Estimating Road Mortality Hotspots While Accounting for Imperfect Detection: A Case Study with Amphibians and Reptiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Design
2.3. Road Mortality Surveys
2.4. Pandemic-Associated Road Mortality
2.5. Occupancy Model Development
3. Results
4. Discussion
4.1. Pandemic-Associated Road Mortality
4.2. Occupancy Modeling Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement:
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code | Functional Class Description | Traffic Volume (Vehicles/Day) |
---|---|---|
1 | Interstate | 12,000–34,000 |
2 | Other Freeways & Expressways | 4000–18,500 |
3 | Other Principal Arterial | 2000–8500 |
4 | Minor Arterial | 1500–6000 |
5 | Major Arterial | 300–2600 |
6 | Minor Collector | 15–1100 |
7 | Local | 15–40 |
Model | K | AIC | Delta | AICwt | cumltvWt |
---|---|---|---|---|---|
psi (Perc_Wetland_100m, F_Class_Code), p (Rain, F_Class_Code) | 6 | 187.71 | 0.00 | 0.35 | 0.35 |
psi (Perc_Wetland_100m), p (Rain, F_Class_Code) | 5 | 188.81 | 1.10 | 0.23 | 0.55 |
psi (Perc_Forest_100m), p (Rain, F_Class_Code) | 5 | 189.71 | 1.93 | 0.13 | 0.69 |
psi (Perc_Wetland_100m), p (Temperature, Rain) | 5 | 190.15 | 2.43 | 0.01 | 0.79 |
psi (Perc_Forest_100m), p (Temperature, Rain) | 5 | 190.40 | 2.68 | 0.092 | 0.88 |
psi (Perc_Wetland_100m), p (Rain, Julian_Date) | 5 | 191.24 | 3.53 | 0.060 | 0.95 |
psi (Perc_Forest_100m), p (Rain, Julian_Date) | 5 | 191.77 | 4.06 | 0.046 | 0.99 |
psi (Perc_Forest_100m, F_Class_Code), p(Rain) | 5 | 195.92 | 8.21 | 0.0058 | 1.00 |
psi (Perc_Wetland_100m, F_Class_Code), p(Rain) | 5 | 197.39 | 9.67 | 0.0028 | 1.00 |
psi (Perc_Forest_100m, F_Class_Code), p (Temp., F_Class_Code) | 6 | 205.98 | 18.27 | 0.000038 | 1.00 |
psi (Perc_Wetland_100m), p (Temperature, F_Class_Code) | 5 | 206.43 | 18.72 | 0.000030 | 1.00 |
psi (Perc_Forest_100m), p (Temperature, F_Class_Code) | 5 | 207.07 | 19.36 | 0.000022 | 1.00 |
psi (Perc_Wetland_100m, F_Class_Code), p (Temp., F_Class_Code) | 6 | 207.29 | 19.58 | 0.000020 | 1.00 |
psi (Perc_Wetland_100m, F_Class_Code), p(Temperature) | 5 | 212.19 | 24.48 | 0.0000017 | 1.00 |
psi (Perc_Forest_100m, F_Class_Code), p(Temperature) | 5 | 212.84 | 25.13 | 0.0000060 | 1.00 |
psi (.), p (.) | 2 | 213.26 | 25.55 | 0.0000010 | 1.00 |
References
- Hill, J.E.; DeVault, T.L.; Belant, J.L. Cause-specific mortality of the world’s terrestrial vertebrates. Glob. Ecol. Biogeogr. 2019, 28, 680–689. [Google Scholar] [CrossRef] [Green Version]
- Loss, S.R.; Will, T.; Marra, P.P. Estimation of bird-vehicle collision mortality on US roads. J. Wildl. Manag. 2014, 78, 763–771. [Google Scholar] [CrossRef]
- Glista, D.J.; De Vault, T.L.; De Woody, J.A. Vertebrate road mortality predominantly impacts amphibians. Herpetol. Conserv. Biol. 2008, 3, 77–87. [Google Scholar]
- Matos, C.; Sillero, N.; Argaña, E. Spatial analysis of amphibian road mortality levels in northern Portugal country roads. Amphib. Reptil. 2012, 33, 469–483. [Google Scholar] [CrossRef]
- Guyer, C.; Bailey, M.A. Amphibians and Reptiles of Longleaf Pine Communities. In Proceedings of the Tall Timbers Fire Ecology Conference, Tall Timbers Research Station, Tallahassee, FL, USA, 1993; Available online: https://www.talltimbers.org/wp-content/uploads/2018/09/139-GuyerandBailey1993_op.pdf (accessed on 3 March 2022).
- Welsh Jr, H.H.; Ollivier, L.M. Stream amphibians as indicators of ecosystem stress: A case study from California’s redwoods. Ecol. Appl. 1998, 8, 1118–1132. [Google Scholar] [CrossRef]
- Fahrig, L.; Pedlar, J.H.; Pope, S.E.; Taylor, P.D.; Wegner, J.F. Effect of road traffic on amphibian density. Biol. Conserv. 1995, 73, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, J.P.; Shriver, W.G. Can road mortality limit populations of pool-breeding amphibians? Wetl. Ecol. Manag. 2005, 13, 281–289. [Google Scholar] [CrossRef]
- Beaudry, F.; Demaynadier, P.G.; Hunter, M.L. Non-marine turtle plays important functional roles in Indonesian ecosystems. Ecol. Evol. 2020, 10, 9613–9623. [Google Scholar]
- Beaudry, F.; Demaynadier, P.G.; Hunter, M.L., Jr. Identifying hot moments in road-mortality risk for freshwater turtles. J. Wildl. Manag. 2010, 74, 152–159. [Google Scholar] [CrossRef]
- Cureton, J.C.; Deaton, R. Hot moments and hot spots: Identifying factors explaining temporal and spatial variation in turtle road mortality. J. Wildl. Manag. 2012, 76, 1047–1052. [Google Scholar] [CrossRef]
- Colino-Rabanal, V.J.; Lizana, M. Herpetofauna and roads: A review. Basic Appl. Herpetol. 2012, 26, 5–31. [Google Scholar] [CrossRef]
- Hels, T.; Buchwald, E. The effect of road kills on amphibian populations. Biol. Conserv. 2001, 99, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, J.; Ford, A.T.; Eigenbrod, F.; Fahrig, L. Behavioral responses of northern leopard frogs (Rana pipiens) to roads and traffic: Implications for population persistence. Ecol. Soc. 2009, 14, 23. [Google Scholar] [CrossRef] [Green Version]
- Steen, D.A.; Aresco, M.J.; Beilke, S.G.; Compton, B.W.; Condon, E.P.; Dodd, C.K.; Forrester, H.; Gibbons, J.W.; Greene, J.L.; Johnson, G.; et al. Relative vulnerability of female turtles to road mortality. Anim. Conserv. 2006, 9, 269–273. [Google Scholar] [CrossRef]
- Jochimsen, D.M.; Peterson, C.R.; Harmon, L. Influence of ecology and landscape on snake road mortality in a sagebrush-steppe ecosystem. Anim. Conserv. 2014, 17, 583–592. [Google Scholar] [CrossRef]
- Gravel, M.; Mazerolle, M.J.; Villard, M.-A. Interactive effects of roads and weather on juvenile amphibian movements. Amphib. Reptil. 2012, 33, 113–127. [Google Scholar] [CrossRef]
- Zhang, W.; Shu, G.; Li, Y.; Xiong, S.; Liang, C.; Li, C. Daytime driving decreases amphibian roadkill. PeerJ 2018, 6, e5385. [Google Scholar] [CrossRef]
- Andrews, K.M.; Gibbons, J.W. How do highways influence snake movement? Behavioral responses to roads and vehicles. Copeia 2005, 2005, 772–782. [Google Scholar] [CrossRef] [Green Version]
- Brehme, C.S.; Hathaway, S.A.; Fisher, R.N. An objective road risk assessment method for multiple species: Ranking 166 reptiles and amphibians in California. Landsc. Ecol. 2018, 33, 911–935. [Google Scholar] [CrossRef] [Green Version]
- Mazerolle, M.; Huot, M.; Gravel, M. Behavior of amphibians on the road in response to car traffic. Herpetologica 2005, 61, 380–388. [Google Scholar] [CrossRef]
- Crawford, B.A.; Andrews, K.M. Drivers’ attitudes toward wildlife-vehicle collisions with reptiles and other taxa. Anim. Conserv. 2016, 19, 444–450. [Google Scholar] [CrossRef]
- Ashley, E.P.; Kosloski, A.; Petrie, S.A. Incidence of intentional vehicle–reptile collisions. Hum. Dimens. Wildl. 2007, 12, 137–143. [Google Scholar] [CrossRef]
- Carr, L.W.; Fahrig, L. Effect of road traffic on two amphibian species of differing vagility. Conserv. Biol. 2001, 15, 1071–1078. [Google Scholar] [CrossRef]
- Steen, D.A.; Gibbs, J.P. Effects of roads on the structure of freshwater turtle populations. Conserv. Biol. 2004, 18, 1143–1148. [Google Scholar] [CrossRef]
- Gibbs, J.P.; Shriver, W.G. Estimating the effects of road mortality on turtle populations. Conserv. Biol. 2002, 16, 1647–1652. [Google Scholar] [CrossRef]
- Howell, H.J.; Seigel, R.A. the effects of road mortality on small, isolated turtle populations. J. Herpetol. 2019, 53, 39–46. [Google Scholar] [CrossRef]
- Clevenger, A.P.; Chruszcz, B.; Gunson, K.E. Spatial patterns and factors influencing small vertebrate fauna road-kill aggregations. Biol. Conserv. 2003, 109, 15–26. [Google Scholar] [CrossRef]
- Orłowski, G.; Ciesiołkiewicz, J.; Kaczor, M.; Radwańska, J.; Żywicka, A. Species composition and habitat correlates of amphibian roadkills in different landscapes of south-western Poland. Pol. J. Ecol. 2008, 56, 659–671. [Google Scholar]
- Langen, T.A.; Ogden, K.M.; Schwarting, L.L. Predicting hot spots of herpetofauna road mortality along highway networks. J. Wildl. Manag. 2009, 73, 104–114. [Google Scholar] [CrossRef]
- Patrick, D.A.; Gibbs, J.P.; Popescu, V.D.; Nelson, D.A. Multi-scale habitat-resistance models for predicting road mortality “hotspots” for turtles and amphibians. Herpetol. Conserv. Biol. 2012, 7, 407–426. [Google Scholar]
- Langen, T.A.; Gunson, K.E.; Scheiner, C.A.; Boulerice, J.T. Road mortality in freshwater turtles: Identifying causes of spatial patterns to optimize road planning and mitigation. Biodivers. Conserv. 2012, 21, 3017–3034. [Google Scholar] [CrossRef]
- Gu, H.; Dai, Q.; Wang, Q.; Wang, Y. Factors contributing to amphibian road mortality in a wetland. Curr. Zool. 2011, 57, 768–774. [Google Scholar] [CrossRef]
- Sutherland, R.W.; Dunning, P.R.; Baker, W.M. Amphibian encounter rates on roads with different amounts of traffic and urbanization. Conserv. Biol. 2010, 24, 1626–1635. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.L.; Bliss-Ketchum, L.L.; de Rivera, C.E.; Smith, W.P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 2016, 7, e01345. [Google Scholar] [CrossRef]
- Langen, T.A.; Machniak, A.; Crowe, E.K.; Mangan, C.; Marker, D.F.; Liddle, N.; Roden, B. Methodologies for surveying herpetofauna mortality on rural highways. J. Wildl. Manag. 2007, 71, 1361–1368. [Google Scholar] [CrossRef]
- Slater, F.M. An assessment of wildlife road casalties–the potential discrepancy between numbers counted and numbers killed. Web Ecol. 2002, 3, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Ogletree, K.A.; Mead, A.J. What roadkills did we miss in a driving survey? A comparison of driving and walking surveys in Baldwin County, Georgia. Ga. J. Sci. 2020, 78, 8. [Google Scholar]
- Santos, S.M.; Marques, J.T.; Lourenço, A.; Medinas, D.; Barbosa, A.M.; Beja, P.; Mira, A. Sampling effects on the identification of roadkill hotspots: Implications for survey design. J. Environ. Manag. 2015, 162, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, F.Z.; Coelho, A.V.P.; Esperandio, I.B.; Kindel, A. Vertebrate road mortality estimates: Effects of sampling methods and carcass removal. Biol. Conserv. 2013, 157, 317–323. [Google Scholar] [CrossRef]
- Degregorio, B.A.; Hancock, T.E.; Kurz, D.J.; Yue, S. How quickly are road-killed snakes scavenged? Implications for underestimates of road mortality. J. North Carol. Acad. Sci. 2011, 127, 184–188. [Google Scholar] [CrossRef]
- Santos, R.A.L.; Mota-Ferreira, M.; Aguiar, L.M.S.; Ascensão, F. Predicting wildlife road-crossing probability from roadkill data using occupancy-detection models. Sci. Total Environ. 2018, 642, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Malo, J.E.; Suárez, F.; Díez, A. Can we mitigate animal–vehicle accidents using predictive models? J. Appl. Ecol. 2004, 41, 701–710. [Google Scholar] [CrossRef]
- Garrah, E.; Danby, R.K.; Eberhardt, E.; Cunnington, G.M.; Mitchell, S. Hot spots and hot times: Wildlife road mortality in a regional conservation corridor. Environ. Manag. 2015, 56, 874–889. [Google Scholar] [CrossRef] [PubMed]
- Healey, R.M.; Atutubo, J.R.; Kusrini, M.D.; Howard, L.; Page, F.; Hallisey, N.; Karraker, N.E. Road mortality threatens endemic species in a national park in Sulawesi, Indonesia. Glob. Ecol. Conserv. 2020, 24, e01281. [Google Scholar] [CrossRef]
- Shilling, F.M.; Waetjen, D.P. Wildlife-vehicle collision hotspots at US highway extents: Scale and data source effects. Nat. Conserv. 2015, 11, 41. [Google Scholar] [CrossRef] [Green Version]
- MacKenzie, D.I.; Nichols, J.D.; Royle, J.A.; Pollock, K.H.; Bailey, L.L.; Hines, J.E. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Pavlacky, D.C., Jr.; Blakesley, J.A.; White, G.C.; Hanni, D.J.; Lukacs, P.M. Hierarchical multi-scale occupancy estimation for monitoring wildlife populations. J. Wildl. Manag. 2012, 76, 154–162. [Google Scholar] [CrossRef]
- Pellet, J.; Schmidt, B.R. Monitoring distributions using call surveys: Estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 2005, 123, 27–35. [Google Scholar] [CrossRef] [Green Version]
- U.S. Census Bureau. Guide to State and Local Census Geography—Rhode Island. 2010. Available online: https://www.census.gov/geographies/reference-files/2010/geo/state-local-geo-guides-2010/rhode-island.html (accessed on 20 October 2021).
- Rhode Island Department of Environmental Management (RIDEM). Rhode Island Wildlife Action Plan; Rhode Island Department of Environmental Management (RIDEM): Providence, RI, USA, 2015. [Google Scholar]
- Weir, L.; Royle, J.; Nanjappa, P.; Jung, R.E. Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. J. Herpetol. 2005, 39, 627–639. [Google Scholar]
- Colorado Climate Center. Community Collaborative Rain, Hail, and Snow Network. 2021. Available online: https://www.cocorahs.org/ (accessed on 18 October 2021).
- Rhode Island Geographic Information System (RIGIS). Land Use and Land Cover. 2011. Available online: http://www.rigis.org (accessed on 16 March 2021).
- Rhode Island Geographic Information System (RIGIS). Rhode Island Department of Transportation Roads (2016). 10 March 2016. Available online: http://www.rigis.org (accessed on 16 March 2021).
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976; Volume 964.
- United States Fish and Wildlife Service (USFWS). National Wetlands Inventory. 2021. Available online: https://www.fws.gov/wetlands/ (accessed on 2 March 2019).
- Federal Highway Administration (FHWA). Highway Functional Classification Concepts, Criteria and Procedures. 2013. Available online: https://dot.sd.gov/media/documents/HwyFunctionalClassification.pdf (accessed on 3 July 2020).
- Santos, S.M.; Carvalho, F.; Mira, A. How long do the dead survive on the road? Carcass persistence probability and implications for road-kill monitoring surveys. PLoS ONE 2011, 6, e25383. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Burnham, K. Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach; Springer: Berlin/Heidelberg, Germany, 2004; pp. 35–37. [Google Scholar]
- Mazerolle, M.J. Amphibian road mortality in response to nightly variations in traffic intensity. Herpetologica 2004, 60, 45–53. [Google Scholar] [CrossRef]
- Aresco, M.J. Mitigation measures to reduce highway mortality of turtles and other herpetofauna at a north Florida lake. J. Wildl. Manag. 2005, 69, 549–560. [Google Scholar] [CrossRef]
- LeClair, G.; Chatfield, M.W.H.; Wood, Z.; Parmelee, J.; Frederick, C.A. Influence of the COVID-19 pandemic on amphibian road mortality. Conserv. Sci. Pract. 2021, 3, e535. [Google Scholar] [CrossRef] [PubMed]
- Beebee, T.J. Effects of road mortality and mitigation measures on amphibian populations. Conserv. Biol. 2013, 27, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, L.O.; Alvaares, D.J.; Teixeira, F.Z.; Schuck, G.; Coelho, I.P.; Esperandio, I.B.; Anza, J.; Beduschi, J.; Bastazini, V.A.G.; Kindel, A. Reptile road-kills in Southern Brazil: Composition, hot moments and hotspots. Sci. Total Environ. 2018, 615, 1438–1445. [Google Scholar] [CrossRef]
- Glista, D.J.; DeVault, T.; DeWoody, J. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 2009, 91, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Shannon, G.; Lewis, J.S.; Gerber, B.D. Recommended survey designs for occupancy modelling using motion-activated cameras: Insights from empirical wildlife data. PeerJ 2014, 2, e532. [Google Scholar] [CrossRef]
Covariate | Definition | Data Type |
---|---|---|
Perc_Wetland_100m | % wetland within 100-m of a road | Continuous |
Perc_Forest_100m | % forest within 100-m of a road | Continuous |
F_Class_Code | Road classification used as a proxy for traffic volume | Categorical |
Temp | Temperature recorded during surveys | Continuous |
Rain | Precipitation in previous 24-h recorded from nearest weather gauge | Continuous |
Julian_Date | Day of year from 1 January | Continuous |
Year | Distance Surveyed (km) | Roadkill Density (Carcasses/km) | Number Dead on Road (%) | Number Live on Road (%) | Total Number on Road |
---|---|---|---|---|---|
2019 | 24 | 10.4 | 249 (88) | 33 (12) | 282 |
2020 | 12 | 15.3 | 185 (71) | 74 (29) | 259 |
2021 | 28.8 | 7.74 | 223 (83) | 46 (17) | 269 |
Covariate | Estimate | SE | Z | p(>|z|) |
---|---|---|---|---|
Occupancy models | ||||
Intercept | 2.51 | 1.565 | 1.60 | 0.109 |
Perc_Forest_100m | 1.28 | 1.152 | 1.11 | 0.210 |
F_Class_Code | 1.07 | 1.07 | 1.25 | 0.210 |
Detection models | ||||
Intercept | −2.157 | 0.261 | −8.25 | <0.001 |
Rain | 0.778 | 0.162 | 4.79 | <0.001 |
F_Class_Code | −0.785 | 0.228 | −3.44 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hallisey, N.; Buchanan, S.W.; Gerber, B.D.; Corcoran, L.S.; Karraker, N.E. Estimating Road Mortality Hotspots While Accounting for Imperfect Detection: A Case Study with Amphibians and Reptiles. Land 2022, 11, 739. https://doi.org/10.3390/land11050739
Hallisey N, Buchanan SW, Gerber BD, Corcoran LS, Karraker NE. Estimating Road Mortality Hotspots While Accounting for Imperfect Detection: A Case Study with Amphibians and Reptiles. Land. 2022; 11(5):739. https://doi.org/10.3390/land11050739
Chicago/Turabian StyleHallisey, Noah, Scott W. Buchanan, Brian D. Gerber, Liam S. Corcoran, and Nancy E. Karraker. 2022. "Estimating Road Mortality Hotspots While Accounting for Imperfect Detection: A Case Study with Amphibians and Reptiles" Land 11, no. 5: 739. https://doi.org/10.3390/land11050739
APA StyleHallisey, N., Buchanan, S. W., Gerber, B. D., Corcoran, L. S., & Karraker, N. E. (2022). Estimating Road Mortality Hotspots While Accounting for Imperfect Detection: A Case Study with Amphibians and Reptiles. Land, 11(5), 739. https://doi.org/10.3390/land11050739