholar] [CrossRef]
- Elshof, H.; Haartsen, T.; van Wissen, L.J.; Mulder, C.H. The influence of village attractiveness on flows of movers in a declining rural region. J. Rural Stud. 2017, 56, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S. Research on the geography of rural revitalization in the new era. Geogr. Res. 2019, 38, 461–466. [Google Scholar]
- Chen, Z.; Liu, Y.; Feng, W.; Li, Y.; Li, L. Study on spatial tropism distribution of rural settlements in the Loess Hilly and Gully Region based on natural factors and traffic accessibility. J. Rural Stud. 2019; in press. [Google Scholar] [CrossRef]
- Long, H.; Li, Y.; Liu, Y.; Woods, M.; Zou, J. Accelerated restructuring in rural China fueled by ‘increasing vs. decreasing balance’ land-use policy for dealing with hollowed villages. Land Use Policy 2012, 29, 11–22. [Google Scholar] [CrossRef]
- Gude, P.H.; Hansen, A.J.; Rasker, R.; Maxwell, B. Rates and drivers of rural residential development in the Greater Yellowstone. Landsc. Urban Plan. 2006, 77, 131–151. [Google Scholar] [CrossRef]
- Li, S.S.; Cao, G.C.; Zhao, P.F. Analysis of Spatial Distribution of Rural Settlements and Its Influential Factors in Qinba Mountain Area—A Case Study of Ningqiang County in Shaanxi Province. Res. Soil Water Conserv. 2014, 21, 186–191. [Google Scholar]
- Conrad, C.; Rudloff, M.; Abdullaev, I.; Thiel, M.; Löw, F.; Lamers, J. Measuring rural settlement expansion in Uzbekistan using remote sensing to support spatial planning. Appl. Geogr. 2015, 62, 29–43. [Google Scholar] [CrossRef]
- Zhang, T.Z.; Zhang, F.R.; Xie, Z.; Huang, J.W. Spatial pattern evolution of rural settlements in mountainous areas of ethnic minorities in Yunnan Province under background of precise poverty alleviation. Trans. Chin. Soc. Agric. Eng. 2019, 35, 246–254. [Google Scholar]
- Shi, M.J.; Xie, Y.W.; Cao, Q. The landscape evolution and mechanism analysis of rural settlements in the oasis of arid region. Geogr. Res. 2016, 35, 692–702. [Google Scholar]
- Gallo, D.; Ciminale, M.; Becker, H.; Masini, N. Remote sensing techniques for reconstructing a vast Neolithic settlement in Southern Italy. J. Archaeol. Sci. 2009, 36, 43–50. [Google Scholar] [CrossRef]
- Long, H.; Zou, J.; Liu, Y. Differentiation of rural development driven by industrialization and urbanization in eastern coastal China. Habitat Int. 2009, 33, 454–462. [Google Scholar] [CrossRef]
- Porta, J.; Parapar, J.; Doallo, R.; Barbosa, V.; Santé, I.; Crecente, R.; Díaz, C. A population-based iterated greedy algorithm for the delimitation and zoning of rural settlements. Comput. Environ. Urban Syst. 2013, 39, 12–26. [Google Scholar] [CrossRef]
- Kohler, F.; Marchand, G.; Negrão, M. Local history and landscape dynamics: A comparative study in rural Brazil and rural France. Land Use Policy 2015, 43, 149–160. [Google Scholar] [CrossRef]
- Jiang, G.H.; He, X.; Ma, W.Q.; Wang, M.Z.; Zhang, R.J. Rural settlements spatial pattern evolution and zoning district based on spatial autocorrelation. Trans. Chin. Soc. Agric. Eng. 2015, 31, 265–273. [Google Scholar]
- Tannier, C.; Cura, R.; Leturcq, S.; Zadora-Rio, E. An agent-based model for exploring the combined effects of social and demographic changes on the concentration and hierarchy of rural settlement patterns in North-Western Europe during the Middle Ages (800–1200 CE). J. Anthr. Archaeol. 2020, 59, 101204. [Google Scholar] [CrossRef]
- Siciliano, G. Urbanization strategies, rural development and land use changes in China: A multiple-level integrated assessment. Land Use Policy 2012, 29, 165–178. [Google Scholar] [CrossRef]
- Xu, F.; Wang, Z.Q.; Zhang, H.W.; Chai, J. Application of random forest algorithm in suitability evaluation of rural residential land. Resour. Sci. 2018, 40, 2085–2098. [Google Scholar]
- McDowell, R.; Snelder, T.; Harris, S.; Lilburne, L.; Larned, S.; Scarsbrook, M.; Curtis, A.; Holgate, B.; Phillips, J.; Taylor, K. The land use suitability concept: Introduction and an application of the concept to inform sustainable productivity within environmental constraints. Ecol. Indic. 2018, 91, 212–219. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.B.; Fan, Y.T.; Xiang, X.M.; Ran, N.; Zhou, Y.K.; Shen, C.Z. Rural residential land consolidation strategy from a perspective synthesizing towns, villages and land parcels: A case study in Xinyi city, Jiangsu province. Geogr. Res. 2018, 37, 678–694. [Google Scholar]
- Woods, M. Engaging the global countryside: Globalization, hybridity and the reconstitution of rural place. Prog. Hum. Geogr. 2007, 31, 485–507. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Wang, C. Rural settlement spatial layout optimization using network center radiation guidance for Yanba Village in Chongqing. Resour. Sci. 2018, 40, 958–966. [Google Scholar]
- Alcock, R. The New Rural Reconstruction Movement: A Chinese degrowth style movement? Ecol. Econ. 2019, 161, 261–269. [Google Scholar] [CrossRef]
- Perkins, H.C. Commodification: Re-resourcing rural areas. In Handbook of Rural Studies; Clock, P., Marsden, T., Mooney, H.P., Eds.; SAGE Publications Ltd.: London, UK, 2006; p. 496. [Google Scholar]
- Tian, Y.; Kong, X.; Liu, Y.; Wang, H. Restructuring rural settlements based on an analysis of inter-village social connections: A case in Hubei Province, Central China. Habitat Int. 2016, 57, 121–131. [Google Scholar] [CrossRef]
- Zou, Y.F.; Li, Y.J.; Ma, T.J.; Yuan, Z.H.; Liu, J. Spatial distribution optimization of rural residential areas based on town planning regulation. Trans. Chin. Soc. Agric. Eng. 2018, 34, 238–244. [Google Scholar]
- Mikle, G. Long-term transformation of Hungarian manors: The relevance of the rural restructuring approach and the concept of the precariat. J. Rural Stud. 2020, 77, 105–112. [Google Scholar] [CrossRef]
- Woods, M. Rural geography III rural futures and the future of rural geography. Prog. Hum. Geogr. 2012, 36, 125–134. [Google Scholar] [CrossRef]
- Jiang, G.; Ma, W.; Dingyang, Z.; Qinglei, Z.; Ruijuan, Z. Agglomeration or dispersion? Industrial land-use pattern and its impacts in rural areas from China′s township and village enterprises perspective. J. Clean. Prod. 2017, 159, 207–219. [Google Scholar] [CrossRef]
- Zhang, B.L.; Cai, W.M.; Zhang, F.R.; Feng, T.; Zhang, L. Progress and prospects of micro-scale research on rural residential land in China. Prog. Geogr. 2016, 35, 1049–1061. [Google Scholar]
- Cao, Z.J.; Zhang, F.R.; Jiang, G.H.; Meng, F.Y.; Jin, M.L. Analyzing LUS difference of rural residential areas in different regions of Pinggu District of Beijing. Prog. Geogr. 2008, 27, 121–126. [Google Scholar]
- Tian, Y.Y.; Jiang, G.H.; He, X.; Qu, Y.B.; Zhou, D.Y. Internal land use structure difference analysis of rural settlements in Pinggu District, Beijing. Trans. Chin. Soc. Agric. Eng. 2019, 35, 263–273. [Google Scholar]
- Bański, J.; Wesołowska, M. Transformations in housing construction in rural areas of Poland’s Lublin region—Influence on the spatial settlement structure and landscape aesthetics. Landsc. Urban Plan. 2010, 94, 116–126. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, F.; Li, C.; Zhu, T. Functional transition of the rural settlement: Analysis of land-use differentiation in a transect of Beijing, China. Habitat Int. 2014, 41, 262–271. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, G.; Wang, D.; Li, W.; Guo, H.; Zheng, Q. Rural settlements transition (RST) in a suburban area of metropolis: Internal structure perspectives. Sci. Total Environ. 2018, 615, 672–680. [Google Scholar] [CrossRef]
- Kamusoko, C.; Aniya, M.; Adi, B.; Manjoro, M. Rural sustainability under threat in Zimbabwe—Simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Appl. Geogr. 2009, 29, 435–447. [Google Scholar] [CrossRef]
- Sakieh, Y.; Amiri, B.J.; Danekar, A.; Feghhi, J.; Dezhkam, S. Simulating urban expansion and scenario prediction using a cellular automata urban growth model, SLEUTH, through a case study of Karaj City, Iran. Neth. J. Hous. Built Environ. 2015, 30, 591–611. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Argany, M.; Jelokhani-Niaraki, M.; Arsanjani, J.J. A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities 2019, 93, 120–135. [Google Scholar] [CrossRef]
- Mansour, S.; Al-Belushi, M.; Al-Awadhi, T. Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy 2020, 91, 104414. [Google Scholar] [CrossRef]
- Jiang, G.H.; Zhang, F.R.; Chen, J.W.; Duan, Z.Q.; Su, Z.Y. Analysis of the driving forces of change of rural residential areas in Beijing mountainous areas based on Logistic regression model. Trans. CSAE 2007, 23, 81–87. [Google Scholar]
- Peng, J.J.; Kong, X.S.; Liu, Y.L.; Cui, J.X. Spatial optimum allocation of rural settlements based on agent mode. Geogr. Geo-Inf. Sci. 2016, 32, 52–58. [Google Scholar]
- Lu, D.B.; Mao, W.l.; Yu, Z.; Bai, B. Simulation Study on the Spatial Growth of Rural Settlements in the Mountainous Area Based on Improved MCR Model. Res. Soil Water Conserv. 2016, 23, 322–326, 349. [Google Scholar] [CrossRef]
- Gong, J.; Yang, J.X.; Li, Y.F. A case-based cellular automation model for simulating changes in rural residential areas. Resour. Sci. 2015, 37, 1797–1806. [Google Scholar]
- Sang, L.; Zhang, C.; Yang, J.; Zhu, D.; Yun, W. Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Math. Comput. Model. 2011, 54, 938–943. [Google Scholar] [CrossRef]
- Li, H.; Yuan, Y.; Zhang, X.; Li, Z.; Wang, Y.; Hu, X. Evolution and transformation mechanism of the spatial structure of rural settlements from the perspective of long-term economic and social change: A case study of the Sunan region, China. J. Rural Stud. 2019; in press. [Google Scholar] [CrossRef]
- Dumreicher, H. Chinese villages and their sustainable future: The European Union-China-Research Project “SUCCESS”. J. Environ. Manag. 2008, 87, 204–215. [Google Scholar] [CrossRef]
- Tu, S.; Long, H.; Zhang, Y.; Ge, D.; Qu, Y. Rural restructuring at village level under rapid urbanization in metropolitan suburbs of China and its implications for innovations in land use policy. Habitat Int. 2018, 77, 143–152. [Google Scholar] [CrossRef]
- Li, Y.; Westlund, H.; Liu, Y. Why some rural areas decline while some others not: An overview of rural evolution in the world. J. Rural Stud. 2019, 68, 135–143. [Google Scholar] [CrossRef]
- Long, H.; Tu, S.; Ge, D.; Li, T.; Liu, Y. The allocation and management of critical resources in rural China under restructuring: Problems and prospects. J. Rural Stud. 2016, 47, 392–412. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, X. The changing settlements in rural areas under urban pressure in China: Patterns, driving forces and policy implications. Landsc. Urban Plan. 2013, 120, 170–177. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Q.; Lin, J.; Luo, H.; Tan, Z.; Ma, Y. Simulating land use/land cover change in an arid region with the coupling models. Ecol. Indic. 2020, 122, 107231. [Google Scholar] [CrossRef]
- Tao, Z.; Guanghui, J.; Guangyong, L.; Dingyang, Z.; Yanbo, Q. Neglected idle rural residential land (IRRL) in metropolitan suburbs: Spatial differentiation and influencing factors. J. Rural Stud. 2020, 78, 163–175. [Google Scholar] [CrossRef]
- Ma, W.; Jiang, G.; Li, W.; Zhou, T. How do population decline, urban sprawl and industrial transformation impact land use change in rural residential areas? A comparative regional analysis at the peri-urban interface. J. Clean. Prod. 2018, 205, 76–85. [Google Scholar] [CrossRef]
- Arsanjani, J.J.; Helbich, M.; Kainz, W.; Boloorani, A.D. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. Int. J. Appl. Earth Obs. Geoinform. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Deng, H.; Shao, J.A.; Wang, J.L.; Gao, M.; Wei, C.F. Land use driving forces and its future scenario simulation in the Three Gorges Reservoir Area using CLUE-S model. Acta Geogr. Sin. 2016, 71, 1979–1997. [Google Scholar]
- Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef]
- Clarke, K.C.; Gaydos, L.J. Loose-coupling a cellular automaton model and GIS: Long-term urban growth pre-diction for San Francisco and Washington/Baltimore. Int. J. Geogr. Inf. Sci. 1998, 12, 699–714. [Google Scholar] [CrossRef] [Green Version]
- Munshi, T.; Zuidgeest, M.; Brussel, M.; van Maarseveen, M. Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities 2014, 39, 68–86. [Google Scholar] [CrossRef]
- Siddiqui, A.; Siddiqui, A.; Maithani, S.; Jha, A.K.; Kumar, P.; Srivastav, S. Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt. J. Remote Sens. Space Sci. 2018, 21, 229–236. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, A.; Chanda, A.; Mondal, P.; Akhand, A.; Mukherjee, S.; Nayak, S.; Ghosh, S.; Mitra, D.; Ghosh, T.; et al. Application of Cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sens. Appl. Soc. Environ. 2017, 5, 64–77. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, X.-Q.; Chen, R. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecol. Model. 2014, 283, 1–7. [Google Scholar] [CrossRef]
- Anderson, T.K. Kernel density estimation and K-means clustering to profile road accident hotspots. Accid. Anal. Prev. 2009, 41, 359–364. [Google Scholar] [CrossRef]
- Sun, J.W.; Kong, X.S.; Tian, Y.S. Identifying Reconstruction Directions of Rural Settlements Based on Analysis of Spatial Combination Features. Sci. Geogr. Sin. 2017, 37, 748–755. [Google Scholar] [CrossRef]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Westlund, H.; Kobayashi, K. Social Capital and Rural Development in the Knowledge Society; Edward Elgar Publishing: Cheltenham, UK, 2013; pp. 1–18. [Google Scholar] [CrossRef]
- Esparcia, J. Innovation and networks in rural areas. An analysis from European innovative projects. J. Rural Stud. 2014, 34, 1–14. [Google Scholar] [CrossRef]
- Tian, G.; Qiao, Z.; Gao, X. Rural settlement land dynamic modes and policy implications in Beijing metropolitan region, China. Habitat Int. 2014, 44, 237–246. [Google Scholar] [CrossRef]
Driving Factors | Land Use Types | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCL | RIL | RHL | RPSL | RRL | RSL | RVL | ||||||||
OR | OR | OR | OR | OR | OR | OR | ||||||||
Elevation | −0.004 *** | 0.996 | −0.017 *** | 0.984 | −0.018 *** | 0.981 | −0.005 *** | 0.995 | −0.012 *** | 0.988 | −0.013 *** | 0.987 | −0.001 *** | 0.999 |
GDP per km2 | — | — | 0.007 *** | 1.007 | — | — | 0.003 *** | 1.003 | 0.000 | 1.000 | −0.006 *** | 0.994 | −0.004 *** | 0.996 |
Primary industry income per km2 | 0.001 *** | 1.001 | — | — | — | — | — | — | — | — | — | — | — | — |
Share of employment in secondary industry | −0.902 *** | 0.406 | −9.157 *** | 0.000 | −31.77 *** | 0.000 | −9.050 *** | 0.000 | — | — | −3.127 *** | 0.044 | −1.598 *** | 0.202 |
Share of income from secondary industry | 0.741 *** | 2.098 | −0.701 | 0.496 | — | — | 0.689 * | 1.992 | — | — | 1.505 * | 4.502 | 3.177 *** | 23.977 |
Area of arable land | 0.000 | 1.000 | 0.001 *** | 1.001 | −0.002 *** | 0.999 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 |
Distance to rivers | 0.000 | 1.000 | 0.000 | 1.000 | 0.001 *** | 1.001 | 0.000 | 1.000 | 0.000 | 1.000 | 0.001 | 1.001 | −0.001 *** | 0.999 |
Net income per capita | 0.000 | 1.000 | 0.000 | 1.000 | 0.001 *** | 1.001 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 |
Area of cultivated land per capita | −0.025 ** | 0.976 | −0.120 *** | 0.887 | −0.293 *** | 0.753 | −0.019 * | 0.981 | 0.090 ** | 1.094 | −0.093 | 0.911 | 0.050 *** | 1.051 |
Population density | −0.001 *** | 0.999 | −0.005 *** | 0.995 | −0.009 *** | 0.993 | −0.002 ** | 0.998 | 0.001 *** | 1.001 | 0.001 * | 1.001 | 0.000 | 1.000 |
Distance to main roads | −0.001 *** | 0.999 | −0.006 *** | 0.994 | −0.001 *** | 0.999 | −0.004 ** | 0.996 | 0.000 | 1.000 | −0.001 *** | 0.999 | −0.002 *** | 0.998 |
Share of tertiary industry employment | 1.977 *** | 7.219 | −0.766 ** | 0.465 | −1.876 *** | 0.532 | 1.170 *** | 3.222 | — | — | 3.085 *** | 21.860 | −1.400 *** | 0.247 |
Share of income from tertiary industry | 2.927 *** | 18.670 | 3.431 *** | 30.907 | 1.223 *** | 4.258 | 2.368 *** | 10.674 | — | — | 0.644 | 1.905 | 0.435 *** | 1.544 |
Slope | −0.018 *** | 0.982 | 0.002 | 1.002 | −0.209 *** | 0.807 | −0.016 *** | 0.984 | 0.049 *** | 1.050 | 0.048 ** | 1.050 | −0.032 *** | 0.969 |
Distance to towns | 0.000 | 1.000 | 0.000 | 1.000 | 0.001 *** | 1.001 | 0.000 | 1.000 | 0.000 | 1.00 | 0.000 | 1.000 | 0.000 | 1.000 |
Constant | 0.384 | 1.468 | 6.260 | 522.961 | 0.268 | 1.820 | 2.093 | 8.106 | 0.907 | 2.477 | −2.005 | 0.135 | 0.375 | 1.454 |
ROC value | 0.802 | 0.962 | 0.937 | 0.925 | 0.766 | 0.830 | 0.896 | |||||||
Prediction accuracy | 73.6% | 92.8% | 88.5% | 83.2% | 71.4% | 79.2% | 83.2% |
Town | Combination Coefficient | Type Numbers | Combination Type |
---|---|---|---|
MF | 20 | 4 | RHL + RIL + RPSL + RVL |
SDZ | 50 | 4 | RHL + RIL + RPSL + RVL |
WXZ | 143 | 4 | RHL + RIL + RPSL + RVL |
YK | 20 | 4 | RHL + RIL + RPSL + RVL |
XGZ | 27 | 4 | RHL + RIL + RPSL + RVL |
DHS | 79 | 4 | RHL + RIL + RPSL + RVL |
PG | 124 | 2 | RHL + RPSL |
DGC | 338 | 2 | RHL + RPSL |
XEZ | 129 | 2 | RHL + RPSL |
ZLY | 344 | 2 | RHL + RPSL |
HSY | 108 | 4 | RHL + RPSL + RIL + RCL |
LJD | 78 | 3 | RHL + RVL + RPSL |
JHH | 152 | 3 | RHL + RPSL + RCL |
DXZ | 222 | 4 | RHL + RVL + RIL + RPSL |
MCY | 169 | 3 | RHL + RIL + RPSL |
NDLH | 44 | 3 | RHL + RIL + RCL |
Type | 2005 | 2015 | 2025 | 2015–2005 | 2025–2015 |
---|---|---|---|---|---|
RCL | 105.00 | 83.69 | 69.99 | −21.31 | −13.70 |
RIL | 481.83 | 393.41 | 326.71 | −88.42 | −66.70 |
RSL | 4411.48 | 3946 | 3545.9 | −465.48 | −400.10 |
RPSL | 330.40 | 284.7 | 255.97 | −45.7 | −28.73 |
RRL | 6.87 | 7.68 | 8.38 | 0.81 | 0.70 |
RSL | 8.95 | 7.31 | 6.11 | −1.64 | −1.20 |
RVL | 207.42 | 214.01 | 218.31 | 6.59 | 4.30 |
Total | 5551.95 | 4936.80 | 4431.37 | −615.15 | −505.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Jiang, G.; Zhou, D.; Zhou, T.; Ma, W. A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District. Land 2022, 11, 661. https://doi.org/10.3390/land11050661
Tian Y, Jiang G, Zhou D, Zhou T, Ma W. A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District. Land. 2022; 11(5):661. https://doi.org/10.3390/land11050661
Chicago/Turabian StyleTian, Yaya, Guanghui Jiang, Dingyang Zhou, Tao Zhou, and Wenqiu Ma. 2022. "A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District" Land 11, no. 5: 661. https://doi.org/10.3390/land11050661
APA StyleTian, Y., Jiang, G., Zhou, D., Zhou, T., & Ma, W. (2022). A Refined Rural Settlements Simulation Considering the Competition Relationship among the Internal Land Use Types: A Case Study of Pinggu District. Land, 11(5), 661. https://doi.org/10.3390/land11050661