Effects of Torrefied Wood Chips and Vermicompost on Tree Growth and Weed Biomass: Implications for the Sustainable Management of Salt-Affected Reclaimed Lands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Climatic Conditions
2.2. Plant Species
2.3. Torrefied Wood Chips and Vermicompost
2.4. Experimental Design
2.5. Soil Properties Analysis
2.6. Measurement of Tree and Weed Growth
2.7. Statistical Analysis
3. Results
3.1. Growth of Populus Euramericana in Different Amouts of Torrefied Wood Chips and Vermicompost
3.2. Soil Properties after the Application of the Torrefied Wood Chips and Vermicompost
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aung, A.; Seo, J.M.; Han, S.H.; An, J.Y.; Dao, H.T.T.; Youn, W.B.; Park, B.B. Effects of torrefied wood chip and vermicompost application on vegetation growth and nutrient uptake in the Saemangeum reclaimed land. Ecol. Process. 2020, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Gaw, L.Y.-F.; Richards, D.R. Development of spontaneous vegetation on reclaimed land in Singapore measured by NDVI. PLoS ONE 2021, 16, e0245220. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Xu, Y.; Fu, Y.; Wang, Q. Soil salinization and mitigation measures in land reclamation regions. In Soil Contamination—Current Consequences and Further Solutions; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen: London, UK, 2016; pp. 159–175. [Google Scholar]
- Chapman, D.M. Land reclamation. In Beaches and Coastal Geology; Encyclopedia of Earth Sciences Series; Springer: New York, NY, USA, 1982; pp. 513–516. ISBN 978-0-87933-213-6. [Google Scholar]
- Ryu, J.; Nam, J.; Park, J.; Kwon, B.-O.; Lee, J.-H.; Song, S.J.; Hong, S.; Chang, W.K.; Khim, J.S. The Saemangeum tidal flat: Long-term environmental and ecological changes in marine benthic flora and fauna in relation to the embankment. Ocean Coast. Manag. 2014, 102, 559–571. [Google Scholar] [CrossRef]
- Cho, D.-O. The evolution and resolution of conflicts on Saemangeum reclamation project. Ocean Coast. Manag. 2007, 50, 930–944. [Google Scholar] [CrossRef]
- Korea Forest Service. Monitoring for Wood Biomass Production and Environmental Effect of Short Rotation Coppice Culture; Korea Forest Service: Daejeon, Korea, 2013. [Google Scholar]
- Dallaire, K.; Skousen, J. Early tree growth in reclaimed mine soils in Appalachia USA. Forests 2019, 10, 549. [Google Scholar] [CrossRef] [Green Version]
- Skousen, J.; Ziemkiewicz, P.; Venable, C. Tree recruitment and growth on 20-year-old, unreclaimed surface mined lands in West Virginia. Int. J. Min. Reclam. Environ. 2006, 20, 142–154. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Huang, X.; Li, Z.; Tan, X.; Zeng, G.; Zhou, L. Potential benefits of biochar in agricultural soils: A review. Pedosphere 2017, 27, 645–661. [Google Scholar] [CrossRef]
- Franklin, J.A.; Zipper, C.E.; Burger, J.A.; Skousen, J.G.; Jacobs, D.F. Influence of herbaceous ground cover on forest restoration of eastern US coal surface mines. New For. 2012, 43, 905–924. [Google Scholar] [CrossRef]
- Showalter, J.M.; Burger, J.A.; Zipper, C.E. Hardwood seedling growth on different mine spoil types with and without topsoil amendment. J. Environ. Qual. 2010, 39, 483–491. [Google Scholar] [CrossRef]
- Plass, W.T. History of surface mining reclamation and associated legislation. In Reclamation of Drastically Disturbed Lands; Barnhisel, R.I., Darmody, R., Daniels, W.L., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; Volume 41, pp. 1–20. ISBN 9780891182337. [Google Scholar]
- Zipper, C.E.; Burger, J.A.; Barton, C.D.; Skousen, J.G. Rebuilding soils on mined land for native forests in Appalachia. Soil Sci. Soc. Am. J. 2013, 77, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Moffat, A.; Mcneill, J. Forestry Commission Bulletin: Reclaiming Disturbed Land for Forestry; HMSO: London, UK, 1994; ISBN 0117103195. [Google Scholar]
- Franke, M.E.; Zipper, C.; Barney, J.N. Native hardwood tree seedling establishment following invasive autumn-olive (Elaeagnus umbellata) removal on a reclaimed coal mine. Invasive Plant Sci. Manag. 2018, 11, 155–161. [Google Scholar] [CrossRef]
- Luck, L.; Bellairs, S.M.; Rossiter-Rachor, N.A. Residual herbicide treatments reduce Andropogon gayanus (gamba grass) recruitment for mine site restoration in northern Australia. Ecol. Manag. Restor. 2019, 20, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Degenhardt, D.; Drozdowski, B.; Thacker, S.; Powter, C.; Schoonmaker, A.; Schreiber, S. Optimizing Weed Control for Progressive Reclamation: Literature Review; InnoTech Alberta: Edmonton, AB, Canada, 2018. [Google Scholar]
- Baker, H.G. The evolution of weeds. Annu. Rev. Ecol. Syst. 1974, 5, 1–24. [Google Scholar] [CrossRef]
- González-Muñoz, N.; Costa-Tenorio, M.; Espigares, T. Invasion of alien Acacia dealbata on Spanish Quercus robur forests: Impact on soils and vegetation. For. Ecol. Manag. 2012, 269, 214–221. [Google Scholar] [CrossRef]
- Holmes, P.M. Shrubland restoration following woody alien invasion and mining: Effects of topsoil depth, seed source, and fertilizer addition. Restor. Ecol. 2001, 9, 71–84. [Google Scholar] [CrossRef]
- Guo, Q. The Response Mechanism of Soil Salinity Transfer and Diversity Rule to Environmental Factors. Ph.D. Thesis, Northwest A&F University, Xianyang, China, 2010. [Google Scholar]
- Stuyfzand, P.J. The impact of land reclamation on groundwater quality and future drinking water supply in the Netherlands. Water Sci. Technol. 1995, 31, 47–57. [Google Scholar] [CrossRef]
- Sumner, M.E. Beneficial use of effluents, wastes, and biosolids. Commun. Soil Sci. Plant Anal. 2000, 31, 1701–1715. [Google Scholar] [CrossRef]
- Oo, A.N.; Iwai, C.B.; Saenjan, P. Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad. Dev. 2015, 26, 300–310. [Google Scholar] [CrossRef]
- Melero, S.; Madejón, E.; Ruiz, J.C.; Herencia, J.F. Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur. J. Agron. 2007, 26, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Qadir, M.; Oster, J.D.; Schubert, S.; Noble, A.D.; Sahrawat, K.L. Phytoremediation of sodic and saline-sodic soils. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 96, pp. 197–247. ISBN 0123742064. [Google Scholar]
- Demir, Z. Alleviation of adverse effects of sodium on soil physicochemical properties by application of vermicompost. Compost. Sci. Util. 2020, 28, 100–116. [Google Scholar] [CrossRef]
- Atiyeh, R.; Arancon, N.; Edwards, C.; Metzger, J. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour. Technol. 2000, 75, 175–180. [Google Scholar] [CrossRef]
- Demir, Z. Effects of vermicompost on soil physicochemical properties and lettuce (Lactuca sativa var. Crispa) yield in greenhouse under different soil water regimes. Commun. Soil Sci. Plant Anal. 2019, 50, 2151–2168. [Google Scholar] [CrossRef]
- McElligott, K.; Dumroese, D.; Coleman, M. Bioenergy Production Systems and Biochar Application in Forests: Potential for Renewable Energy, Soil Enhancement, and Carbon Sequestration; Research Note RMRS-RN-26; Rocky Mountain Research Station: Moscow, ID, USA, 2011; Volume 46.
- Tumuluru, J.S.; Wright, C.T.; Hess, J.R.; Kenney, K.L. A review of biomass densification systems to develop uniform feedstock commodities for bioenergy application. Biofuels Bioprod. Biorefin. 2011, 5, 683–707. [Google Scholar] [CrossRef]
- Fox, A.; Kwapinski, W.; Griffiths, B.S.; Schmalenberger, A. The role of sulfur- and phosphorus-mobilizing bacteria in biochar-induced growth promotion of Lolium perenne. FEMS Microbiol. Ecol. 2014, 90, 78–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, E.; Watzinger, A.; Rempt, F.; Kitzler, B.; Wimmer, B.; Zehetner, F.; Stahr, K.; Zechmeister-Boltenstern, S.; Soja, G. Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agric. Food Sci. 2013, 22, 404–423. [Google Scholar] [CrossRef] [Green Version]
- Chin, K.J.; Liesack, W.; Janssen, P.H. Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division “verrucomicrobia” isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 2001, 51, 1965–1968. [Google Scholar] [CrossRef] [Green Version]
- Galatis, H.; Martin, K.; Kämpfer, P.; Glaeser, S.P. Devosia epidermidihirudinis sp. nov. isolated from the surface of a medical leech. Antonie Van Leeuwenhoek 2013, 103, 1165–1171. [Google Scholar] [CrossRef]
- Su, X.; Chu, Y.; Li, H.; Hou, Y.; Zhang, B.; Huang, Q.; Hu, Z.; Huang, R.; Tian, Y. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × Euramericana ‘guariento’). PLoS ONE 2011, 6, e24614. [Google Scholar] [CrossRef]
- Chen, S.; Polle, A. Salinity tolerance of populus. Plant Biol. 2009, 12, 317–333. [Google Scholar] [CrossRef]
- Han, S.H.; Meng, L.; Rahman, A.; Ko, Y.; Cho, M.S.; Park, B.B. Torrefied wood effects on the seedling quality of Zelkova serrata and Fraxinus rhynchophylla in a containerized production system. Forest Sci. Technol. 2017, 13, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Dao, H.T.T.; Seo, J.M.; Hernandez, J.O.; Han, S.H.; Youn, W.B.; An, J.Y.; Park, B.B. Effective placement methods of vermicompost application in urban tree species: Implications for sustainable urban afforestation. Sustainability 2020, 12, 5822. [Google Scholar] [CrossRef]
- Cho, M.S.; Meng, L.; Song, J.H.; Han, S.H.; Bae, K.; Park, B.B. The effects of biochars on the growth of Zelkova serrata seedlings in a containerized production system. Forest Sci. Technol. 2017, 13, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Bourgeois, J.P.; Doat, J. Torrefied wood from temperate and tropical species. Advantages and prospects. In Proceedings of the Bioenergy 84, World Conference, Goteborg, Sweden, 15–21 June 1984; Elsevier Applied Science Publishers: Amsterdam, The Netherlands, 1984; Volume 3, pp. 153–159. [Google Scholar]
- Pentananunt, R.; Rahman, A.N.M.M.; Bhattacharya, S.C. Upgrading of biomass by means of torrefaction. Energy 1990, 15, 1175–1179. [Google Scholar] [CrossRef]
- Holtz, B.A.; McKenry, M.V.; Caesar-TonThat, T.C. Wood chipping almond brush and its effect on the almond rhizosphere, soil aggregation and soil nutrients. Acta Hortic. 2004, 638, 127–134. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Ghorbani, R.; von Fragstein und Niemsdorff, P. Effects of vermicompost placement on nutrient use efficiency and yield of tomato (Lycopersicum esculentum). Biol. Agric. Hortic. 2020, 36, 44–52. [Google Scholar] [CrossRef]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio/Technol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Molnar, L.J.; Larney, F.J. Fertilizer, manure and compost effects on weed growth and competition with winter wheat in western Canada. Crop Prot. 2005, 24, 971–980. [Google Scholar] [CrossRef]
- Davis, A.S.; Liebman, M. Nitrogen source influences wild mustard growth and competitive effect on sweet corn. Weed Sci. 2001, 49, 558–566. [Google Scholar] [CrossRef]
- Menalled, F.D.; Liebman, M.; Buhler, D.D. Impact of composted swine manure and tillage on common waterhemp (Amaranthus rudis) competition with soybean. Weed Sci. 2004, 52, 605–613. [Google Scholar] [CrossRef]
- Cirillo, V.; Masin, R.; Maggio, A.; Zanin, G. Crop-weed interactions in saline environments. Eur. J. Agron. 2018, 99, 51–61. [Google Scholar] [CrossRef]
- Abafita, R.; Shimbir, T.; Kebede, T. Effects of different rates of vermicompost as potting media on growth and yield of tomato (Solanum lycopersicum L.) and soil fertility enhancement. Sky J. Soil Sci. Environ. Manag. 2014, 3, 73–77. [Google Scholar]
Physical Properties | Values |
---|---|
Moisture content (%) | 3.2 (0.0) |
Ash content (%) | 0.5 (0.0) |
Volatility (%) | 79.9 (0.4) |
Chemical properties | |
pH | 5.1 (0.0) |
EC (dS m−1) | 0.282 (0.054) |
Carbon (%) | 52.2 (0.0) |
Nitrogen (g kg−1) | 0.7 (0.4) |
Phosphorus (g kg−1) | 0.94 (0.08) |
Potassium (g kg−1) | 0.97 (0.12) |
Sodium (g kg−1) | 0.64 (0.11) |
Calcium (g kg−1) | 10.3 (1.2) |
Magnesium (g kg−1) | 0.83 (0.09) |
Exchangeable Cations | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TWC | VC | Depth | pH | OM | Total N | Available P | K+ | Ca2+ | Mg2+ | Na+ | CEC | EC |
(Mg ha−1) | (cm) | (%) | (%) | (mg kg−1) | (cmolc kg−1) | (dS m−1) | ||||||
0 | 0 | 0–15 | 8.0 | 1.05 | 0.14 | 71.8 | 1.10 | 1.60 | 5.22 | 2.34 | 15.5 | 0.39 |
15–30 | 8.3 | 0.70 | 0.13 | 78.9 | 1.23 | 1.57 | 5.48 | 3.23 | 16.1 | 0.39 | ||
30–45 | 8.4 | 0.58 | 0.16 | 84.7 | 1.17 | 1.53 | 5.09 | 3.39 | 19.3 | 0.42 | ||
2.7 | 0–15 | 8.2 | 0.87 | 0.14 | 81.9 | 1.10 | 1.70 | 4.98 | 2.53 | 12.7 | 0.42 | |
15–30 | 8.3 | 0.71 | 0.12 | 74.7 | 1.12 | 1.56 | 4.78 | 2.65 | 18.2 | 0.35 | ||
30–45 | 8.4 | 0.56 | 0.12 | 81.9 | 1.17 | 1.43 | 4.88 | 2.65 | 15.1 | 0.33 | ||
2.5 | 0 | 0–15 | 7.9 | 0.97 | 0.16 | 73.9 | 1.14 | 1.67 | 5.30 | 2.00 | 12.8 | 0.39 |
15–30 | 8.2 | 0.65 | 0.14 | 79.9 | 1.20 | 1.64 | 5.57 | 2.41 | 13.0 | 0.34 | ||
30–45 | 8.4 | 0.56 | 0.13 | 82.4 | 1.21 | 1.46 | 4.82 | 2.59 | 12.7 | 0.40 | ||
2.7 | 0–15 | 7.9 | 1.05 | 0.16 | 77.5 | 1.11 | 1.70 | 5.74 | 2.19 | 16.6 | 0.39 | |
15–30 | 8.3 | 0.65 | 0.15 | 85.1 | 1.30 | 1.59 | 5.54 | 2.63 | 13.5 | 0.38 | ||
30–45 | 8.4 | 0.62 | 0.14 | 85.3 | 1.27 | 1.56 | 4.99 | 2.92 | 12.7 | 0.42 | ||
5 | 0 | 0–15 | 7.9 | 1.14 | 0.15 | 74.9 | 1.14 | 1.68 | 4.83 | 2.23 | 12.1 | 0.37 |
15–30 | 8.3 | 0.70 | 0.12 | 79.6 | 1.29 | 1.58 | 5.22 | 3.02 | 13.0 | 0.40 | ||
30–45 | 8.3 | 0.62 | 0.12 | 84.7 | 1.24 | 1.50 | 4.92 | 2.75 | 12.8 | 0.40 | ||
2.7 | 0–15 | 8.0 | 0.96 | 0.13 | 75.4 | 1.19 | 1.92 | 5.38 | 1.86 | 11.9 | 0.26 | |
15–30 | 8.2 | 0.67 | 0.14 | 78.4 | 1.19 | 1.54 | 5.40 | 2.56 | 13.2 | 0.32 | ||
30–45 | 8.3 | 0.62 | 0.14 | 81.5 | 1.18 | 1.52 | 4.94 | 2.72 | 12.6 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.Y.; Aung, A.; Hernandez, J.O.; Seo, J.M.; Han, S.H.; Park, B.B. Effects of Torrefied Wood Chips and Vermicompost on Tree Growth and Weed Biomass: Implications for the Sustainable Management of Salt-Affected Reclaimed Lands. Land 2022, 11, 725. https://doi.org/10.3390/land11050725
An JY, Aung A, Hernandez JO, Seo JM, Han SH, Park BB. Effects of Torrefied Wood Chips and Vermicompost on Tree Growth and Weed Biomass: Implications for the Sustainable Management of Salt-Affected Reclaimed Lands. Land. 2022; 11(5):725. https://doi.org/10.3390/land11050725
Chicago/Turabian StyleAn, Ji Young, Aung Aung, Jonathan Ogayon Hernandez, Jeong Min Seo, Si Ho Han, and Byung Bae Park. 2022. "Effects of Torrefied Wood Chips and Vermicompost on Tree Growth and Weed Biomass: Implications for the Sustainable Management of Salt-Affected Reclaimed Lands" Land 11, no. 5: 725. https://doi.org/10.3390/land11050725
APA StyleAn, J. Y., Aung, A., Hernandez, J. O., Seo, J. M., Han, S. H., & Park, B. B. (2022). Effects of Torrefied Wood Chips and Vermicompost on Tree Growth and Weed Biomass: Implications for the Sustainable Management of Salt-Affected Reclaimed Lands. Land, 11(5), 725. https://doi.org/10.3390/land11050725