Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Data Collection and Laboratory Analysis
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. The Effect of Tree Litter
4.2. The Effect of Traffic Intensity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kooch, Y.; Tavakoli, M.; Akbarinia, M. Tree species could have substantial consequences on topsoil fauna: A feedback of land degradation/restoration. Eur. J. For. Res. 2018, 137, 793–805. [Google Scholar] [CrossRef]
- Picchio, R.; Magagnotti, N.; Sirna, A.; Spinelli, R. Improved winching technique to reduce logging damage. Ecol. Eng. 2012, 47, 83–86. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Bottinelli, N.; Capowiez, Y.; Ranger, J. Slow recovery of earthworm populations after heavy traffic in two forest soils in northern France. Appl. Soil Ecol. 2014, 73, 130–133. [Google Scholar] [CrossRef]
- Crawford, L.J.; Heinse, R.; Kimsey, M.J.; Page-Dumroese, D.S. Harvest Operations and Soil Sustainability: A Review; General Technical Report RMRS-GTR-421; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2021; p. 39. [CrossRef]
- Picchio, R.; Jourgholami, M.; Zenner, E.K. Effects of forest harvesting on water and sediment yields: A review toward better mitigation and rehabilitation strategies. Curr. For. Rep. 2021, 7, 214–229. [Google Scholar] [CrossRef]
- DeArmond, D.; Ferraz, J.B.; Lovera, L.H.; de Souza, C.A.; Spanner, G.C.; Lima, A.J.; dos Santos, J.; Higuchi, N. Impacts to soil properties still evident 27 years after abandonment in Amazonian log landings. For. Ecol Manag. 2022, 510, 120105. [Google Scholar] [CrossRef]
- Deljouei, A.; Abdi, E.; Schwarz, M.; Majnounian, B.; Sohrabi, H.; Dumroese, R.K. Mechanical Characteristics of the Fine Roots of Two Broadleaved Tree Species from the Temperate Caspian Hyrcanian Ecoregion. Forests 2020, 11, 345. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Shabanian, N.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil recovery assessment after timber harvesting based on the Sustainable Forest Operation (SFO) perspective in Iranian temperate forests. Sustainability 2020, 12, 2874. [Google Scholar] [CrossRef] [Green Version]
- Khoramizadeh, A.; Jourgholami, M.; Jafari, M.; Venanzi, R.; Tavankar, F.; Picchio, R. Soil restoration through the application of organic mulch following skidding operations causing vehicle induced compaction in the Hyrcanian Forests, Northern Iran. Land 2021, 10, 1060. [Google Scholar] [CrossRef]
- Labelle, E.R.; Hansson, L.; Högbom, L.; Jourgholami, M.; Laschi, A. Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: A Comprehensive Review. Curr. For. Rep. 2022, 8, 20–37. [Google Scholar] [CrossRef]
- Greacen, E.L.; Sands, R. Compaction of forest soils. A review. Soil Res. 1980, 18, 163–189. [Google Scholar] [CrossRef]
- Mayer, M.; Matthews, B.; Schindlbacher, A.; Katzensteiner, K. Soil CO2 efflux from mountainous windthrow areas: Dynamics over 12 years post-disturbance. Biogeosciences 2014, 11, 6081–6093. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Ghassemi, T.; Labelle, E.R. Soil physio-chemical and biological indicators to evaluate the restoration of compacted soil following reforestation. Ecol. Indic. 2019, 101, 102–110. [Google Scholar] [CrossRef]
- Bazyari, M.; Etemad, V.; Kooch, Y.; Shirvany, A. Soil fauna communities and microbial activities response to litter and soil properties under degraded and restored forests of Hyrcania. iforest-Biogeosci. For. 2021, 14, 490. [Google Scholar] [CrossRef]
- Vázquez, E.; Benito, M.; Espejo, R.; Teutscherova, N. Response of soil properties and microbial indicators to land use change in an acid soil under Mediterranean conditions. Catena 2020, 189, 104486. [Google Scholar] [CrossRef]
- Wang, H.; Liu, S.; Song, Z.; Yang, Y.; Wang, J.; You, Y.; Zhang, X.; Shi, Z.; Nong, Y.; Ming, A.; et al. Introducing nitrogen-fixing tree species and mixing with Pinus massoniana alters and evenly distributes various chemical compositions of soil organic carbon in a planted forest in southern China. For. Ecol. Manag. 2019, 449, 117477. [Google Scholar] [CrossRef]
- Frouz, J.; Livečková, M.; Albrechtová, J.; Chronáková, A.; Cajthaml, T.; Pizl, V.; Hánel, L.; Stary, J.; Baldrian, P.; Lhotáková, Z.; et al. Is the effect of trees on soil properties mediated by soil fauna? A case study from postmining sites. For. Ecol. Manag. 2013, 309, 87–95. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Wardle, D.A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change; Oxford Series in Ecology and Evolution; Oxford University Press: New York, NY, USA, 2010; p. 320. [Google Scholar]
- Xue, R.; Wang, C.; Liu, X.; Liu, M. Earthworm regulation of nitrogen pools and dynamics and marker genes of nitrogen cycling: A meta-analysis. Pedosphere 2022, 32, 131–139. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Salehi, A.; Ghorbanzadeh, N.; Kahneh, E. Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantations in the north of Iran. J. For. Sci. 2013, 59, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Bayranvand, M.; Kooch, Y.; Rey, A. Earthworm population and microbial activity temporal dynamics in a Caspian Hyrcanian mixed forest. Eur. J. For. Res. 2017, 136, 447–456. [Google Scholar] [CrossRef]
- Sohrabi, H.; Jourgholami, M.; Jafari, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Earthworms as an ecological indicator of soil recovery after mechanized logging operations in mixed beech forests. Forests 2020, 12, 18. [Google Scholar] [CrossRef]
- Kooch, Y.; Ghorbanzadeh, N.; Wirth, S.; Novara, A.; Piri, A.S. Soil functional indicators in a mountain forest-rangeland mosaic of northern Iran. Ecol. Indic. 2021, 126, 107672. [Google Scholar] [CrossRef]
- Edwards, C.A.; Lofty, J.R. Biology of Earthworms; Report of Rothamsted Experimental Station; Springer: New York, NY, USA, 1972. [Google Scholar]
- Kooch, Y.; Bayranvand, M. Composition of tree species can mediate spatial variability of C and N cycles in mixed beech forests. For. Ecol. Manag. 2017, 401, 55–64. [Google Scholar] [CrossRef]
- Schwartz, R.C.; Baumhardt, R.L.; Scanlon, B.R.; Bell, J.M.; Davis, R.G.; Ibragimov, N.; Jones, O.R.; Reedy, R.C. Long-term changes in soil organic carbon and nitrogen under semiarid tillage and cropping practices. Soil Sci. Soc. Am. J. 2015, 79, 1771–1781. [Google Scholar] [CrossRef]
- Singh, S.; Singh, J.; Vig, A.P. Diversity and abundance of earthworms in different land use patterns: Relation with soil properties. Asian J. Biol. Life Sci. 2020, 9, 111–118. [Google Scholar] [CrossRef]
- Le Bayon, R.C.; Milleret, R. Effects of earthworms on phosphorus dynamics—A review. Dyn. Soil Dyn. Plant. 2009, 3, 21–27. [Google Scholar]
- Lee, K.E. Earthworms: Their Ecology and Relationships with Soils and Land Use; Academic Press: London, UK, 1985; p. 411. [Google Scholar]
- Boettcher, S.E.; Kalisz, P.J. Single-tree influence on earthworms in forest soils in eastern Kentucky. Soil Sci. Soc. Am. J. 1991, 55, 862–865. [Google Scholar] [CrossRef]
- Jourgholami, M.; Feghhi, J.; Picchio, R.; Tavankar, F.; Venanzi, R. Efficiency of leaf litter mulch in the restoration of soil physiochemical properties and enzyme activities in temporary skid roads in mixed high forests. Catena 2021, 198, 105012. [Google Scholar] [CrossRef]
- Babel, U.; Ehrmann, O.; Krebs, M. Relationships betweeen earthworms and some plant species in a meadow. Soil Biol. Biochem. 1992, 24, 1477–1481. [Google Scholar] [CrossRef]
- Neirynck, J.; Mirtcheva, S.; Sioen, G.; Lust, N. Impact of Tilia platyphyllos Scop. Fraxinus excelsior L. Acer pceudoplatanus L. Quercus robur L. and Fagus sylvatica properties on earthworm biomass and physico-chemical properties of a loamy topsoil. For. Ecol. Manag. 2000, 133, 275–286. [Google Scholar] [CrossRef]
- Ferris, H.; Griffiths, B.S.; Porazinska, D.L.; Powers, T.O.; Wang, K.H.; Tenuta, M. Reflections on plant and soil nematode ecology: Past, present and future. J. Nematol. 2012, 44, 115. [Google Scholar] [PubMed]
- Hugot, J.P.; Baujard, P.; Morand, S. Biodiversity in helminths and nematodes as a field of study: An overview. Nematology 2001, 3, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Jordan, D.; Hubbard, V.C.; Ponder, F.; Berry, E.C. The influence of soil compaction and the removal of organic matter on two native earthworms and soil properties in an oak-hickory forest. Biol. Fertil. Soils 2000, 31, 323–328. [Google Scholar] [CrossRef]
- Cambi, M.; Paffetti, D.; Vettori, C.; Picchio, R.; Venanzi, R.; Marchi, E. Assessment of the impact of forest harvesting operations on the physical parameters and microbiological components on a Mediterranean sandy soil in an Italian stone pine stand. Eur. J. For. Res. 2017, 136, 205–215. [Google Scholar] [CrossRef]
- Nazari, M.; Eteghadipour, M.; Zarebanadkouki, M.; Ghorbani, M.; Dippold, M.A.; Bilyera, N.; Zamanian, K. Impacts of logging-associated compaction on forest soils: A Meta-Analysis. Front. For. Glob. Chang. 2021, 4, 780074. [Google Scholar] [CrossRef]
- Waez-Mousavi, S.M. Humus systems in the Caspian Hyrcanian temperate forests. Appl Soil Ecol. 2018, 123, 664–667. [Google Scholar] [CrossRef]
- Bayranvand, M.; Akbarinia, M.; Salehi Jouzani, G.; Gharechahi, J.; Alberti, G. Dynamics of humus forms and soil characteristics along a forest altitudinal gradient in Hyrcanian forest. iForest 2021, 14, 26. [Google Scholar] [CrossRef]
- Ezzati, S.; Najafi, A.; Rab, M.A.; Zenner, E.K. Recovery of soil bulk density, porosity and rutting from ground skidding over a 20-year period after timber harvesting in Iran. Silva. Fenn. 2012, 46, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Bouyoucos, G.J. Hydrometer method improved for making particle size analyses of soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Allison, L.E. Organic carbon. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Norman, A.G., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1367–1378. [Google Scholar] [CrossRef]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-total. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Chapman, H.D.; Parker, P.F. Methods of Analysis for Soils, Plants and Waters; University of California Division of Agricultural Sciences: Berkeley, CA, USA, 1961; p. 309. [Google Scholar] [CrossRef]
- Bower, C.A.; Reitemeier, R.F.; Fireman, M. Exchangeable cation analysis of saline and alkali soils. Soil Sci. 1952, 73, 251–262. [Google Scholar] [CrossRef]
- Vikram Reddy, M.; Kiran Kumar, V.P.; Ravinder Reddy, V.; Balashouri, P.; Yule, D.F.; Cogle, A.L.; Jangawad, L.S. Earthworm biomass response to soil management in semi-arid tropical Alfisol agroecosystems. Biol. Fertil. Soils 1995, 19, 317–321. [Google Scholar] [CrossRef]
- Edwards, C.A.; Bohlen, P.J. Biology and Ecology of Earthworms, 3rd ed.; Chapham & Hall: London, UK, 1996. [Google Scholar]
- Heydari, M.; Poorbabaei, H.; Bazgir, M.; Salehi, A.; Eshaghirad, J. Earthworms as indicators for different forest management types and human disturbance in Ilam oak forest, Iran. Folia For. Pol. Ser. A For. 2014, 56, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Lou, Y.; Li, Q.; Zhong, S.; Zhang, X.; Wang, J. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biol. Biochem. 2009, 41, 883–890. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. Multivariate Analysis of Ecological Data; Version 4.17; MjM Software Design: Gleneden Beach, OR, USA, 1999; pp. 1–237. [Google Scholar]
- Kooch, Y. Soil Variability Related to Pit and Mound, Canopy Cover and Individual Trees in a Hyrcanian Oriental Beech Stand. Ph.D. Thesis, Tarbiat Modares University, Tehran, Iran, 2012. [Google Scholar]
- Crumsey, J.M.; Le Moine, J.M.; Vogel, C.S.; Nadelhoffer, K.J. Historical patterns of exotic earthworm distributions inform contemporary associations with soil physical and chemical factors across a northern temperate forest. Soil Biol. Biochem. 2014, 68, 503–514. [Google Scholar] [CrossRef]
- Kooijman, A.M.; Weiler, H.A.; Cusell, C.; Anders, N.; Meng, X.; Seijmonsbergen, A.C.; Cammeraat, L.H. Litter quality and microtopography as key drivers to topsoil properties and understorey plant diversity in ancient broadleaved forests on decalcified marl. Sci. Total Environ. 2019, 684, 113–125. [Google Scholar] [CrossRef]
- Moço, M.K.S.; Gama-Rodrigues, E.F.; Gama-Rodrigues, A.C.; Machado, R.C.R.; Baligar, V.C. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Appl. Soil Ecol. 2010, 46, 347–354. [Google Scholar] [CrossRef]
- Smith, R.G.; McSwiney, C.P.; Grandy, A.S.; Suwanwaree, P.; Snider, R.M.; Robertson, G.P. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil Tillage Res. 2008, 100, 83–88. [Google Scholar] [CrossRef]
- Jégou, D.; Capowiez, Y.; Cluzeau, D. Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems. Geoderma 2001, 102, 123–137. [Google Scholar] [CrossRef]
- Uvarov, A.V. Inter-and intraspecific interactions in lumbricid earthworms: Their role for earthworm performance and ecosystem functioning. Pedobiologia 2009, 53, 1–27. [Google Scholar] [CrossRef]
- Hobbie, S.E.; Reich, P.B.; Oleksyn, J.; Ogdahl, M.; Zytkowiak, R.; Hale, C.; Karolewski, P. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 2006, 87, 2288–2297. [Google Scholar] [CrossRef]
- Meng, X.; Kooijman, A.M.; Temme, A.J.A.M.; Cammeraat, E.L.H. The current and future role of biota in soil-landscape evolution models. Earth-Sci. Rev. 2022, 226, 103945. [Google Scholar] [CrossRef]
- Bird, B.A.; Chatarpaul, L. Effect of whole-tree and conventional forest harvest on soil microarthropods. Can. J. Zool. 1986, 64, 1986–1993. [Google Scholar] [CrossRef]
- Langmaack, M.; Schrader, S.; Rapp-Bernhardt, U.; Kotzke, K. Quantitative analysis of earthworm burrow systems with respect to biological soil-structure regeneration after soil compaction. Biol. Fertil. Soils 1999, 28, 219–229. [Google Scholar] [CrossRef]
- Beylich, A.; Oberholzer, H.-R.; Schrader, S.; Hoper, H.; Wilke, B.-M. Evaluation of soil compaction effects on soil biota and soil biological processes in soils. Soil Tillage Res. 2010, 109, 133–143. [Google Scholar] [CrossRef]
- Brussaard, L.; van Faassen, H.G. Effects of compaction on soil biota and soil biological processes. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 1994; pp. 215–235. [Google Scholar] [CrossRef]
- Whalley, W.R.; Dumitru, E.; Dexter, A.R. Biological effects of soil compaction. Soil Tillage Res. 1995, 35, 53–68. [Google Scholar] [CrossRef]
- Jourgholami, M.; Nasirian, A.; Labelle, E.R. Ecological restoration of compacted soil following the application of different leaf litter mulches on the skid trail over a five-year period. Sustainability 2018, 10, 2148. [Google Scholar] [CrossRef] [Green Version]
- Battigelli, J.P.; Spence, J.R.; Langor, D.W.; Berch, S.M. Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can. J. For. Res. 2004, 34, 1136–1149. [Google Scholar] [CrossRef]
- Marhan, S.; Auber, J.; Poll, C. Additive effects of earthworms, nitrogen rich litter and elevated soil temperature on N2O emission and nitrate leaching from an arable soil. Appl. Soil Ecol. 2015, 86, 55–61. [Google Scholar] [CrossRef]
- Liu, T.; Chen, X.Y.; Gong, X.; Lubbers, I.M.; Jiang, Y.Y.; Feng, W.; Li, X.P.; Whalen, J.K.; Bonkowski, M.; Griffiths, B.S.; et al. Earthworms coordinate soil biota to improve multiple ecosystem functions. Curr. Biol. 2019, 29, 3420–3429.e5. [Google Scholar] [CrossRef]
Age of Skid Trail (Years) | Forest Stand (Main Species) | District (No. of Compartments) | Elevation (m a.s.l.) | Tree Canopy Cover (%) | Soil Texture |
---|---|---|---|---|---|
6 | B (Fagus orientalis Lipsky) | Gorazbon (C. 315) | 1209 | 80 | Clay |
B-H (Fagus orientalis Lipsky, Carpinus betulus L.) | Gorazbon (C. 316) | 1174 | 72 | Clay | |
B-H-O (Fagus orientalis Lipsky, Carpinus betulus L, Alnus subcordata C.A. Mey.) | Gorazbon (C. 318) | 1177 | 85 | Silt clay loam | |
10 | B (Fagus orientalis Lipsky) | Gorazbon (C. 319) | 1246 | 75 | Clay |
B-H (Fagus orientalis Lipsky, Carpinus betulus L.) | Gorazbon (C. 320) | 1345 | 80 | Clay | |
B-H-O (Fagus orientalis Lipsky, Carpinus betulus L, Alnus subcordata C.A. Mey. and Acer velutinum Boiss.) | Gorazbon (C. 318) | 1133 | 80 | Silt clay loam | |
20 | B (Fagus orientalis Lipsky) | Namkhaneh (C. 215) | 1040 | 85 | Clay |
B-H (Fagus orientalis Lipsky, Carpinus betulus L) | Namkhaneh (C. 220) | 1115 | 75 | Silt loam | |
B-H-O (Fagus orientalis Lipsky, Carpinus betulus L, Alnus subcordata C.A. Mey. and Tilia begonifolia Stev.) | Namkhaneh (C. 214) | 1010 | 80 | Clay loam |
Traffic Intensity | ||||
---|---|---|---|---|
Time Since Harvest | HT | MT | LT | UN |
6 years 10 years 20 years | 166.78 ± 20.24c 183.60 ± 20.24c 204.25 ± 23.18c | 174.33 ± 18.22b 190.82 ± 18.22b 210.56 ± 18.15bc | 180.82 ± 18.22b 196.70 ± 18.22b 216.33 ± 18.15b | 250.22 ± 15.74a 249.99 ± 15.74a 249.71 ± 15.74a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sohrabi, H.; Jourgholami, M.; Lo Monaco, A.; Picchio, R. Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice. Land 2022, 11, 746. https://doi.org/10.3390/land11050746
Sohrabi H, Jourgholami M, Lo Monaco A, Picchio R. Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice. Land. 2022; 11(5):746. https://doi.org/10.3390/land11050746
Chicago/Turabian StyleSohrabi, Hadi, Meghdad Jourgholami, Angela Lo Monaco, and Rodolfo Picchio. 2022. "Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice" Land 11, no. 5: 746. https://doi.org/10.3390/land11050746
APA StyleSohrabi, H., Jourgholami, M., Lo Monaco, A., & Picchio, R. (2022). Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice. Land, 11(5), 746. https://doi.org/10.3390/land11050746