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Abstract: A third place (public social space) has been proven to be a gathering place for communities
of friends on social networks (social media). The regulars at places of worship, cafes, parks, and
entertainment can also possibly be friends with those who follow each other on social media, with
other non-regulars being social network friends of one of the regulars. Therefore, detecting and
analyzing user-friendly communities on social networks can provide references for the layout and
construction of urban public spaces. In this article, we focus on proposing a method for detecting
communities of signed social networks and mining γ-Quasi-Cliques for closely related users within
them. We fully consider the relationship between friends and enemies of objects in signed networks,
consider the mutual influence between friends or enemies, and propose a novel method to recompute
the weighted edges between nodes and mining γ-Quasi-Cliques. In our experiment, with a variety of
thresholds given, we conducted multiple sets of tests via real-life social network datasets, compared
various reweighted datasets, and detected maximal balanced γ-Quasi-Cliques to determine the
optimal parameters of our method.

Keywords: community detection; γ-Quasi-Cliques; signed social network; big data; third place;
urban public spaces

1. Introduction

In community building, the third place [1] is the social public place separate from
home (“first place”) and the workplace (“second place”). It is a public place where people
easily visit and communicate with friends; especially, its functional role can be revealed
by the structures of the representative friendship circles in social networks [2]. Usually,
third places include some public spaces such as churches, cafes, clubs, public libraries,
operas, parks, monuments, restaurants, or indoor recreation. The study in Reference [2]
suggests that each friendship community may indicate whether the type of third place is
more suitable for the existing friendship circle, or larger communities can be constructed
by analyzing and bridging the differences between strangers. At the same time, some users
may overlap in different communities, indicating that they have a wider social behavior or
are regular individuals in certain kinds of public spaces, while other non-regular users may
visit these third places because of their regular friends.

In order to make some reasonable suggestions for land planning and public space
distribution, it is of great significance to detect friendship communities in social networks.
To solve this problem, this paper intends to propose an algorithm to detect friend/enemy
communities effectively in signed social networks. Therefore, we use graph theory to solve
this problem.

Graph theory [3] is a branch of mathematics that treats a graph as the research object
and has a wide range of applications in the existing research, including biology, computers,
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social systems, and other fields such as protein interaction network analysis, genetic biology
network analysis, web community mining, social network analysis, and knowledge graph
construction [4,5]. In addition, recently, the graph mining technique in the social network
has been considered as an important research direction in the data field. A graph in graph
theory is composed of several given nodes and edges, and the edges connect certain nodes.
A graph is usually used to describe the specific relationship between particular objects. For
example, a node is used to represent a user in the social network; an edge is utilized to
connect two users, indicating a relationship between the corresponding ones.

Typically, nodes in a network represent individuals, while edges represent the relation-
ships between them. In the regular setting, only positive relations representing proximity
or similarity are considered. However, when the network has like/dislike, love/hate, re-
spect/disrespect, or trust/distrust relationships, such a representation, with only a positive
edge, is not enough, since it cannot encode the sign of the relationship. These networks can
be modeled as the signed social networks, where edge weights can be positive or negative.
Early use of signed networks can be found in anthropology, where negative edges were
used to represent antagonistic relationships between tribes. In earlier years, signed social
networks were used in anthropology, where negative edges were used to denote negative
relations such as tribal hostility [6]. In the field of computer science, there is a lot of research
on signed social networks, for example, Silviu built a signed network for Wikipedia [7],
Liu et al. Al proposed a link prediction method for a signed social network [8], and Timo
presented a model for creating signed networks enabling friends profit from enemies [9].

The most common theory associated with signed social networks is the “social balance
theory”, which intuitively can be interpreted as “my friend’s friend is my friend”, “my
friend’s enemy is my enemy”, “my enemy’s friend is my enemy”, and “my enemy’s enemy
is my friend”. Below, we present a definition, in that a graph is balanced if any part of the
graph does not conflict with the “social balance theory”.

Figure 1 illustrates the “social balance theory”, where the signed “+” denotes “friend”/
“positive”/“trust” and “−” denotes “enemy”/“negative”/“distrust”, subgraphs (a) and
(b) are balanced, and (c) and (d) are unbalanced.
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Figure 1. Balanced and unbalanced triangles. “+” means a positive edge, “−” means a negative edge, 
where sub-figures (a,b) are balanced triangles and (c,d) are unbalanced triangles. 

References [10,11] show that networks following the concept of balance can cluster 
into two perfect adversarial groups. In our previous work [12], we also proposed a detec-
tion method for maximal balanced cliques in the signed social networks based on the bal-
ance theory. A clique is a completely connected subgraph of a graph, which requires all 
nodes in the subgraph to be connected in pairs with strict constraints. Sometimes, an im-
portant node in the dataset has missing pieces of information, which connect it with other 
nodes, or there is no edge between it and an irrelevant node. As the conditions of clique 
detection are too strict, this important node is easy to be ignored or is pruned in the pro-
cess of clique detection [13]. The 𝛾-Quasi-Cliques have the capacity to solve the men-
tioned-above problems, as they have more relaxing conditions in comparison to the clique 
[14]. 

Figure 1. Balanced and unbalanced triangles. “+” means a positive edge, “−” means a negative edge,
where sub-figures (a,b) are balanced triangles and (c,d) are unbalanced triangles.

References [10,11] show that networks following the concept of balance can cluster into
two perfect adversarial groups. In our previous work [12], we also proposed a detection
method for maximal balanced cliques in the signed social networks based on the balance
theory. A clique is a completely connected subgraph of a graph, which requires all nodes
in the subgraph to be connected in pairs with strict constraints. Sometimes, an important
node in the dataset has missing pieces of information, which connect it with other nodes,
or there is no edge between it and an irrelevant node. As the conditions of clique detection
are too strict, this important node is easy to be ignored or is pruned in the process of
clique detection [13]. The γ-Quasi-Cliques have the capacity to solve the mentioned-above
problems, as they have more relaxing conditions in comparison to the clique [14].

In this paper, we propose a new model to detect γ-Quasi-Cliques (it is possible
to include the negative edges) for the signed social network, and considering “friendly
density” and mutual influence with friends and enemies, we use a method to recompute
the weight of edges in the signed social network.

The organizational structure of this paper is: Section 1 introduces the signed social
networks and social balanced theory; Section 2 presents related works and analyzes the
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clustering method for the signed social network in the existing research work; Section 3
explains the basic knowledge about the “friendly density theory” and signed social network
and introduces a way to recompute the weight of edges in the signed network and the
maximal balanced γ-Quasi-Clique detect method; Section 4 applies the famous open
datasets on our model in the experiment, and determines the optimal threshold for filtering
the recomputed weight adjacency matrix and the best value of γ. Finally, Section 5 presents
the conclusion of the work and further stages of the research.

2. Related Works

Signed social networks with positive and negative links have attracted considerable
attention over the past few years. One of the main challenges in signed network analysis is
community detection, which aims to find mutually opposing groups with two character-
istics: (1) entities within the same group have as many positive relationships as possible;
(2) entities between different groups have as many negative relationships as possible.

The majority of existing algorithms for community detection in signed networks aim
to provide hard partitioning of the network, where any node should belong to a single
community, such as cliques [15]. However, overlapping communities, in which a node is
allowed to belong to multiple communities, are widespread in many real-world networks.
Another disadvantage of some existing algorithms is that the final number of clusters k
should be the input to the clustering process. However, it may be the case that we do not
know k in advance. It will have the limitation of detecting communities by giving clusters
the number k.

However, the clustering algorithm of a signed social network cannot succeed to obtain
the results only by directly extending the theory and algorithm of the unsigned social
network. When edge weights are allowed to be negative, many unsigned social network
concepts and algorithms collapse, because they do not work properly in this situation.
More recently, studies have been conducted to develop algorithms for efficient methods
of clustering signed networks. Doreian and Mrvar [16] proposed a local search strategy
similar to Kernighan-Lin algorithm. Yang et al. [17] proposed an agent-based approach,
which is essentially a random walk on a graph. Anchuri and Magdon-Ismail1 proposed a
hierarchical iterative approach to solve two-way frustrations and signed modularity using
spectrum relaxation targets at each level. Bansal et al. [18] also considered the problem of
signed graph clustering, although their formula is driven by correlation clustering. They
proposed two approximation algorithms and proved the approximation bounds.

Renjie et al. [19] proposed a model, named stable k-core, to measure the stability of a
community in signed graphs. Chengyi et al. [20] gave an improved modularity function
for signed networks on the basis of the existing modularity function and devised a new
community detection algorithm for signed networks. Cadena et al. [21] extended the
concept of subgraph density to detect events in signed networks. Ref. [22] is devoted to
the study of influence diffusion in signed networks and studies the process of influence
diffusion in signed networks. In [23], Tsourakakis et al. considered dense graph detection
problems with negative weights. Ordozgoiti et al. [24] proposed a more efficient and
scalable approach to this problem.

Qi et al. [25] proposed a framework to solve the problem of negative weights in the
signed social networks. In the first step, the authors defined a new computation process
to compute the weights between two nodes. They combined the negative edges with the
positive ones directly into a parameter called “friendly density”. The proposal of this
definition becomes a great contribution to the more objective and reasonable recomputation
of edge weights. This paper refers to the definition of friend density to recompute the
weights of edges in the next section. Moreover, utilizing the mentioned definition, we
consider the six-dimensional space theory [26] to further reasonably compute and obtain a
new weight adjacency matrix.
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3. Basic Notions and Approach
3.1. Terminologies and Notations
3.1.1. Recalculate the Weights between Friends

A signed social network graph can be noted as G = (V, E, W), where V is a set of nodes,
E is a set of weights edges that represents the relationships between the nodes, W is the
weight on every edge e, the adjacency matrix A is defined as follows:

A =


|w(e)|, i f e

(
vi, vj

)
is positive

−|w(e)|, i f e
(
vi, vj

)
is negative

0, i f
(
vi, vj

)
is unknown

(1)

For a network G with only positive edges, clustering can be seen as a process that
detects all dense subgraphs in G [25]. The computation of dense subgraph C is defined by:

d
(
G′
)
=

2 ∑e∈E(G′) w(e)
|V(G′)||V(G′)− 1| . (2)

When the G’ is a subgraph of G, w(e) is the weight of edge e in E(G’), |·| is the
absolute value of the number. Equation (2) can be generalized to a singed graph where
w(e) can be negative. The density of the graph will drop or rise by adding new negative or
positive edges.

In a signed network, the relationship between two nodes (i.e., the weights of the
edges) may be influenced by rumors/personal bias and may be negative and close to 0,
and that negative relationship is subjective and one-sided. When both nodes have positive
relationships with their mutual friends, that negative edge is easily influenced by the
mutual influence of the friends’ positive relationship. In order to avoid such assertive
positive/negative edges caused by considering only the relationship between two nodes,
and to better cluster the friendly density clusters, we plan to consider the true state of
two nodes based on a more “global” structural environment and adjust their pre-existing
or given relationships as necessary. Therefore, we recalculate the relationship weights
between two nodes considering the global structural environment and redefine their
positive/negative relationship by a reasonable threshold (the selection of the threshold
is explored in Section 4 in order not to destroy the original network structure as much
as possible).

To solve this problem, reference [25] introduces a weight-completing method, accord-
ing to which we will obtain the different weights βζ based on length ζ of the path Pζ .

wu,v =
k

∑
ζ=1

[βζ ∗ ∑
PεPζ

∏
eεP

w(e)] (3)

Among them, ζ represents the path length, k is the maximum value of the path length
ζ, the formula traverses all paths of the path length ζ ∈ [1, k], and for each path P, the
multiplication of the weights wu,v of each edge e on the path P is calculated. If there are
multiple paths P of the same length ζ, find the sum of their concatenated products.

Figure 2 shows an example to explain it. There are three paths between nodes u and
v, and the value of each edge represents the positive/negative relationship and weight
between the two nodes. When we consider each path equally, βζ = 1, and according to
Equation (3), the predicted weight of wu,v is

wu,v = 0.3− 0.5× 0.1− 0.5× 0.3× 0.1 = 0.235
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If we use the decaying function βζ = 1
ζ! , then the predicted weight of wu,v is

wu,v = 0.3− 0.5× 0.1
2!

− 0.5× 0.3× 0.1
3!

= 0.2725

Comparing the two wu,v, when we choose decaying function βζ = 1
ζ! , the positive

relationship between u and v becomes more evident. Similarly, through the calculation of
Equation (3), the weight of the negative edge may be more negative.

We give an example below to calculate the new relationship value under the mutual
influences of common friends even if the direct relationship between nodes u and v is
negative, taking into account reasons such as rumors or personal biases: even their direct
relationship is negative, and they should gather together in the same cluster. In the example,
we choose βζ = 1

ζ! as the decaying function. The original graph of this example is shown as
Figure 3.
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Figure 3. The original graph g.

Example:

wu,v = −0.1 +
0.4× 0.8

2!
− 0.7× 0.9

2!
= 0.375

After recalculating the weights between nodes u, v, the network is updated to Figure 4.
It is obvious that the network becomes a balanced network, which can be detected in the
next step of the balanced community detection algorithm. At this time, the relationship
between u and v changes from negative to positive, which is an important reason to use
common friends/enemies as parameters for weight calculation. This step can as far as
possible avoid the influence of rumors, personal biases, or noisy data collection, and is
more comprehensive consider the relationship between two nodes.
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However, the process of enumerating all paths for a pair of nodes is NP-hard. To solve
the issue, Qi [25] advocates using the (u, v) element in the matrix Aζ (ζ power o f A ), which
is equal to the sum of the weights of all paths of length ζ between u and v.

wu,v =
∞

∑
ζ=1

[βζ ·
(

Aζ
)

u, v
] (4)

3.1.2. γ-Quasi-Cliques

After completing the graph with the weight of edges in the signed social network, the
next step is to detect the γ-Quasi-Cliques (γ is a user-given parameter through which the
detection conditions of the Quasi-Cliques can be adjusted. Definition 1 will give a detailed
description).

In our previous work [13], we proposed and implemented an enumeration method
based on FCA [27,28] for clustering the γ-Quasi-Cliques. in the social network. This method
is suitable for the unsigned graph. Hence, we have to optimize this method to utilize it in
the signed social network graph.

Definition 1 (γ-Quasi-Cliques) [13]. Given a graph G and G = (V, E), if ∀v ∈ V, degG(v) ≥
γ(|V| − 1), then the graph G is a Quasi-Cliques and the parameter is γ (given by users), by γ-
Quasi-Cliques. When V is the set of nodes and V = {v1, v2, v3, . . . , vn}, E is the set of edges and
E = {(u, v)| u, v ∈ V}. Normally, the range of values for γ is (0.6, 1].

Definition 2 (Maximal γ-Quasi-Cliques) [13]. For the graph G = (V, E) and node-set
X ⊆ V, if G(X) is a γ-Quasi-Cliques, and there is no more node-set Y ⊃ X that makes G(Y) to
be a γ-Quasi-Cliquess, and we call G(X) as Maximal γ-Quasi-Cliques.

Definition 3 (Formal Concept Analysis, FCA) [21].
Formal Context: Let F = (O, A, I) be a formal context, where O = (O1, O2, . . . , On), is the
set of objects, A = (A1, A2, . . . , An) is the set of attributes, and I is a binary relation between O
and A.
Operators ↑ and ↓: Let F = (O, A, I) be a formal context. The operator ↑ and ↓ on X ⊆ O and
Y ⊆ A are defined as:

X↑ = {a ∈ A|∀o ∈ X,(o,a) ∈ I}

Y↓ = {o ∈ O|∀a ∈ Y,(o,a) ∈ I}

Formal Concept: For a formal context F = (O, A, I), if (O, A) satisfies O ↑ = A and A ↓ = O,
(O, A) is called a Formal Concept, and O is the extent of the concept, A is the intent of the concept.
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All formal concepts form the formal concept lattice by the partial relation are as (O1, A1) ≤ (O2, A2)
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In our early work [13], we proved that according to calculating and utilizing the extent
or intent of the concept in the formal concept lattice, we can obtain the node number in
each γ-Quasi-Cliques, and then we can calculate the degree in each γ-Quasi-Cliques and
determine whether it satisfies degG(V) ≥ γ(|V| − 1) (refer to Definition 1). This process is
represented by pseudocode as Algorithm 1:

Algorithm 1 γ-Quasi-Cliques Detection

1 : Input γ, formal context f
2: begin
3: Formal Concept Lattice← Construct FCA(f )
4: for each concept ∈ Formal Concept Lattice:
5: value← γ * concept.extent.length
6: flag← True
7: degree← degree(all nodes of concept)
8: if value > degree:
9: flag = False
10: if flag is True:
11: QuasiCliques.add(concept)
12: return QuasiCliques
13: End

3.2. Methodology of Maximal Balanced γ-Quasi-Cliques Detection
3.2.1. Overview

In this subsection, we present the overall framework of the methodology of this paper,
shown as Figure 5. The method in this paper is able to be divided into three steps: consider
the mutual influence between nodes, re-compute the weights of the edges; generate positive,
negative and weightless matrices, and obtain the corresponding Quasi-Cliques, namely
QC(AMP), QC(AMN) and QC(AMT); detect maximal balanced γ-Quasi-Cliques.
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Figure 5. The overview of our method.
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3.2.2. Optimization of Weight Matrix Computation

As the value of length ζ in Equation (4) is ζ ∈ [1, ∞), a large amount of calculations
will still be generated when βζ = 1

ζ! gradually approaches 0 (ζ goes to in f inity); thus, a
reasonable maximum length ζ is selected in this paper. As mentioned in Section 2, after
referring to the six-dimensional space theory, we only focus on all paths with a path length
ζ less than or equal to 6, while choosing the decaying function βζ = 1

ζ! , we receive the
weight of (u, v) equal to:

wu,v =
6

∑
ζ=1

[
1
ζ!
·
(

Aζ
)

u, v
=

(
I + A +

A2

2!
+

A3

3!
+

A4

4!
+

A5

5!
+

A6

6!

)
. (5)

Since most large social networks are sparse graphs [29], when performing matrix
exponentiation on a large social network, we can consider a variety of existing sparse matrix
exponentiation methods to improve computational efficiency, e.g., fast exponentiation
for matrices [30], which leverage the paradigm to process exponentiation in parallel on
GPUs [31]. At the same time, in this paper, we only focus on the first 6th power operation
of the matrix instead of the high-power operation. Compared with Equation (4), the
complexity of the matrix power operation in this paper is not high.

3.2.2.1. Our Maximal Balanced γ-Quasi-Cliques Detection Method

• Step 1 (Complete Weighted Matrix and Prune Data): Make complete weight in the
social network graph by Equation (5) and convert it into an adjacency matrix. All
elements in the matrix are nonzero after the N power operation of the matrix (N ≤ 6);
thus, it is necessary to prune the weight closer to 0 (weight with a more neutral bias).
For this, we will provide two thresholds, τ1 and τ2 (given by users).

If the weight of two nodes is greater than the τ1, we regard the edge of these two
nodes as a positive edge, noted as 1. If the weight of two nodes is less than τ2 (τ2 is
negative), and there is a negative relationship between these two nodes, noted as −1;
the remaining nodes are of no relationship and are noted 0. The new adjacency matrix
AM is shown in Equation (6).

AM =


1, i f w(e ) = w

(
vi, vj

)
> τ1

−1, i f w(e) = w
(
vi, vj

)
< τ2

0, otherwise
(6)

• Step 2 (rebuild the signed matrixes): Since the γ-Quasi-Cliques Detection method in
Section 3.2.1 is assigned to unweighted and normal social networks (the edges do not
have positive/negative relations), in this step, we redefine AM as three matrices. All
positive edges are stored in AMP, all negative edges are stored in AMN and edges with
weights 1 and −1 are regarded as 1 in AMT, which only indicates whether there is a
relationship between the nodes.

AMP =


1, i f w(e ) = w

(
vi, vj

)
= 1

0, i f w(e) = w
(
vi, vj

)
= −1

0, otherwise
(7)

AMN =


0, i f w(e ) = w

(
vi, vj

)
= 1

1, i f w(e) = w
(
vi, vj

)
= −1

0, otherwise
(8)

AMT =


1, i f w(e ) = w

(
vi, vj

)
= 1

1, i f w(e) = w
(
vi, vj

)
= −1

0, otherwise
(9)
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• Step 3 (γ-Quasi-Cliques Detection): Using these three matrixes as input values, per-
form Quasi-cluster detection to obtain Quasi-Cliques sets QC(AMT), QC(AMP), and
QC(AMN), if the Quasi-Cliques in quasi-clusters QC(AMP) and QC(AMN) exist in
QC(AMT), then they are our final output: Signed γ-Quasi-Cliques.

Notes: The QC(AMP) is the set of γ-Quasi-Cliques with positive edges, the
QC(AMN) is the set of γ-Quasi-Cliques with negative edges, the QC(AMT) is the
set of γ-Quasi-Cliques with positive edges and negative edges (regardless of the
sign of the edges). If the γ-Quasi-Clique E1 and γ-Quasi-Clique E2 are both in
the QC(AMP), there are positive relationships among the nodes in E1 and E2, re-
spectively, the E1 and E2 form a γ-Quasi-Clique in QC(AMN), and there are neg-
ative relationships among the nodes in merger set of E1 and E2. Meanwhile, the
merger set of E1 and E2 with positive and negative edges is a γ-Quasi-Clique in
QC(AMT), which means that all nodes in E1 and E2 can form a γ-Quasi-Clique.
At this point, this γ-Quasi-Clique is a maximal balanced γ-Quasi-Clique.

To explain the above notes more intuitively, here is an example to illustrate:
Figure 6a, shows a signed network graph with six nodes, including positive and

negative edges between all nodes. According to Equations (7) and (8), the sub-networks
corresponding to the positive and negative edges we obtained are shown in Figures 6b and
6c, respectively. Figure 6d conveys all positive and negative edges to unweighted edges.
The matrixes corresponding to Figure 6b,c are AMP and AMN, and Figure 6d corresponds
to the matrix AMT.
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Algorithm 2 explains steps 1–3. 

Figure 6. A signed network graph and subgraphs of different weighted edges, (a) is the original
signed network graph, (b) is the subgraph of (a) with all positive edges, (c) is the subgraph of (a)
with all negative edges, and (d) is the unweighted edges graph.

When γ = 0.6, in Figure 6b, it is easy to find 2 0.6-Quasi-Cliques with positive edges:
{1,2,4} and {3,5,6}. In Figure 6c, {1,2,3,4,5,6} is a 0.6-Quasi-Clique with negative edge., and
{1,2,3,4,5,6} is a 0.6-Quasi-Clique without weight in Figure 6d. At this time, we regard
{{1,2,4}, {3,5,6}} as a maximal balanced 0.6-Quasi-Clique, in which {1,2,4} and {3,5,6} are
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two sub-0.6-Quasi-Cliques, which are positive within these two 0.6-Quasi-Cliques, and
negative between these two 0.6-Quasi-Cliques.

Algorithm 2 explains steps 1–3.

Algorithm 2 The overall flow of community detection algorithms

1 : Input γ, graph g, threshold τ1, τ2
2: begin
3://Complete Weighted Matrix and Prune Data
4: Formal Concept f← Calculate g by Equation (5) and compare it with threshold τ1, τ2.
5://Rebuild the signed matrixes
6: AMP, AMN, AMT←Matrix Equation (7) (AM), Matrix Equation (8) (AM), Matrix Equation (9) (AM)
7://Detecting γ-QuasiCliques
8: γ-QuasiCliques1, 2, 3← Algorithm 1 (γ, AMP), Algorithm 1 (γ, AMN), Algorithm 1 (γ, AMT)
9: for Q1 in γ − QuasiCliques1:
10: for Q2 in γ − QuasiCliques2:
11: if Q1 and Q2 in γ − QuasiCliques3:
12: Signed γ-Quasi-Cliques← (Q1, Q2)
13: return Signed γ-QuasiCliques
14: End

4. Experiment and Discussion
4.1. Recompute Weight Matrix and Threshold Determination
4.1.1. Dataset and Experimental Environment

The dataset we use in this section comes from the SNAP public dataset (https://snap.
stanford.edu/data/, accessed on 10 July 2009). We apply the “Bitcoin Alpha trust weighted
signed network” dataset [32,33] in our experiment. In this dataset, there are 3783 nodes
and 24,186 edges, and the weights of edges are on a scale of −10 to +10. The weights are
the rating of trust, and members of Bitcoin Alpha rated other members on a scale from
−10 (total distrust) to +10 (total trust) in the steps of 1, representing the reputation of
users (nodes).

To make the visualization of the clustering results in Section 4.1.2 clearer, we only
extracted the first thousand nodes in this dataset to execute our model. Figure 7 is a network
graph composed of one thousand nodes.

 

 

 

 
Land 2022, 11, x. https://doi.org/10.3390/xxxxx  www.mdpi.com/journal/land 

 

 

Figure 7. The first thousand nodes are in the Bitcoin Alpha trust weighted signed network.

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
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All experiments in this section run on Windows 10 operating system, Intel Core i7
CPU, 2.90 GHz, and 32 GB RAM.

4.1.2. Threshold Determination

1 The value determination of τ

In order to obtain more evident weight edges for positive/negative attitudes of users,
we calculated the mean and standard deviation of the matrices AMP and AMN, and pruned
the data by giving different threshold ranges of τ1 and τ2 according to the statistical
68–95–99.7 rule. The four subgraphs in Figure 8 are the distribution of node degrees after
setting τ1 and τ2 in Table 1. It is easily observable that when the values of τ1 and τ2 are
equal to the values in subgraph (d), the pruned data better preserve the structure of the
original data.
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Figure 8. The distribution of node degrees with different thresholds. The subgraph (a) is the
distribution of node degree with thresholds Mean(AMP) and Mean(AMN); subgraph (b) is the dis-
tribution of node degree with thresholds Mean(AMP) + Std(AMP) and Mean(AMN) − Std(AMN);
subgraph (c) is the distribution of node degree with thresholds Mean(AMP) + 2 × Std(AMP) and
Mean(AMN) − 2 × Std(AMN); subgraph (d) is the distribution of node degree with thresholds
Mean(AMP) + 3 × Std(AMP) and Mean(AMN) − 3 × Std(AMN).

Table 1. Different values of τ1 and τ2.

Subgraph (a) Subgraph (b) Subgraph (c) Subgraph (d)

τ1
Mean(AMP) Mean(AMP) + Std(AMP) Mean(AMP) + 2 × Std(AMP) Mean(AMP) + 3 × Std(AMP)
11,377.463 66,294.718 119,731.322 173,936.850

τ2
Mean(AMN) Mean(AMN) − Std(AMN) Mean(AMN) − 2 × Std(AMN) Mean(AMN) − 3 × Std(AMN)
−1074.750 −18,230.686 −35,300.547 −52,414.579

In addition to comparing the node degree centrality of the four thresholds, we also
compare the number of edge prunings under different thresholds.
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In order to make the recomputed weight matrix closer to the sparse matrix of the real
social network, we prefer to prune edges through a threshold, so as to obtain those edges
with more extreme weights. In Table 2, we can see that subgraph (d) has the most pruned
edges, excluding redundant data.

Table 2. The number of edges with different values of τ1 and τ2.

Subgraph 8(a) Subgraph 8(b) Subgraph 8(c) Subgraph 8(d)

Number of Prune Edges 707,589 858,691 879,438 887,651
Number of edges 292,411 141,309 120,562 112,349

2 The value determination of γ

We input the dataset of Figure 8d in the previous subsection as the pruned dataset into
our model for the γ-Quasi-Cliques detection. Table 3 shows the number of Quasi-Cliques
and node coverage detected with different values of γ.

Table 3. The number of Quasi-Cliques and nodes coverage with different values of γ.

γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

Number of
Quasi-Cliques 170 127 67 32 8

Number of Nodes 168 146 107 65 43

It is known from Table 3 that some nodes overlap in different γ-Quasi-Cliques, and the
higher the degree of overlap of these nodes, the more important they are in the network.

In order to observe the γ-Quasi-Cliques density with different γ values more in-
tuitively, we provide a Quasi-Clique node density formula to evaluate the quality of
the threshold.

Definition 4. (Quasi-Clique Node Density, QND)

QND =
The total number o f nodes in γ−Quasi− Cliques

The number o f nodes in the network
(γ = 0.5, 0.6, 0.7, . . . , 1)

Table 4 shows the results of QND.

Table 4. The number of QND with different values of γ.

γ=0.6 γ=0.7 γ=0.8 γ=0.9 γ=1

QND 0.168 0.127 0.107 0.065 0.043

From Table 4, we find that when the value of γ is smaller, the number of detected
nodes is larger, the coverage rate in the network is larger, and more maximal balanced
γ-Quasi-clques can be obtained.

Figure 9a–e represents the nodes distribution of detected γ-Quasi-Cliques in all cases
of γ = 0.6~1, respectively. In each subgraph, the nodes in the same Quasi-Cliques are
represented by the same color. The black nodes are single nodes, which do not belong
to any Quasi-Cliques. According to the data in Table 2 and the density of the subgraphs
in Figure 5, we can easily find that the density of subgraphs decreases as the value of γ
increases. When γ = 0.6, we obtain the densest clustering result.

4.2. Case Study

In this subsection, we present a case study to illustrate our method by real-life signed
social network data. Figure 10 is a real-world signed network showing a relational network
of 10 parties of the Slovene Parliament in 1994 [34]. Here are the signed social network and
the matrix.
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Figure 9. Nodes distribution of the γ-Quasi-Cliques with different γ. (a) is the distribution of γ-
Quasi-Cliques when the γ = 0.6; (b) is the distribution of γ-Quasi-Cliques when the γ = 0.7; (c) is the
distribution of γ-Quasi-Cliques when the γ = 0.8; (d) is the distribution of γ-Quasi-Cliques when the
γ = 0.9; (e) is the distribution of γ-Quasi-Cliques when the γ = 1.
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Figure 10. Ten parties of the Slovene Parliament.

By completing the weight matrix and running it in our model, we obtain Quasi-Cliques
of different sizes according to different γ values.

Figure 11 shows the sub-network corresponding to the matrix AMP that retains all
positive edges (since a detailed example has been given in the previous section, here, only
the positive sub-network is used as an example to illustrate).
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When γ = 0.6, there are two 0.6-Quasi-Cliques in QC(AMP), which are: {1,3,6,8,9},
{2,4,5,7,10}. For the nodes set {1,3,6,8,9}, γ(|V| − 1) = 0.6 × (5 − 1) = 2.4, and the degree of
all nodes is 4; they are larger than 2.4, and they are suitable to the condition degG (V) ≥
γ(|V| − 1).

Similarly, we find one Quasi-Cliques in QC(AMN), which is: {1,3,6,8,9,2,4,5,7,10}.
Meanwhile, there is one 0.6-Quasi-Cliques in QC(AMT): {1,3,6,8,9,2,4,5,7,10}. Thus, we can
obtain the maximal balanced 0.6-Quasi-Cliques: {{1,3,6,8,9},{2,4,5,7,10}}.

Figure 12 shows the results. The same color of nodes is the same Quasi-Cliques.
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Since nodes in a social network correspond to individuals, “places that individuals like
to visit” can be regarded as attributes of nodes. Through text mining and other technologies,
we are able to mine large social networks with place attributes from social networks such as
Twitter, Facebook, and Weibo. Therefore, in real life, different communities have different
types of third places to gather, such as cafes, parks, or religious churches. In practical
application, we can provide reasonable references for the layout and planning of public
places according to the different places mapped to the detected community.

To facilitate understanding the idea of this paper, we simulate that the nodes in the
dataset in this case frequently visit some “third places”. Node attributes are as follows in
Table 5:

Table 5. Simulate attributes of nodes.

Node Frequently Visited Third Place

1 Coffee, Church

2 Bar, Coffee, Community Center

3 Church, Park, Coffee

4 Park, Bar, Coffee, Community Center

5 Community Center, Coffee

6 Park, Church

7 Bar, Community Center, Coffee

8 Church, Coffee, Bar

9 Mall, Church

10 Park, Community Center, Coffee

From the above analysis, the social network contains two communities: C1: {1,3,6,8,9}
and C2: {2,4,5,7,10}. According to the different attributes of the nodes simulated in Table 5,
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it is not difficult to find that the nodes in C1 often visit churches, while the nodes in C2
prefer to visit cafes and community centers.

5. Conclusions

Communities in social networks often gather in some urban public places. In order to
make reasonable suggestions for urban land division, it is a meaningful topic to study how
to effectively detect communities in signed social networks. This paper focuses on mining
the maximal balanced γ-Quasi-Cliques in signed networks for detecting communities. We
proposed a model to solve the problems in three steps: First, we recomputed the weights of
edges based on the mutual influence of common friends, and we defined and determined
some threshold ( mean± n ∗ std), (n = 0, 1, 2 and 3) for our pruning data process. Second,
we proposed three new definitions of matrixes AMP, AMN and AMT to calculate the γ-Quasi-
Cliques with positive, negative or unweighted edges by FCA method, respectively. Third,
We filtered and detected the maximal balanced γ-Quasi-Cliques. In the experiment, we
applied the real-life data to our model, and compared results with different γ. Additionally,
to help readers understand the proposed model on an intuitive level, we provided a case
study. Experiments proved its effectiveness. In the future, we will consider improving the
efficiency of our algorithm for the dynamic signed social network.
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