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Abstract: As the main spatial carrier for people’s social activities, street space occupies an important
position in the urban space. However, under the direction of traffic-driven urban planning, the social
function of street space has been neglected, resulting in the gradual loss of vitality. In mountainous
cities with rugged terrain, the factors influencing the vitality of streets may be different compared to
those in plain areas. In order to explore the influence mechanism of street vitality in mountainous
cities, a new quantitative research method based on the new data environment and a Bayesian
network is proposed. In this study, Python and GIS are used to obtain spatial data of streets, and
Bayesian networks are used to construct street vitality models to identify important influencing
factors and causal relationships between influencing factors. The results demonstrate strong causal
dependencies between the factors influencing street vitality in mountainous cities. The mechanism
of influence of street vitality revolves around functionality and street texture in terms of its own
environment and external environment, respectively. The combination of factor group with functional
density as the root node achieved the maximum probability of high vitality of the street. The results
of this study have implications for community or urban planners with respect to urban regeneration
and street vitality promotion.

Keywords: street vitality; influence mechanism; Bayesian network; multisource data; urban regeneration

1. Introduction

In the early 1930s, modern urban planning represented by the Athens Charter advocated
functional zoning cities and attached importance to the organization and efficiency of
transport. However, the excessive pursuit of large-scale and monolithic functional zoning
had rendered cities rigid and monotonous. Buildings had become isolated units, and
the original diversity of urban life had become monotonous. After the gaps in theory
of modern urban planning were exposed, Jacobs (1961) pioneered the concept of “street
vitality”, emphasizing the important role of the street in the city [1]. She believed that
“when streets are vibrant, cities are vibrant, and when streets are boring, cities are boring”.
That means mixed usage of streets, small street sections, buildings of different eras and
dense pedestrian traffic can create vibrant streets. “Vitality” is a kind of non-physical
spatial quality that is hardly measurable. Lynch (1979) argued that urban vitality includes
continuity, security, harmony and stability throughout the whole ecosystem.

Previous research on urban spatial vitality has mainly focused on the formation of
vitality from two aspects. On the one hand, there exist some simple measurable or evaluable
external representations, namely human activities [2,3]. Previous studies primarily used
traditional techniques such as questionnaires, interviews, field surveys and photographic
records to collect data [4–6]. As this type of method requires a considerable investment
of time, manpower and financial resources, data acquisition is difficult. Therefore, most
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studies using this type of data acquisition method only focus on one or several typical
streets, making it difficult to expand the research scope. With the development of big
data technology, mobile phone data [7,8], social media sign-in data [9–11] and other local-
based service (LBS) data have gradually been applied to research of urban spaces. Such
big data have significant advantages, such as extensive spatial coverage and rich human
information. Traditional methods, such as field surveys and questionnaires, have been
gradually replaced. As an Internet external location-related technology, LBS data perform
clustering calculations according to location, and the degree of clustering presented can
reflect the degree of street vitality to a certain extent [12], which has been widely used by
the academic community because of its high resolution and relatively open API. Scholars
have used LBS data for studies in domains such as urban vitality [13].

On the other hand, research on street vitality concerns the street space that sustains hu-
man activities, and scholars have focused more on the factors of street vitality [3]. Research
on the factors that influence street vitality have primarily been conducted from the per-
spective of the two aspects of macroenvironment and microenvironment. The dimension
of the macroenvironment mainly included location [14], accessibility [8,15], surrounding
land development intensity [16–19] and street texture [20–22]. Even within the same neigh-
borhood, however, there are substantial variances in street usage, with some streets being
more vibrant than others. Analysis of street vitality from a macrodimensional perspective
is obviously insufficient because it ignores the impact of micromaterial environmental
characteristics. At the micro level of the street, the main factors influencing the vitality
of the street include comfortability [23–25], mixed use of functions [3,26] and safety [6].
In the era of big data, POI data [17,27], street view data [28–30] and other new types of
multisource data are being introduced into the study of urban vitality to carry out more
detailed cross validation.

It is worth noting that the dimensions of city types were distorted in earlier research
on street vibrancy. Existing studies, on the other hand, revealed that different types of
cities performed differently under the same urban vitality evaluation index system [8,31].
Furthermore, there is a dearth of in-depth data analysis of the causal relationship between
the elements impacting street vitality in the available studies.

In addition, mountain city road networks and plain road networks are very different.
First, plain city road network distribution is more orderly, mostly in grid layout. Second, the
travel distance within mountain city groups is short, whereas the travel distance between
groups is long. Third, mountain city street slope is large, the relative height difference is
large, and in order to adapt to the terrain, the road network is more broken. As a typical
mountain city, Chongqing was chosen as the research object in this study.

This study proposed a framework to describe the causal relationship and influence
mechanism of the factors of street vitality in mountainous cities. Following questions
were answered: (1) What are the important factors influencing the vitality of mountainous
city streets? (2) What causal relationship does the influencing factors of street vitality
follow in mountainous cities? (3) How do the influencing factors affect street vitality in
mountainous cities?

The rest of the paper is structured as follows. Section 2 presents the methodology of
the study in detail. Section 3 presents the selection of Bayesian network nodes and the data
used for the study. The analysis results are presented in Section 4. Section 5 provides a
discussion and conclusions.

2. Methodology

This study is divided into three steps: First of all, the factors influencing street vitality
in mountainous cities were screened with reference to existing studies. Subsequently,
multisource city big data were used to quantify the indicators of street vitality factors,
including LBS data, POI data, street view image data, building outline data and road
network data. Furthermore, Bayesian networks were introduced to construct a model
of street vitality impact in mountainous cities using structural learning and parametric
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learning methods. Finally, in order to explore the mechanism of street vitality influence
in mountainous cities, the causal relationships among street vitality influencing factors
and the optimal factor combination groups were identified through structural analysis,
single-factor analysis and multifactor combination analysis.

Bayesian networks can be used to define causal effects of external interventions and
describe causal relationships between multiple variables. To date, Bayesian networks have
been used in many fields to solve practical problems, such as industrial control [32], medical
diagnosis [33,34], environmental management [35,36], etc.

According to a review of previous studies, the methods of causal inference include
regression models, path analysis, structural equation models, dual difference, breakpoint
regression, tendency value matching, instrumental variable methods, etc. Based on big
data, this study wants to determine the causal relationship between the influencing factors
of street vitality from an objective perspective with a data-driven approach rather than
verifying the causal relationships based on a subjective experiential hypothesis. Therefore,
regression models, path analysis methods and structural equation models are not applicable
to this study. In the study of street vitality, to carry out large-scale measurement, it is difficult
to find a sufficient number of experimental and control streets that meet the requirements,
and the data used in this paper are not panel data, so dual difference, breakpoint regression,
propensity value matching and instrumental variable methods are not applicable.

Therefore, in this study, we combined Bayesian networks with GIS data. Research
on combining Bayesian networks with GIS data is also emerging [37,38]. The Bayesian
network–GIS framework has been demonstrated to be a practical tool [39]. In this study, ba-
sic concepts of Bayesian networks, BN node selection and data collection will be introduced.

2.1. Bayesian Network

A Bayesian network (BN), also known as a belief network, is the product of the
combination of Bayesian theory and graph theory. Such networks are often used to solve
uncertain problems in complex systems and to mine causal relationships from data. Given
a finite set of variables, V = [25 . . . Vn], X denotes a directed arc between different variables
in the set, V. After passing through a number of directed arcs from any node, none of
them can return to the original node. Then, G = <V, X> is called a directed acyclic graph.
Directed acyclic graphs intuitively show the complex relationships between nodes in a
qualitative way. The quantitative part of a Bayesian network is represented by a table
of conditional probabilities (CPT) representing each node, Vi, under the conditions of its
parent set of nodes, called a Bayesian parameter Θ. A Bayesian network can be represented
as N = <G, Θ>. A variety of algorithms support the construction of Bayesian networks
from data learning. There is a range of terminology used to describe the Bayesian network
modelling process and the analysis of results [40]. A list of terminology related to Bayesian
networks used in this paper is given in Table 1.

Table 1. Explanation of terms related to Bayesian networks.

Terminology Meaning and Examples

Node Refers to variables in the BN model. They can be either discrete or continuous.

Arc The directed arrow between nodes indicates direct influence between two nodes.

State Refers to the different values of the node variables.

CPT Demonstrates the conditional probability of each node under the influence of its parent node set, reflecting
the strength of the causal relationship.

Parent Node In simple terms, represents the cause node. If there is a directed arc between two nodes, then the one
emitting the arrow is said to be the parent node.

Child Node In simple terms, represents the result node. If there is a directed arc between two nodes, then the one
pointed to by the arrow is said to be a child node.

Descendant Node Any node that a node can reach through a directed chain is called the descendant node of that node.
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Table 1. Cont.

Terminology Meaning and Examples

Root Node When a node has only descendant nodes and no parent node, the node is said to be the root node in the BN.

Ancestor Node Any node that points to a node through a directed chain is called an ancestor nodes of that node.

Evidence Node When the actual state of a node is observed or some decision is made for that node, setting that node as an
evidence node, it can only have a unique value with probability 1 at that point.

Target Node
When performing inference, only certain nodes in the network may be of interest. By setting these nodes as
targets, only updates to the target nodes are observed when inference is performed, given the evidence
nodes. When no target node is set, all nodes are targets by default.

2.2. Modeling and Validation of Bayesian Network Model for Street Vitality in a Mountain City

When performing BN learning, severe multicollinearity between variables is not
allowed; otherwise, incorrect analytical results maybe caused [41]. Therefore, the multi-
collinearity test needed to be performed before modeling. Variance inflation factor (VIF) is
the most commonly used inspection variable. It is generally believed that when VIF > 10,
there is a serious multicollinearity problem [42]. After eliminating the multicollinearity
problem, the influencing factors need to be discretized.

Most Bayesian networks are modeled for discrete variables, and the model construc-
tion and operation of discrete random variables are faster and more accurate. Therefore,
after the node variables are determined, the variables are discretized. The number of states
of a variable is usually a compromise between model precision and simple degrees. In
order to improve the overall accuracy of the network and reduce the cost of calculation,
continuous variables are discretized into three states at most [43].

During modeling, streets covered by Baidu Street View were selected as samples to
ensure the integrity of data of each variable. A total of 3284 data samples were used to
construct the Bayesian network. According to the data characteristics of the variables
selected in this paper, the average thermal value was divided into two parts by quantile
classification method, and 1 (low) and 2 (high) were assigned. The data of each explanatory
variable were divided into 3 groups by natural discontinuity grading method, and values 1,
2 or 3 were assigned to each group according to numerical size from small to large. The
discretization method is shown in Appendix A.

Next, the BN model was formally built with the help of Genie software, which mainly
included BN structure learning, BN parameter learning and model verification. The pur-
pose of BN structure learning is to determine the optimal network topology that can reflect
the relationship between variables to form a directed acyclic graph between nodes, which
is the qualitative part of Bayesian network learning. In this study, a PC algorithm based
on conditional independent test method [44] was used to calculate and learn structures of
the Bayesian network, integrating expert knowledge for a few adjustments. BN parameter
learning is based on the network structure to learn the conditional probability distribu-
tion of each node through a given data set. An EM algorithm [45,46] that can perform
calculations under the condition of missing values was used for parameter learning in
this study.

In order to ensure its correctness and validity, the constructed model needed to
be verified. In this paper, the K-fold cross test [47] was used to verify the model, and
the performance of the model was evaluated by two parameters. The first parameter is
the F-score [48]. The second parameter is the area under the ROC (receiver operating
characteristic) [49], also known as the sensitivity curve. The horizontal axis is the false-
positive rate, and the vertical axis is the true positive rate. The Area under the ROC curve
(AUC) is generally not less than 0.5. When 0.5 ≤ AUC < 0.6, the model performance is poor.
When 0.6 ≤ AUC < 0.7, the model performance is medium. When 0.7 ≤ AUC < 0.8, the
model performance is good. When 0.8 ≤ AUC < 0.9, the model performance is great. When
AUC ≥ 0.9, the model performance is excellent.
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3. BN Node Selection and Data Collection
3.1. BN Node Selection

For Bayesian network modeling, the external indicators of street vitality and some
important factors influencing street vitality were defined as node variables. Street vitality
is embodied by human activity density. Based on previous studies [12,13], the population
activity density reflected by Baidu’s LBS data was used as a measure of the external
manifestation of street vitality, expressed by MHV.

Many studies have measured the impact of factors on the vitality of streets. From the
perspective of social interaction, Gehl (2010) analyzed the activities of people on streets and
concluded that the spatial elements of good streets are: “small-scale street detail planning
and richness design of building facades”, which is in line with W. Wu et al. (2016), who
stated that, “increasing road density will encourage human travel and regular activity, thus
fostering future vitality”. The research of Lin and Moudon (2010) showed that the closer the
streets of the city center, the regional center or large-scale commercial complex compound,
the stronger the radiation effect is, and the vitality of the street is also relatively higher.
Ewing et al. (2016) conducted a large number of evaluation studies on the construction of
urban spaces and walkability, and their results suggest that accessibility is one of the key
guarantees of vibrant streets, which coincides with the conclusion of Tu et al. (2020). Mehta
(2007) and Xu et al. (2018) conducted quantitative research on road connectivity and street
vitality. Montgomery (1998) proposed that land functions, shops, scale and type of business,
price and quality, squares and open spaces, mixed use of land, diversity of commercial
configuration, architecture and street life are the key elements that determine the vitality
streets. In terms of land development intensity and the impact of mixed land use on urban
vitality, both studies that suggest it has a positive effect [18,19] and studies that suggest it
has a negative effect [16,50] have been reported. In terms of the environmental comfort of
streets, studies by Borst et al. (2008) and Sarkar et al. (2015) indicated a positive association
between walking attractiveness and street tree cover or green view rates. Openness refers
to the proportion of the sky area that is visible from a particular viewpoint to the entire
field of view, which affects the length and degree of sunlight exposure of a street, thus
influencing the microclimate environment of streets and people’s perception of vision [51].
A boundary and enclosed space can provide users with a more intimate and private place,
making them feel protected, providing them with a sense of security and meeting their
safety needs [52]. Research by Ewing et al. (2005) also showed that the degree of enclosure
is related to street vitality.

For targeted research on mountain cities, it is necessary to fully consider their char-
acteristics, such as low density, discontinuity, low accessibility, infringement of ecological
space, special spatial structure, etc. Urban elevation information was supplemented, and
the average elevation and longitudinal slope of streets were calculated in this study, which
can help to reflect the characteristics of urban streets in mountainous areas. It was not
difficult to understand that slope affects how people feel about using streets. On the one
hand, slopes that exceed certain limits cause inconvenience to people, especially the elderly,
the disabled and women with small children. On the other hand, street features such as
slopes and stairs were positively associated with perceived attractiveness [23].

Based on existing studies, the influencing factors of street vitality in mountainous cities
screened in this study are shown in Table 2, which include the eight aspects of horizontal
interface characteristics, comfortability, mixed use of function, safety, location, accessibility,
intensity of surrounding development and street texture, with a total of 18 factors.
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Table 2. Influencing factors and quantitative methods of street vitality in mountainous cities.

Perspective Influencing
Aspects Influencing Factors Symbol Quantification Methods Discretization

Classification

Street
characteris-

tics

Horizontal
interface

characteristics

Street length SLen Calculated by Arcgis short, moderate, long

Elevation * MEle Calculated by Arcgis low, moderate, high

Longitudinal slope * SLO Average height
difference/street length low, moderate, high

Comfortability
Green view ratio GVR Area of greenery/area of

streetscape low, moderate, high

Sky view ratio SVR Area of sky/area of
streetscape low, moderate, high

Mixed use of
function

Functional density FDen Number of POIs/street
length low, moderate, high

Functional diversity FDiv Shannon entropy of the
POI category low, moderate, high

Safety
Surround close ratio SCR Vertical enclosure

area/street view area low, moderate, high

Lighting facilities LFac / none, exist

Location

Distance to the
nearest

commercial center
BcDis Calculated by Arcgis near, moderate, far

Distance to the
nearest

shopping mall
SmDis Calculated by Arcgis near, moderate, far

Surrounding
environment

Accessibility

Density of bus stops BsDen Number of stops/length
of streets low, moderate, high

Density of bus lines BrDen Line length/street length low, moderate, high

Distance to the
nearest metro station MsDis Calculated by Arcgis near, moderate, far

Road density RDen
Total length of roads in the

buffer zone/
1 km buffer zone area

low, moderate, high

Intensity of
surrounding
development

Building density BDen Building footprint/50 m
buffer area low, moderate, high

Building floor
area ratio FAR Building floor area/50 m

buffer zone area low, moderate, high

Street texture Intersection density IDen Number of intersections/
1 km buffer zone area low, moderate, high

Note: “*” refers to influencing factors with characteristics of mountain cities.

3.2. Data Collection

Chongqing city is a typical mountain city. The area west of Nanshan within the inner
ring of the main urban area of Chongqing was selected as the research area, with a total area
of about 233 km2, as shown in Figure 1. The road network in the research area is complex
and interlaced, with the following three characteristics: (a) The trip distance within the city
cluster is short, and the trip distance between clusters is long. (b) The street has a large
slope and a large relative height difference. (c) In order to adapt to the terrain, the road
network has many interruptions. Chongqing was selected as a representative case to study
the vitality of mountainous city streets.
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The data required for this study include road network data, building data, eleva-
tion data, bus route data, POI data, street view image data and LBS data, as shown in
Table 3. (1) The road network data are the basic data of this study. After processing, the
simplified road network (Figure 2, left) and the buffer zone generated 50 m along the
center line of the road (Figure 2, right) were obtained. In order to facilitate data analysis,
the street segments between intersections were taken as the smallest research unit in this
study. With a total of 3621 street segments, each street segment was assigned a unique ID.
(2) The urban building vector data included the three basic data points of building outline,
building base area and building height. A total of about 302,700 building data points were
obtained within the research scope. (3) Elevation data were in the form of raster data,
and elevation points were generated in Arcgis at 5 m intervals. Then, the elevation points
within the 10-m buffer zone to the left and right of the road centerline were connected with
the street buffer zone to obtain the elevation point data of each street segment, totaling
about 865,300 elevation points. (4) The bus route data comprised Chongqing’s bus routes
in 2019. After cropping in ArcGIS, a total of 380 bus routes were obtained in the buffer zone
of the study area, with a total length of about 4877.62 km. (5) POI data of 16 major cate-
gories related to residents’ daily life and work were obtained, with a total of 183,489 POI
points, as shown in Figure 3. (6) Streetscape images obtained with on Python were visually
screened, and after removing images that did not meet our requirements, such as bridges
and culverts, 36,387 images were ultimately used for image semantic segmentation. There
were 19 categories of labels for semantic segmentation of streetscape images, as shown in
Figure 4. (7) Four days (two weekdays and two rest days) with good weather and suitable
temperature were selected to collect Baidu LBS data from 7:00 am to 24:00 pm with 30 min
intervals. A total of 136 data maps were collected, and the data were processed in Arcgis,
as shown in Figure 5.
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Table 3. Required data for street vitality research.

Vitality Measurement Indicators/Influencing Factors Data Support Data Sources

MHV LBS data Baidu map
SLen RDen IDen Road network data Open street map

MEle SLO Elevation data Geospatial data cloud
GVR SVR SCR LFac Street View image data Baidu map

FDen FDiv BcDis SmDis MsDis BsDen POI data Baidu map
BrDen Bus route data City data group

BDen FAR Building vector data A map
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From the point of view of space, street vitality shows obvious polycentric distribution
characteristics, radiating outward from the city center and the city subcenter. Yuzhong
Peninsula and the surrounding area, with Guanyinqiao as the core, showed a high vitality
level, followed by Nanping, Yangjiaping-Daping, Three Gorges Square and the surrounding
area of Chaoyang Park. In other areas, the street vitality and the central area present a
large gap. According to our analysis, every district except Banan district has at least one
vitality pole.

4. Results

Two tests of multicollinearity were conducted in this study, and the results are shown
in Table 4. The results of the first calculation show that the VIF1 of both SVR and SCR
were greater than 10, proving the existence of severe multicollinearity. Therefore, after
excluding the SVR with the largest VIF1, the multicollinearity needed to be calculated again
for the remaining 17 influencing factors. The second calculation results show that after SVR
was removed, the VIF2 of all factors was less than 10, proving that there was no serious
multicollinearity. Therefore, the above 17 factors can be used as network node variables
for the BN structure, and MHV was also included in the network. In this study, GeNIe
was used to conduct Bayesian network modeling. We imported the processed data set into
GeNIe and used a PC algorithm to learn the structure and set parameters. Because the
node variables used in this paper are discrete, representing, at most, three states, a discrete
threshold of 3 was selected, i.e., variables with more than three parameters of different
values were considered continuous. After the network structure was determined, the EM
algorithm was used for Bayesian network parameter learning with the given sample data,
and the conditional probability table was obtained. K-fold cross validation was performed
on the BN model obtained through structure and parameter learning. The results of F1 score
and AUC are shown in Table 5, indicating good performance of the BN model constructed
in this study.

Table 4. Results of two multicollinearity tests.

Variables SLen Mele SLO GVR SVR FDen FDiv SCR LFac BcDis SmDis BsDen BrDen MsDis RDen BDen FAR IDen Mean VIF

VIF1 1.41 1.29 1.16 2.78 14.83 1.64 1.65 14.5 1.02 2.17 1.68 1.09 1.23 1.19 6.09 2.41 2.46 6.83 3.64
VIF2 1.4 1.28 1.16 2.75 / 1.6 1.61 3.61 1.02 2.13 1.68 1.09 1.23 1.19 6.08 2.4 2.46 6.83 2.33

Table 5. BN model verification results.

F1-Score AUC

MHV = High 0.9195 0.9693
MHV = Low 0.9191 0.9693

4.1. BN Structure Analysis

The Bayesian network structure is shown in Figure 6. MEle, SLO and Fden were the
root nodes in the structural network without parent nodes. MHV had direct dependencies
with all the remaining 11 node variables, except SLO and SCR. The dependencies between
all node variables were interleaved, resulting in a slightly complex network.

The factor cluster with MEle as the root node (Figure 7a) contained 10 nodes: MEle,
SCR, BrDen, MsDis, RDen, SmDis, BcDis, BDen, IDen and MHV. These ten nodes were
interleaved with many directed arcs and formed a total of 23 paths. The factor cluster
with SLO as the root node (Figure 7b) contained seven nodes: SLO, IDen, RDen, SmDis,
BcDis, MsDis and MHV. These seven nodes formed a total of eight paths. The factor cluster
with FDen as the root node (Figure 7c) contained 11 nodes: FDen, FDiv, BDen, FAR, SCR,
IDen, RDen, MsDis, SmDis, BcDis and MHV. The dependency relationships among these
11 nodes were relatively interleaved, forming a total of 16 paths.
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4.2. Single-Factor Analysis
4.2.1. Forward Inference

In order to quantify the degree of influence of each influencing factor on street vitality,
the BN model was used to carry out forward inference. Forward inference refers to a
posteriori probabilistic inference from cause to effect. The influencing factor node was
set as an evidence variable (denoted as E) and assigned a state. Through probabilistic
inference, the posterior probability distribution of the query variable (denoted as Q) under
a certain state of the influencing factor was obtained. In this section, an associative tree
algorithm [53] was used to carry out forward inference with MHV as the query variable.

The single-factor forward inference results are shown in Table 6. The posterior proba-
bilities of query variables in different states of each evidence variable were compared to
determine the degree of influence of evidence variables on street vitality. The results show
that factors with the large influence were IDen and RDen, followed by FDiv, MEle, SmDis
and FAR; those with intermediate influence were BcDis, BDen, FDen, SCR and MsDis; and
those with relatively small influence were SLO and BrDen.
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Table 6. Extent of influence of evidence variables on street dynamics.

E Q Initial Probability of Q
Posterior Probability of Q Probability

Increase ValueE = 3 E = 2 E = 1

MEle

MHV = High 0.4909

0.4736 0.5350 0.4193 0.1157
SLO 0.5406 0.5035 0.4844 0.0562
FDen 0.4664 0.4466 0.5421 0.0955
FDiv 0.4789 0.5179 0.5945 0.1156
SCR 0.4663 0.5034 0.5615 0.0952

BcDis 0.5475 0.5490 0.4491 0.0984
SmDis 0.5748 0.5442 0.4645 0.1103
BrDen 0.4762 0.4926 0.5183 0.0421
MsDis 0.5655 0.5160 0.4827 0.0828
RDen 0.4323 0.4777 0.5783 0.1460
BDen 0.4242 0.4492 0.5456 0.0963
FAR 0.4146 0.4157 0.5295 0.1138
IDen 0.3983 0.4809 0.5744 0.1761

Note: the three states of the evidence variable (E): 1 = Low/Near, 2 = moderate, and 3 = High/Far. The probability
increase represents the difference between the maximum and minimum probabilities in posterior probability.

4.2.2. Sensitivity Analysis

GeNIe provides a sensitivity analysis function, with the depth of red reflecting the
strength of sensitivity. The sensitivity coefficient is displayed next to the node. The larger
the coefficient, the higher the sensitivity. The MHV node was set as the target node for
sensitivity analysis. The results are shown in Table 7. The sensitivity of street vitality to
each node variable was divided into six echelons from high to low. (1) The first echelon
included FDen, MEle and FAR, with the strongest sensitivity. (2) The second echelon
included SLO. (3) The third echelon included SmDis, FDiv, FDen and IDen. (4) The fourth
echelon included BDen, BrDen and MsDis. (5) The fifth echelon included BcDis. (6) The
sixth echelon included SCR. Combined with the analysis of the Bayesian network structure,
it can be seen that the descendants a node has, the higher the sensitivity. For example, MEle
was the root node in the network structure. In addition to street vitality, MEle still had eight
descendant nodes, seven of which were directly dependent on street vitality. Furthermore,
there were 22 paths between MEle and MHV. Changes in MEle caused changes in many
other factors, which were gradually transmitted through the paths. All the subtle changes
converged together have a greater impact on the vitality of the street. FDen and FAR also
had many descendant nodes, and there were many paths between them and MVH. On the
contrary, both BcDis and SCR had only one descendant node of MHV, and their changes
had no impact on other nodes and did not produce compound effects, so their sensitivity
was weak.

Table 7. Sensitivity ranking.

Nodes Sensitivity Coefficient Ranking

FDen 0.0934 1
MEle 0.0908 2
FAR 0.0743 3
SLO 0.0508 4

SmDis 0.0262 5
FDiv 0.0227 6
RDen 0.0197 7
IDen 0.0191 8
BDen 0.0175 9
BrDen 0.0173 10
MsDis 0.0147 11
BcDis 0.0061 12
SCR 0.0028 13
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4.3. Multifactor Combination Analysis

Street vitality is usually caused not by a single factor but by a combination of multiple
factors. Based on the analysis of the influence of individual factors, we studied the proba-
bility distribution of street vitality under the combination of multiple factors. Based on the
BN structure, all the paths leading to the MHV node were determined, starting from the
root node. Because of the interactions of the nodes along a path, multiple factors on the
path were called to the factor combination group. The annealing MAP algorithm was used
to calculate the influence of different factor combinations on the posterior probability of
street vitality.

The results of the multifactor combination analysis are shown in Table 8. Figure 8
shows the longest path from each root node; generally the more nodes included, the greater
the posterior probability of high vitality of the street. Among the 46 factor combinations,
the most likely combination to create a high-vitality street was composed of six factors:
FDen, FAR, IDen, RDen, SmDis and BcDis (Figure 8c), covering mixed use of function,
development intensity, location and street texture. It should be noted that this is only the
longest path in the group of factors. In fact, the influence of each node on MHV was not
only transmitted through this path; there were cross effects between each node, such as the
influence of RDen on SmDis and the direct effect of each node on MHV. Among the factor
combination groups from different root nodes, the factor combination group with FDen
as the root node had the best overall performance in terms of high street vitality, followed
by the factor combination group with MEle as the root node, although the difference
between them was not significant. The factor combination group with SLO as the root node
performed poorly.

Table 8. Analysis of factor combination groups.

Root Node Number Evidence (E) MAP P (MAP|E) Degree of
Influence

Group
Ranking

Overall
Ranking

MEle

1 MEle = M, IDen = H, RDen = H,
MsDis = N, BcDis = N MHV = H 0.7763 0.2854 1 3

2 MEle = M, IDen = H, RDen = H,
SmDis = N, BcDis = N MHV = H 0.7734 0.2825 2 5

3 MEle = M, IDen = H, RDen = H,
BcDis = N MHV = H 0.7509 0.2600 3 6

4 MEle = M, IDen = H, BcDis = N MHV = H 0.7365 0.2456 4 7

5 MEle = M, RDen = H, SmDis = N,
BcDis = N MHV = H 0.7018 0.2109 5 11

MEle

6 MEle = M, RDen = H, MsDis = N,
BcDis = N MHV = H 0.6943 0.2034 6 12

7 MEle = M, RDen = H, BcDis = N MHV = H 0.6873 0.1964 7 14

8 MEle = M, IDen = H, RDen = H,
SmDis = N MHV = H 0.6669 0.1760 8 18

9 MEle = M, BDen = H, SCR = H,
BcDis = N MHV = H 0.6668 0.1759 9 19

10 MEle = M, IDen = H, RDen = H,
MsDis = N MHV = H 0.6595 0.1686 10 21

11 MEle = M, IDen = H, RDen = H MHV = H 0.6433 0.1524 11 25
12 MEle = M, SmDis = N, BcDis = N MHV = H 0.6376 0.1467 12 27
13 MEle = M, IDen = H MHV = H 0.6319 0.1410 13 29
14 MEle = M, MsDis = N, BcDis = N MHV = H 0.6055 0.1146 14 31
15 MEle = M, RDen = H, SmDis = N MHV = H 0.6048 0.1139 15 32
16 MEle = M, BcDis = N MHV = H 0.6012 0.1103 16 34
17 MEle = M, RDen = H, MsDis = N MHV = H 0.5942 0.1033 17 37
18 MEle = M, RDen = H MHV = H 0.5917 0.1008 18 38
19 MEle = M, BDen = H MHV = H 0.5873 0.0964 19 39
20 MEle = M, SmDis = N MHV = H 0.5696 0.0787 20 42
21 MEle = M, MsDis = N MHV = H 0.5453 0.0544 21 45
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Table 8. Cont.

Root Node Number Evidence (E) MAP P (MAP|E) Degree of
Influence

Group
Ranking

Overall
Ranking

22 MEle = M MHV = H 0.5350 0.0441 22 46
23 MEle = M, BRDen = H MHV = H 0.5331 0.0422 23 47

SLO

24 SLO = M, IDen = H, RDen = H,
SmDis = N, BcDis = N MHV = H 0.7236 0.2327 1 9

25 SLO = M, IDen = H, RDen = H,
MsDis = N, BcDis = N MHV = H 0.7191 0.2282 2 10

26 SLO = M, IDen = H, RDen = H,
BcDis = N MHV = H 0.6939 0.2030 3 13

27 SLO = M, IDen = H, RDen = H,
SmDis = N MHV = H 0.6573 0.1664 4 22

28 SLO = H, IDen = H, RDen = H,
MsDis = N MHV = H 0.6333 0.1424 5 28

29 SLO = M, IDen = H, RDen = H MHV = H 0.6184 0.1275 6 30
30 SLO = M, BcDis = N MHV = H 0.6002 0.1093 7 35
31 SLO = M, IDen = H MHV = H 0.6046 0.1137 8 33

FDen

32 FDen = M, FAR = M, IDen = H,
RDen = H, SmDis = N, BcDis = N MHV = H 0.8172 0.3263 1 1

33 FDen = M, FAR = M, IDen = H,
RDen = H, MsDis = N, BcDis = N MHV = H 0.7892 0.2983 2 2

34 FDen = M, FAR = M, IDen = H,
RDen = H, BcDis = N MHV = H 0.7757 0.2848 3 4

FDen

35 FDen = M, FAR = M, IDen = H,
RDen = H, SmDis = N MHV = H 0.7264 0.2355 4 8

36 FDen = M, FAR = M, SCR = H,
BcDis = N MHV = H 0.6830 0.1921 5 15

37 FDen = M, FAR = M, IDen = H,
RDen = H MHV = H 0.6733 0.1824 6 16

38 FDen = M, FAR = M, IDen = H,
RDen = H, MsDis = N MHV = H 0.6708 0.1799 7 17

39 FDen = M, FAR = M, FDiv = H MHV = H 0.6646 0.1737 8 20
40 FDen = M, FAR = M, IDen = H MHV = H 0.6524 0.1615 9 23

41 FDen = M, Bden = H, SCR = H,
BcDis = N MHV = H 0.6444 0.1535 10 24

42 FDen = M, SCR = H, BcDis = N MHV = H 0.6405 0.1496 11 26
43 FDen = M, FAR = M, BDen = M MHV = H 0.5958 0.1049 12 36
44 FDen = M, FAR = M MHV = H 0.5848 0.0939 13 40
45 FDen = M, BDen = H MHV = H 0.5698 0.0789 14 41
46 FDen = M, FDiv = H MHV = H 0.5646 0.0737 15 43
47 FDen = M MHV = H 0.5534 0.0625 16 44

Note: H stands for high, L stands for low, M stands for moderate, N stands for near, F stands for far and the
degree of influence refers to the difference with the original probability of MHV = H.

In single-factor analysis, the probability of high street vitality was greatest when
SLO was high. However, when SLO was combined with other factors, moderate SLO
was required for greater probability of street vitality. In addition, there were many factor
combination groups of SLO and MEle with the same nodes except the root node, such as
factor combination groups 1 and 25. According to a comparison of these two groups, SLO
played a relatively minor role in factor combination groups.

It is worth noting that in the single-factor analysis, the higher the building plot ratio,
the greater the probability of high street vitality. However, when FAR was combined
with FDen, moderate FAR stimulated the vitality of the street with a greater probability.
The same situation existed with BDen. When BDen was combined with FAR and FDen,
moderate BDen resulted in a combined factor group with a greater impact on street vitality.
Therefore, in actual urban construction, BDen and FAR should not be as high as possible.
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Excess building density could make people feel crowded and reduce the quality of the
environment. Moderate BDen and FAR were more conducive to improving street vitality.

Land 2022, 11, x FOR PEER REVIEW 14 of 23 
 

FDen, moderate FAR stimulated the vitality of the street with a greater probability. The 
same situation existed with BDen. When BDen was combined with FAR and FDen, mod-
erate BDen resulted in a combined factor group with a greater impact on street vitality. 
Therefore, in actual urban construction, BDen and FAR should not be as high as possible. 
Excess building density could make people feel crowded and reduce the quality of the 
environment. Moderate BDen and FAR were more conducive to improving street vitality. 

 
(a) (b) (c) 

Figure 8. The longest path of the factor combination groups of different root nodes. (a) The longest 
path with MEle as the root node; (b) the longest path with SLO as the root node; (c) the longest path 
with FDen as the root node. 

Table 8. Analysis of factor combination groups. 

Root 
Node 

Numb
er Evidence (E) MAP P (MAP|E) 

Degree of 
Influence 

Group 
Ranking 

Overall 
Ranking 

MEle 

1 
MEle = M, IDen = H, RDen = H, MsDis = 

N, BcDis = N MHV = H 0.7763 0.2854 1 3 

2 
MEle = M, IDen = H, RDen = H, SmDis = 

N, BcDis = N MHV = H 0.7734 0.2825 2 5 

3 
MEle = M, IDen = H, RDen = H, BcDis = 

N MHV = H 0.7509 0.2600 3 6 

4 MEle = M, IDen = H, BcDis = N MHV = H 0.7365 0.2456 4 7 

5 MEle = M, RDen = H, SmDis = N, BcDis 
= N MHV = H 0.7018 0.2109 5 11 

MEle 

6 MEle = M, RDen = H, MsDis = N, BcDis 
= N MHV = H 0.6943 0.2034 6 12 

7 MEle = M, RDen = H, BcDis = N MHV = H 0.6873 0.1964 7 14 

8 
MEle = M, IDen = H, RDen = H, SmDis = 

N MHV = H 0.6669 0.1760 8 18 

9 MEle = M, BDen = H, SCR = H, BcDis = 
N 

MHV = H 0.6668 0.1759 9 19 

10 MEle = M, IDen = H, RDen = H, MsDis = 
N MHV = H 0.6595 0.1686 10 21 

11 MEle = M, IDen = H, RDen = H MHV = H 0.6433 0.1524 11 25 
12 MEle = M, SmDis = N, BcDis = N MHV = H 0.6376 0.1467 12 27 
13 MEle = M, IDen = H MHV = H 0.6319 0.1410 13 29 
14 MEle = M, MsDis = N, BcDis = N MHV = H 0.6055 0.1146 14 31 

Figure 8. The longest path of the factor combination groups of different root nodes. (a) The longest
path with MEle as the root node; (b) the longest path with SLO as the root node; (c) the longest path
with FDen as the root node.

5. Discussion
5.1. Limitation and Further Possibilities of the Methodology Used in This Study

Firstly, the population activity data carried by Baidu LBS data were used as the
external representation of street vitality in this study. Although these data are based on
location data extracted from a large number of smartphone users, which can reflect the
spatial distribution of population activity density in the same time period from a macro
perspective, it is difficult to distinguish the crowd attributes and activity categories and
to identify the trajectory of human activities. Secondly, based on relevant theories and
previous studies, this study selected influencing factors from the aspects of horizontal
interface characteristics, comfort, functionality, safety, location, accessibility, development
intensity and street texture from two levels of street characteristics and street surrounding
environment but more urban elements. Urban natural landscape, historical culture and
other factors, such as hydrophilicity, were not included in this study. Furthermore, this
research was only based on the data of Chongqing’s inner ring streets, and some conclusions
may be particular to this city. Finally, in the construction of the Bayesian network structure,
in order to guarantee the objectivity of the data, this study mainly relied on a data-driven
network model but still on the basis of the consensus in the field of network structure that
a small amount of adjusting and optimizing is preferable. Although the final build of the
Bayesian network model and its validation achieved excellent performance, there is still a
certain amount of subjectivity.

Based on the above discussion, further research will be carried out considering the
following four aspects. Firstly, data with more accurate and detailed spatial resolution can
be used to distinguish the attribute characteristics of crowds, and OD data can be used
to analyze the activity trajectory of specific crowds, their habits, preferences and other
characteristics. The influence of seasonal factors on street vitality should also be considered.
In addition, street view images and machine learning models can be used to obtain the
ratings of streets based on people’s subjective feelings to make up for the shortcomings
of existing research. Secondly, in this paper, mainly selected influencing factors based on
urban elements, but natural scenery, cultural characteristics and historical landscape in
cities are also important factors for people’s cognition of the urban environment, which
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affects people’s behavior. Subsequently, it is necessary to further explore the natural scenery,
history and culture of cities to construct a more perfect influencing factor system of street
vitality to make the research more scientific. Thirdly, this study took the Chongqing urban
area as an example to carry out research, which may have resulted in conclusion particular
to that city. In order to study the influence mechanism of street vitality in mountain cities
with more universality, the research scope can be further expanded to select more mountain
cities for research. In addition, with the continuous expansion of the research scope, the
data scale will also continue to expand, and a Bayesian network model can be obtained
only based on data learning to make the research results more objective. Finally, in this
paper, living streets were studied, although they can be further subdivided according to
their different functions and land use types, such as commercial streets, residential streets
and mixed streets. Different types of streets may have different influencing factors and
influencing mechanisms, so more detailed studies are needed in the future.

5.2. Possible Innovations in This Study

Based on a geographic information system, this study used Baidu heat map data,
POI data, street map data, urban spatial data (road network data, building data, elevation
data and bus routes) and multisource data to construct a street dynamic measurement of
influencing factors based on the database for street vitality and the influence factors of
quantitative analysis. A Bayesian network was introduced into the study to explore and
analyze the relationship between the influencing factors and the influencing mechanism of
street vitality based on the database.

This study conducted targeted research on mountain cities and preliminarily explored
the causal relationship among the influencing factors. Taking the streets of mountain
cities as the research object, an influencing factor system of street vitality suitable for
mountain cities was constructed. Taking the data of Chongqing, a typical mountain city, as
an example, a Bayesian network model was constructed. Based on the established model,
we identified different types of influencing factors, preliminarily explored the correlation
between the influencing factors and the influencing path and discriminated the influencing
mechanism of street vitality in mountain cities in order to apply this model to other similar
areas to help in decision making.

6. Conclusions

The key mechanisms of the influence of the physical environment of street space on
street vitality are explained here. According to our analysis, the influence mechanism
revolves around the function density and intersection density. On the one hand, it refers to
the influence of the street and the built environment on either side of the street centered on
functional density. On the other hand, it refers to the influence of other elements in the city
centered on intersection density.

The influence mechanism from the perspective of self-environment mainly refers to
the characteristics of the street itself and the built environment on both sides of the street
in relation to street vitality, with FDen as the core, focusing on the street’s function, safety
and development intensity of both sides of the street. In urban construction, functional
planning should be carried out on the basis on functional positioning. Functional density
is related to the development intensity on both sides of the street. When the functional
density of the street increases in order to support more functions of the street, there needs
to be enough building space. Therefore, the size of buildings on both sides of the street
will gradually increase, and the building density will also gradually increase. Excessive
development intensity causes congestion and deteriorates the street environment, which in
turn can inhibit street vitality. For efficient use of land while ensuring the comfort of the
street, the building floor area ratio should also be kept at an appropriate level. The density
of functions and sufficient building space promote the mixed use of functions, which can
attract people with different needs to carry out activities on the street. After meeting
basic functional needs, higher requirements will be put forward on the street environment.
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A proper sense of enclosure of street space brings a sense of psychological security and
comfort, which is mainly created by the forest of buildings and trees, thus attracting more
people to carry out activities on the street and gradually forming street vitality.

The influence mechanism of the external environment perspective mainly refers to
the influence of elements a certain distance from the street or within the larger buffer
zone of the street on street vitality. This mechanism is based on the average elevation and
functional density of the street, with the density of intersections around the street as the
core and accessibility and location as the guarantee. Although the average elevation is
a characteristic of the street itself, this factor has an impact on the construction around
the street. During the construction of mountainous cities, more consideration should be
given to geological and topographical factors. Areas with moderate elevations are generally
located between rivers and mountains. Although there are some slope undulations, it is
relatively easy to build and more convenient for people’s life. Due to the influence of terrain
in mountain cities, relatively few places are available for development and construction.
In order to use the land as efficiently as possible, the construction granularity and the
block divisions should be finer in places where the terrain is relatively flat and less difficult
to develop, so the density of intersections and roads is greater. On the other hand, a
rise in functional density leads to an increase in the building floor area ratio. In order to
avoid overcrowding of functions and buildings while meeting the travel needs of more
people, block division will is more detailed when buildings are gathered, resulting an
increase in intersection density and road density. Small blocks and well-organized road
networks result in less resistance for urban residents to come and more opportunities for
social interaction activities. In response to the daily needs of people, shopping centers
with a certain radiation range should be established in the area. Shopping centers and
high road densities can attract residents who live far away from the city. The coverage
of public transportation such as subways should be more scientific and reasonable, thus
reducing the resistance of residents to travel for the same reason. On the basis of the
increase in accessibility, the gradual increase in various functions carried by buildings and
the gathering of shopping centers, there is a high probability of forming a commercial
center that can play a radiating role in the surrounding streets, thus attracting more people
to carry out activities in the streets and progressively stimulating the vitality of the street.

The above two modes of influence do not exist independently but should promote
and complement each other in practice. It should be noted that the influence described in
this study is a probabilistic causality. That is, the occurrence of A will lead to an increase in
the probability of the occurrence of B, but the occurrence of A will not necessarily cause
B to occur. In addition, for shorter time segments, the street spatial environment and the
street vitality are mutually causal and continuous replacement. However, on the whole, it
is the physical environment of the street that serves as the carrier. People then gather and
carry out communication activities in the physical environment, thus forming the vitality
of the street.
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Appendix A. Calculation Method of Influencing Factors of Street Vitality

(1) Horizontal interface characteristics
a. SLen (Street length)
Where street length is the most basic physical property of a street. Street length can be

directly calculated geometrically in Arcgis and expressed by SLen.
b. MEle (Elevation)
Street elevation measures the average elevation of a street, calculated by the following

formula:

MEle =∑elevationi/n (i = 1, 2, · · · , n)

where MEle is the average elevation of a certain street segment, elevationi is the elevation
of elevation point I in the buffer zone of about 10 m of the street segment and n is the total
number of elevation points.

c. SLO (Slope)
SLO = (Emax − Emin)/length

where SLO is the slope of a street segment, Emax is the maximum elevation value in the
buffer zone of about 5 m of the street segment, Emin is the minimum elevation value in the
buffer zone of about 5 m of the street segment and length is the length of the street segment.

(2) Comfortability
a. GVR (green view ratio)
In this paper, the proportion of green plants in street view images was used to measure

the greenness; the calculation formula is as follows:

GVR =
∑n

i (fgvri+hgvri)

2n
(i = 1, 2, · · · , n)

where fgvri is the proportion of green plants in the street view image in the direction of 0◦

of the I sample point, hgvri is the proportion of green plants in the street view image in the
direction of 180◦ of the i sample point and n is the number of street view sample points on
a given street segment.

b. SVR (sky view rate)
In this paper, the proportion of the visible sky area in the street view image to the

overall picture was used to measure the openness of the street. The calculation formula is
as follows:

SVR =
∑n

i (fki+hki)

2n
(i = 1, 2, · · · , n)

where fki is the proportion of sky in the street view image in the direction of 0◦ of the ith
sample point, hki is the proportion of sky in the street view image in the direction of 180◦

of the ith sample point and n is the number of sample points on a given street segment.
(3) Mixed use of function
a. FDen (functional density)

FDen = n/length

where n is the number of POIs (points of interest) in the 50 m buffer of the street segment,
and length is the length of the street segment.

b. FDiv (functional diversity)

FDiv =∑n
i pi × lnpi (i = 1, 2, · · · , n)

where n is the number of POI categories in the 50 m buffer zone of a given street segment,
and pi is the ratio of a certain type of POI to the total number of POIs in the street segment.
Public facility service POIs do not participate in the calculation of function mixing degree.

(4) Safety
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a. SCR (surround close rate)
In this paper, the area proportion of vertical boundaries (buildings, walls and trees)

in street images was used to measure the enclosure degree; the calculation formula is as
follows:

SCR =
∑n

i (fwi+hwi)

2n
(i = 1, 2, · · · , n)

where fwi is the proportion of the vertical boundary in the street view image in the direction
of 0◦ of the ith sample point, hwi is the proportion of the vertical boundary in the street
view image in the direction of 180◦ of the ith sample point and n is the number of street
view sample points on this street segment.

b. LFac (lighting facilities)
In this paper, whether there is was street lamp in the street view was used to measure

this index. It is expressed by LFac; 1 means existence, and 0 means non-existence.
(5) Location
a. BcDis (distance to nearest business center)
In this paper, Arcgis was used to directly calculate the straight-line distance between

the center point of each street and the commercial center by using the “nearest neighbor
analysis” tool, which is expressed by BcDis.

b. SmDis (distance to nearest shopping mall)
In this paper, the “nearest neighbor analysis” tool was directly used in Arcgis to

calculate the straight-line distance between the center point of each street and the nearest
shopping center, which is expressed by SmDis.

(6) Accessibility
a. BsDen (bus stop density)
Bus stop density refers to the ratio of the number of bus stops along a street segment

to the street length and is used to measure accessibility by bus. The calculation formula is
as follows:

BsDen = nlength

where n is the number of bus stops in the 55 m buffer zone around the street segment, and
length is the length of the street segment.

b. BrDen (bus route density)
Bus route density refers to the ratio of the total bus route length covering the street to

the length of the street and is also used to measure accessibility by bus. The calculation
formula is as follows:

BrDen = lengthb/length

where lengthb is the total length of all bus lines in the 55 m buffer zone around the block,
and length is the length of the block.

c. MsDis (distance to nearest metro station)
In this paper, the “nearest neighbor analysis” tool was directly used in Arcgis to

calculate the straight-line distance between the center point of each street and the nearest
subway station, which is expressed by MsDis.

Road density refers to the ratio of the sum of road lengths within a certain area around
the street to the area within this area; the calculation formula is as follows:

d. RDen (road density)
Road density refers to the ratio of the sum of road lengths within a certain area around

the street to the area within this area, and the calculation formula is as follows:

RDen = l/area

where l is the length of the road in the buffer zone of about 1000 m, and area is the area of
the buffer zone.

(7) Intensity of surrounding development
a. BDen (building density)
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Building density refers to the ratio of the sum of the area under the building in the
street buffer zone to the area of the street buffer zone; the calculation formula is as follows:

BDen =∑n
i si/area (i = 1, 2, · · · , n)

where si is the floor area of a building in the 50 m buffer zone, n is the number of buildings
in the buffer zone and area is the area of the buffer.

b. FAR (building floor area ratio)
Building floor area ratio refers to the ratio of the total building area in the street buffer

zone to the street buffer area; the calculation formula is as follows:

FAR =∑n
i si×fi/area (i = 1, 2, · · · , n)

where si refers to the floor area of the ith building in the 50 m buffer zone around the street
segment, fi refers to the number of the ith building floor, n is the number of buildings in
the buffer and area is the area of the buffer.

(8) Street texture
IDen (intersection density) is the ratio of the number of intersections within a given

perimeter of a street to its area, calculated as follows:

IDen = n/area

where n is the number of intersections in the buffer zone of 1000 m, and area is the buffer
zone area.

Appendix B

Table A1. Discretization methods of Bayesian network node variables.

Node Variable Value Range Discrete Points Discrete State

SLen [20.0932, 716.7265] 213.5299, 405.4799 1 = short, 2 = moderate, 3 = long
Mele [164.5557, 411.8496] 247.9944, 303.6890 1 = low, 2 = moderate, 3 = high
SLO [0.0000, 0.6086] 0.0682, 0.1794 1 = low, 2 = moderate, 3 = high
GVR [0.0016, 0.8578] 0.2352, 0.4494 1 = low, 2 = moderate, 3 = high
SVR [0.0000, 0.6329] 0.2352, 0.4494 1 = low, 2 = moderate, 3 = high
FDen [0.0000, 1953.2066] 206.2459, 602.9701 1 = low, 2 = moderate, 3 = high
FDiv [0.0000, 2.3844] 0.7385, 1.5838 1 = low, 2 = moderate, 3 = high
SCR [0.0692, 0.9246] 0.4361, 0.6107 1 = low, 2 = moderate, 3 = high
LFac Discrete data Discrete data 0 = none, 1 = exist
BcDis [0.0000, 9624.5830] 1434.5387, 3235.9474 1 = near, 2 = moderate, 3 = far
SmDis [16.9713, 6007.8322] 950.2655, 2041.5915 1 = near, 2 = moderate, 3 = far
BsDen [0.0000, 0.0622] 0.0022, 0.0084 1 = low, 2 = moderate, 3 = high
BrDen [0.0000, 39.5468] 2.2026, 6.8567 1 = low, 2 = moderate, 3 = high
MsDis [1.4028, 2052.0572] 391.4430, 765.3989 1 = near, 2 = moderate, 3 = far
RDen [1.0888, 9.1561] 4.9703, 6.5272 1 = low, 2 = moderate, 3 = high
BDen [0.0000, 0.9706] 0.3299, 0.7698 1 = low, 2 = moderate, 3 = high
FAR [0.0000, 31.9485] 3.9370, 11.8514 1 = low, 2 = moderate, 3 = high
IDen [2.2676, 39.8717] 15.5843, 24.1685 1 = low, 2 = moderate, 3 = high
MHV [51.0000, 192.0000] 165.1358 1 = low, 2 = high
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