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Abstract: Drought seriously restricts people’s lives and social–economic development. An accurate
understanding of the evolution of drought characteristics and future changes in cultivated land
exposure can reduce the risk of drought. There is evidence that increased CO2 concentrations alter
the physiological properties of vegetation and, thus, affect drought evolution. In this study, both
changes and differences in drought (i.e., characteristics and cropland exposure) with and without the
CO2 effect over the arid region of China are investigated, using seven CMIP6 outputs and land-use
under seven shared-socioeconomic-pathway (SSP)-based scenarios. The results show that: (1) drier
conditions will be more severe in 2015–2100 under SSP5-8.5, especially if the CO2 effect is neglected.
Moreover, the CO2 effect will increase with increasing emission concentrations; (2) drought intensity
will be greater than in the baseline period (1995–2014, approximately −1.45) but weaker than that
without the CO2 effect under all scenarios; (3) drought frequency will decrease, and will generally
decline faster if the CO2 effect is not considered; (4) drought duration will increase and the difference
between the presence and absence of the CO2 effect will always be smallest under SSP1-1.9 and
largest under SSP5-8.5; (5) drought acreage will also increase, and neglecting the CO2 effect is always
higher than that considering CO2. The difference between the two algorithms will increase with time;
and (6) cropland exposure to drought will increase, and can even reach 669,000 km2 and 524,000 km2

considering and ignoring the CO2 effect, respectively. Our findings suggest that ignoring CO2 in
drought evaluations will result in significant overestimations of drought projections.

Keywords: drought; potential evapotranspiration; CO2 effect; cropland exposure; arid region

1. Introduction

Drought is one of the most common, frequent and costly natural disasters in the world,
defined as below-normal precipitation lasting for a period of months to years [1–3]. It occurs
in all climate zones, whether in tropical rainforests or deserts [4,5], due to nonperiodic
climatic anomalies, and severely impacts the social economy, water resources and natu-
ral environment [6,7]. The observed increase in the frequency, intensity and severity of
droughts has heightened the risk to food security, with broad and pervasive impacts on
ecosystems, people, settlements and infrastructure [8,9]. Global warming, brought about
by rising concentrations of greenhouse gases, may be an important reason for the increase
and intensification of droughts in many regions [10–13]. The global surface temperature in
the first 20 years of the 21st century (2001–2020) is reported to have been approximately
1 ◦C higher than that in 1850–1900 [14]. Global warming is likely to continue, which means
that people will be at greater risk of drought [15,16]. Therefore, it is necessary to inves-
tigate the spatiotemporal statistical features of droughts under ongoing climate change,
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and address the harmful effects of rising drought risks [17]. Additionally, assessing the
risk of future cropland exposure to drought is critical for climate change adaptation and
disaster mitigation.

Drought evaluation, including monitoring, forecasting and projection, is generally
quantified and described through some relative measures [18,19]. In addition, because
total water resources and photosynthetic efficiency are strongly limited by the evaporation
environment and precipitation, the most efficient way to quantify drought from climate
data requires a combination of precipitation and potential evapotranspiration (PET) [20].
Precipitation is easily obtained by observation, while PET can be seen as the rate at which
evapotranspiration occurs when the surface is well supplied with water [21]; PET cannot
be obtained directly and is often estimated by theoretical formulas based on other meteo-
rological data [22]. Hence, the estimation of PET can be a potential source of uncertainty
in atmospheric water demands and drought [6,11,23,24], which can lead to an over- or
underestimation of drought risk. The Penman–Monteith (PM) formula [25] is considered a
better method for estimating PET; it combines the aerodynamic and energy terms [18,26,27],
and more comprehensively considers factors affecting PET. However, Milly and Dunne
(2016) [21] and Yang et al. (2019) [28] reported that the PM method will overestimate
PET under increased global mean CO2 conditions (RCP 8.5) in the future warming pe-
riod. They argue that the PM formula does not take into account the implicit assumption
that surface resistance (resistance to vapour flow through stomata openings) is constant
with CO2 due to changes in transpiration caused by the plant’s physiological response
to increased CO2 [29–32]. There is evidence that high concentrations of CO2 can cause
partial stomatal closure in vegetation and reduce stomatal conductance, and the increase in
CO2 concentration will increase the atmospheric pressure difference and affect stomatal
opening, thus inhibiting evapotranspiration [30,33–35]. Thus, it is most important to have
detailed information on how CO2 inclusion will influence the changes in future drought
and cropland exposure.

The overwhelming societal impacts of intense drought have drawn the utmost atten-
tion worldwide [36,37]. Drought-induced water shortages are one of the main obstacles
to agricultural transformation and rural revitalization in the arid region of China. The
quantitative evaluation of regional drought is of great significance for regional drought risk
assessment [38]. Due to the continental climate characteristics of the arid region, precipita-
tion is low, and river runoff mainly depends on snow and ice melt-water [39]. Agricultural
development is, consequently, based mostly on irrigation. In recent years, agricultural wa-
ter consumption in the arid region has increased greatly, and water resource management is
facing severe challenges. Numerous studies have emphasized the evolution of prospective
changes in drought over the arid region of China using various metrics and methods. In
general, from the 1960s to the 2010s, climate conditions in the arid region of China tended
to become more humid [40–43], but conditions will become drier in the future, according to
simulations [44,45]. However, negligible effort has been exerted to explore the influence of
increased CO2 concentrations on drought characteristics over the arid region of China; in
addition, an understanding of the CO2 effect on cropland exposure is still lacking. In this
paper, Global Climate Model (GCM) outputs from the sixth phase of the Coupled Model
Intercomparison Project (CMIP6) and dynamic projections of land use under the seven
Shared-Socioeconomic-Pathway (SSP)-based scenarios are applied to analyse the drought
characteristics and cropland exposure, under the conditions of the presence and absence
of the CO2 effect, during three defined future periods (near-term (2021–2040), mid-term
(2041–2060), and long-term (2081–2100)). The consideration of the modified PET approach
with the updated CO2 data in this paper will provide more reasonable and reliable results.

2. Data and Methods
2.1. Study Area

The arid region of China, which is located at 30–50◦ N, 73–109◦ E, is the focus of
this research, and the area accounts for approximately 30% of the total Chinese land area
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(Figure 1). The arid region is defined mainly by the distribution of annual precipitation,
which is less than 200 mm. The arid region lies deep inland and is scarcely affected by
monsoons, and the high Tibetan Plateau to the south blocks moisture from the Indian Ocean.
The climate has the characteristics of low precipitation but large variability, large diurnal
and annual temperature ranges, much more potential evaporation than precipitation, more
sand, fewer clouds, and strong sunshine. It is also the production base of melons and other
fruits, wheat, corn, cotton and cereals, as well as livestock products. Because it is a sensitive
region, water resources are the main limiting factor for its development; additionally, the
alteration in regional water resources due to climate change and other factors will severely
impact the food security and environment in the area, which will restrict its sustainable
development. Climate change has intensified the conflict between human development and
environmental protection. Effective water resource management can balance the conflict
between the human demand for water and environmental protection.
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2.2. Datasets

In this study, meteorological observation data were collected from the National Me-
teorological Information Center of the China Meteorological Administration. The data
included precipitation, average temperature, maximum temperature, minimum tempera-
ture, relative humidity, precipitation, air pressure, sunshine duration and other factors, at
2479 meteorological stations across China, with a daily temporal resolution and a time span
of 1961–2020. After data quality control and outlier tests (such as high and low anomalies,
temporal anomalies and spatial anomalies), the sites with missed test rates greater than 5%
were eliminated, and in total, 2072 meteorological stations with relatively complete data
series were selected.

Seven GCMs from CMIP6 were selected for simulation and projection because these
seven GCMs output relatively complete meteorological elements, including average tem-
perature, maximum temperature, minimum temperature, precipitation, relative humidity,
air pressure, radiation, wind speed and other elements required for drought calculation.
In addition, they provided monthly projections of the aforementioned meteorological ele-
ments under seven SSP-based scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4,
SSP4-6.0 and SSP5-8.5). The datasets were divided into two periods: the historical period
(1961–2014) and the projection period (2015–2100). Seven scenarios, which combine SSPs
and representative concentration pathways (RCPs), were designed for the projection period
of each model. Notably, as the multi-model ensemble median can effectively reduce the
uncertainty of climate simulation, the ensemble median of the seven GCMs was adopted



Land 2022, 11, 881 4 of 21

in this paper. The details of the seven GCMs are presented in Table 1. Due to the large
differences in the original resolution of the output data from each GCM, the model out-
puts were corrected for bias and downscaled to a unified resolution of 0.5◦ (the detailed
methods of GCM data downscaling and bias correction are described in the studies by
Su et al., 2016 [46], and Su et al., 2018 [13]) based on the aforementioned meteorological
observation data.

Table 1. Basic information about the seven GCMs used in this paper.

Model Name Research Institution, Country Original Resolution Downscaled Resolution

CanESM5 Canadian Centre for Climate Modelling and
Analysis, Canada ~2.8◦ × 2.8◦

0.5◦ × 0.5◦
CNRM-ESM2-1

Centre National de Recherches Météorologiques/Centre
Européen de Recherche et de Formation Avancée en

Calcul Scientifique (CNRM-CERFACS), France
1.4◦ × 1.4◦

FGOALS-g3 Chinese Academy of Sciences (CAS), China 2.3◦ × 2◦

GISS-E2-1-G Goddard Institute for Space Studies (NASA-GISS), USA 2◦ × 2.5◦

IPSL-CM6A-LR Institut Pierre-Simon Laplace, France 2.5◦ × ~1.27◦

MIROC6 AORI-UT-JAMSTEC-NIES, Japan ~1.4◦ × 1.4◦

MRI-ESM2-0 Meteorological Research Institute Earth System, Japan ~1.125◦ × 1.12◦

CO2 concentration data were from the University of Melbourne, which provides
time series from 1961 to 2100 with a spatial resolution of 0.5◦ [47,48]. The historical CO2
data were obtained from centuries of ice core/firn data and multidecadal measurements
by the National Oceanic and Atmospheric Administration (NOAA) and the Advanced
Global Atmospheric Gases Experiment (AGAGE) networks. The CO2 concentrations for
the future period were estimated using the Model for the Assessment of Greenhouse-
Gas-Induced Climate Change (MAGICC), which determines CO2 concentrations under
the latest different SSP-based scenarios. The evolution of CO2 concentrations is used by
the Earth System Models as part of the CMIP6 project (https://greenhousegases.science.
unimelb.edu.au/#!/view (accessed on 4 May 2022)).

The Land-Use Harmonization 2 (LUH2) project produced a set of data on land use
by using five Integrated Assessment Models (IAMs). This set of the latest global land-use
production is divided into the historical period (830–2015) and the future period (2015–2100)
on a time scale [49]. The scenario design of land use in the future period is consistent with
the SSPs of CMIP6 [50], which include seven SSPs (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0,
SSP4-3.4, SSP4-6.0, and SSP5-8.5). In this study, we used the updated cropland dataset
derived from the LUH2 project with a spatial resolution of 0.25◦ × 0.25◦. However, to be
consistent with the spatial resolution of GCM outputs, the cropland datasets were then
upscaled at a 0.5◦ × 0.5◦ resolution using the ‘nearest grid’ interpolation method.

2.3. Estimation of Potential Evapotranspiration

Two methods were adopted in this paper to estimate PET. One approach is the original
PM algorithm (PET_ORIG) recommended by the Food and Agriculture Organization (FAO),
which combines the aerodynamic term with the energy term [25]. In the following formula,
surface resistance (rs) is assumed to be a constant (70 s/m), which reflects the stomatal
conductance of vegetation.

ra =
208
U2

rs

ra
= 0.34U2

PET_ORIG =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ(1 + 0.34U2)

https://greenhousegases.science.unimelb.edu.au/#!/view
https://greenhousegases.science.unimelb.edu.au/#!/view
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The other method is the modified PM algorithm (PET_CO2), which takes rising CO2
concentrations into account to show changes in surface resistance with global warming.
The PM_CO2 algorithm is as follows, and the term (2× 10−4(CO2 − 300)) in the formula
accounts for the effect of rising atmospheric CO2 concentration (unit: ppm) on surface
stomatal resistance, with the coefficients estimated by Yang et al., 2019 [28], and Yang et al.,
2020 [51]:

PET_CO2 =
0.408∆(Rn − G) + γ 900

T+273 U2(es − ea)

∆ + γ{1 + U2[0.34 + 2× 10−4(CO2 − 300)]}

where ra represents the aerodynamic resistance; ∆ (kPa·◦C−1) is the slope of the saturated
water pressure curve; Rn (MJ·m−2·d−1) represents the net radiation; G (MJ·m−2·d−1) is the
heat flux into the ground; γ (kPa·°C−1) is the psychrometric constant; es (kPa) and ea (kPa)
are the saturation vapour pressure and actual vapour pressure, respectively; T (◦C) and U2
(m·s−1) represent the air temperature and wind speed at a height of 2 m, respectively; and
CO2 (ppm) represents the carbon dioxide concentration.

2.4. Identification of Drought

As commonly integrated drought indices, both the standardized precipitation evapo-
transpiration index (SPEI) [52] and the Palmer drought severity index (PDSI) [53] account
for not only precipitation but also evapotranspiration, and link the water cycle, carbon
cycle and energy cycle. However, the SPEI has characteristics that are more sensitive to
changes in evapotranspiration than the PDSI, especially in arid zones [54]. Therefore, the
SPEI was adopted in this study, and it is more suitable for drought research against the
background of global warming over the arid region. Based on water balance, the SPEI
identifies drought caused by different types of water deficit by determining the difference
between monthly average precipitation and PET at various time scales and establishing
the cumulative sequence of water deficit. In this paper, a 12-month time scale for the
SPEI was selected to carry out the study, since this time scale is well suited for describing
both hydrological and long-term meteorological drought [7]. SPEI < −1 indicates drought,
SPEI between −1 and 1 indicates nearly normal conditions, and SPEI > 1 represents wet
conditions. The SPEI was calculated as follows:

X = Pi − PETi

where Pi and PETi represent monthly precipitation and potential evapotranspiration, re-
spectively. The X (the difference between monthly precipitation and potential evapotran-
spiration) series is fitted by the log-logistic probability distribution function with three
parameters, and the probability distribution function is as follows:

F(X) =

[
1 +

(
α

X− γ

)β
]−1

Here, α, β and γ represent the scale, shape and initial parameters, respectively. Then,
the probability density of the X sequence is normalized to obtain the corresponding SPEI:

SPEI = w− C0 + C1w + C2w2

1 + d1w + d2w2 + d3w3

where p is the probability of given constant X; if p ≤ 0.5,
p = F(X), and if p > 0.5, p = 1 − F(X); C0 = 2.515517, C1 = 0.802853, C2 = 0.010328,
d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.



Land 2022, 11, 881 6 of 21

3. Results
3.1. Spatiotemporal Variations in the SPEI

In 1961–2014, the trend of the SPEI showed a weak increase at a rate of 0.02/10a when
the CO2 effect was ignored, but the annual SPEI increased faster with the consideration
of the CO2 effect, at a rate of 0.12/10a. Although the SPEI differed in trend, there was a
consistent characterization of significantly dry and wet years, such as in 1968, 1984, 1999,
and 2004 (Figure 2a). For the projection of the annual SPEI in 2015–2100 (Figure 2b–h),
the changes in the SPEI display decreasing trends under all scenarios without considering
the CO2 effect, which foreshadows a drier climate in the arid region. Meanwhile, the
decreasing trends range from −0.23/10a to −0.04/10a, and the maximum decreasing trend
will take place under SSP4-6.0. Regarding the SPEI calculation involving the CO2 effect,
although the SPEI also showed a downward trend, the decline was significantly slower
than that seen when the CO2 effect was not considered. The maximum decreasing trend is
approximately −0.13/10a under SSP4-6.0. Comparing the changes in the annual SPEI with
and without the CO2 effect, the values of the SPEI with CO2 are always higher than those
without CO2 under all scenarios over the entire time period. That is, the dry condition will
be more severe when ignoring the CO2 effect.
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Figure 2. Comparison of the annual SPEI with and without the CO2 effect in 1961–2014 (a) and
2015–2100 (b–h) under the SSPs.

The arid region mainly shows a trend of being wetter in the west and drier in the east
in 1961–2014 when ignoring the CO2 effect. The wetting trend in the southwestern arid
region exceeds 0.05/10a, and the maximum trend can reach more than 0.2/10a. The drying
trend in the eastern arid region is approximately 0.05 to 0.3/10a. From the perspective
of GCM agreement, the drying trend in the eastern part of the arid region is relatively
consistent, and the agreement across more than two-thirds of the drying areas is greater
than 85%. Considering the effect of CO2, the spatial trend of the SPEI is somewhat different.
The central part of the arid region presents an aridification trend with a maximum drying
trend over 0.2/10a, while the southern and northern parts show wetting trends. In addition,
the agreement of SPEI trends according to GCM outputs is low, with only parts of the
northern and southern arid region achieving a consistent level of 85% (Figure 3(a1,a2)).
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Under SSP1-1.9 and SSP1-2.6 (Figure 3(b1,b2,c1,c2)), the spatial distributions of the
SPEI variation trends are similar with or without consideration of the effect of CO2. In
general, most areas show a drying trend, and the aridification trend is the largest in the
southeastern arid region, which can reach more than 0.1/10a. More than 85% of the GCMs
show a consistent trend of decreasing SPEI in the southeastern, eastern and northern parts
of the arid region for SSP1-1.9, and the range of GCM agreement greater than 85% is
wider when considering the effect of CO2. However, for SSP1-2.6, the agreement with
GCMs is greater in the southern and western parts of the arid region. Under SSP2-4.5
(Figure 3(d1,d2)), the SPEI trends with or without consideration of the effect of CO2 show a
great difference in spatial distribution. When the CO2 effect is ignored, the aridification
trend accounts for almost the whole arid region, and the trend is generally greater than
0.1/10a, with a GCM agreement of more than 85%. Only in the northwest is there a weak
humidification trend. However, when the effect of CO2 is considered, there is an aridity
zone from southwest to northeast for the arid region, while the other areas become wetter.
In general, the rates of becoming drier or wetter are relatively small, both of which are less
than 0.1/10a. The variation trends of arid and wet conditions under SSP3-7.0 when ignoring
the CO2 effect (Figure 3(e1)) are similar to those under SSP2-4.5, except that the drying rate
is accelerated, the drying trend can reach more than 0.15 (10a−1), and the maximum rate can
reach approximately 0.35 (10a−1). Considering the effect of CO2, the arid region as a whole
presents a wetting trend, especially in the northwestern part, where the wetting rate may
exceed 0.15 (10a−1) under SSP3-7.0 (Figure 3(e2)). For SSP4-3.4 (Figure 3(f1,f2)), the trends
of the SPEI with and without consideration of the effect of CO2 generally shows wetting,
and the spatial distributions are similar to each other. Most of the arid region displays a
drying trend under SSP4-6.0 (Figure 3(g1,g2)), but when the effect of CO2 is considered, the
drying trend weakens significantly, with a drying rate of only approximately 0.1 (10a−1).
In regard to SSP5-8.5, the whole arid region becomes more arid, and the aridification trend
is larger in the south and east when the CO2 effect is ignored (Figure 3(h1)). The maximum
drying rate can exceed 0.35 (10a−1), and the agreement of the GCM results are high; almost
all of the arid region can reach the 85% agreement level. In contrast, when considering the
effect of CO2 (Figure 3(h2)), only the central part of the arid region has a weak drying trend
(the aridification trend is less than 0.1 (10a−1)), and both the southern and northern parts of
the arid region show wetting trends. In addition, the agreement of the SPEI trends among
different GCMs is low. In summary, the trend of aridification is reduced when the effect of
CO2 is considered, especially in the northern and southern parts of the arid region.

3.2. Comparison of Drought Characteristics

Drought is considered to have occurred when the calculated SPEI value is less than
−1. Based on the above method for drought recognition and the effects of CO2, the drought
intensity, frequency, duration and acreage are further analysed.

3.2.1. Drought Intensity

Drought intensities estimated by considering or not considering the CO2 effect are
compared during different time periods in Figure 4. In the baseline period (1995–2014), the
average drought intensity without the CO2 effect is approximately −1.46 (ranging from
−1.64 to −1.32). When considering the CO2 effect, drought intensity is −1.45 (−1.48 to
−1.27), and there is clearly little difference in drought intensity at this stage regardless of
whether the effect of CO2 is considered.
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During the near-term (2021–2040), drought intensity with the CO2 effect is weaker
than that without the CO2 effect under all scenarios, and they are all slightly more severe
than in the baseline period. The maximum drought intensity gap between the results
without the CO2 effect and with the CO2 effect is under SSP5-8.5 (11.4%), and the minimum
gap is under SSP1-1.9 (4.8%).

In the mid-term (2041–2060), the drought intensities both with and without the CO2
effect are drier than that in the baseline period, and the maximum drought intensity without
the CO2 effect is approximately −1.89 under SSP5-8.5, while it is approximately −1.66
under SSP3-7.0 for drought intensity with the CO2 effect. The gaps between drought
intensities with and without considering the CO2 effect are amplified, and the maximum
gap is displayed under SSP5-8.5 (15.4%), followed by SSP3-70 (10.8%). That is, this gap is
particularly pronounced in high-emission scenarios.

In the long-term, the drought intensity obtained by the two algorithms is further
strengthened compared with the baseline period; it increases by 15.7% (SSP1-2.6) to 72.4%
(SSP5-8.5) compared with the baseline period without considering the effect of CO2. In
contrast, the intensity of drought when taking into account the effect of CO2 increases by
only 6.1% (SSP1-2.6) to 19.2% (SSP5-8.5) over the baseline period. The difference in drought
intensity with or without consideration of the effect of CO2 is the largest under SSP5-8.5
(31.1%). The drought intensity without considering the effect of CO2 is still higher than
when considering CO2 in all scenarios.

The prospective percentage spatial deviations of drought intensity between scenarios
considering the CO2 effect and ignoring the CO2 effect across the arid region for four
periods (baseline period, near-term, mid-term and long-term) are illustrated in Figure 5.
For the baseline period (Figure 5a), the percentage of deviations in the whole arid region
is relatively small, between −10% and 10% in most areas. That is, the impact on drought
intensity when considering the effect of CO2 during this period is not obvious.
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Figure 5. The deviation in the spatial distribution of drought intensity without consideration
of the effect of CO2 and considering the effect of CO2 for the baseline period (a), near-term
(b1,c1,d1,e1,f1,g1,h1), mid-term (b2,c2,d2,e2,f2,g2,h2) and long-term (b3,c3,d3,e3,f3,g3,h3).
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The gap has generally widened in some areas in the near-term (Figure 5(b1,c1,d1,e1,f1,g1,h1)).
Under SSP1-1.9, the spatial distribution of drought intensity deviation is similar than that
of the baseline period, and the role of CO2 is not fully demonstrated. Under SSP2-4.5 and
SSP4-6.0, the deviation is the largest in the northeastern part of the arid region, where it can
reach more than 15%; in addition, the deviation is positive overall (the drought intensity
when considering the effect of CO2 is greater than that without considering CO2) for other
areas. Under SSP1-2.6, SSP3-7.0 and SSP4-3.4, areas with deviations greater than 15% are
further expanded, exceeding 25% in some areas, and the largest centre is mainly located
in the east-central arid region. The spatial deviation is the largest under SSP5-8.5, with
a deviation of more than 20% throughout the east-central and southern regions, and the
maximum deviation can reach more than 40%.

In the mid-term (Figure 5(b2,c2,d2,e2,f2,g2,h2)), the deviation in the east is generally
greater than that in the west in the six scenarios except for SSP5-8.5, and the deviation in
the east is generally less than 10%. From these six scenarios, the deviations of SSP1-1.9,
SSP3-7.0, SSP4-3.4 and SSP4-6.0 are slightly smaller than those of the other two scenarios,
and the area for deviations of more than 15% is even smaller. Under SSP5-8.5, most areas of
the arid region have a deviation of more than 10%, and only the northwestern part has a
deviation of less than 10%.

In the long-term (Figure 5(b3,c3,d3,e3,f3,g3,h3)), the overall deviation is between−10%
and 10%, larger in the east than in the west under SSP1-1.9 and SSP1-2.6. Under SSP2-4.5
and SSP4-3.4, the maximum deviation is mainly in the east-central part and can exceed 40%.
For SSP3-7.0 and SSP5-8.5, almost the entire region can deviate by more than 20%, and the
area of deviation more than 40% can be greater than 50% of the total area. At the same time,
with the increase in the emission scenario, the gap between drought intensity with and
without considering the effect of CO2 also becomes larger, showing a positive correlation.

3.2.2. Drought Frequency

A comparison of drought frequency with and without the CO2 effect in the four time
periods is shown in Figure 6. During the baseline period, the drought frequency was
approximately 5.1 (ranging from 2.3 to 6.6) times/10a without consideration of the CO2
effect, and approximately 4.2 (ranging from 2.0 to 5.5) times/10a with consideration of the
CO2 effect. Clearly, when the role of CO2 is taken into account, the frequency of droughts
is reduced (approximately 0.9 times/10a).
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Drought frequency without the CO2 effect decreases in all scenarios, especially under
SSP5-8.5 (decrease to 4.2 times/10a) in the near-term (Figure 6a). Drought frequency
with the CO2 effect has little change from the baseline period. Comparing the drought
frequency obtained by the two algorithms, except for SSP5-8.5, the drought frequency
without consideration of the effect of CO2 is higher than that with the CO2 effect in the
other scenarios. The maximum gap can reach approximately 1.0 times/10a.

In the mid-term (Figure 6b), drought frequency decreases compared with the baseline
period without consideration if CO2 in all scenarios, especially under SSP5-8.5, which
decreases to 4.3 times/10a. Regarding drought frequency that considers the CO2 effect, the
frequency of drought increases from the baseline period in most scenarios, except SSP3-7.0
and SSP4-6.0. Comparing the two results reveals that under SSP1-1.9, SSP1-2.6, SSP2-4.5
and SSP5-8.5, the effect of CO2 is less obvious, and the difference between the two results is
quite small. The maximum gap is approximately 0.6 times/10a under SSP4-6.0.

In the long-term (Figure 6c), the drought frequency decreases under all seven scenarios,
and with the increase in emission concentration, the frequency decreases more strongly.
Under SSP5-8.5, the frequency decreases by 28% to 3.7 times/10a compared with the
baseline period. In contrast, the frequency of drought, taking into account the effect of CO2,
increases slightly over the baseline period. The difference in drought frequency with or
without consideration of the effect of CO2 is the largest under SSP5-8.5 and can be more
than 0.62 times/10a. Further, the difference in drought frequency increases with increasing
emission concentration.

Figure 7 shows the spatial distribution of the drought frequency difference without
and with the effect of CO2, and the difference is calculated by subtracting the drought
frequency with the effect of CO2 from the drought frequency without CO2. In the baseline
period (Figure 7a), the difference is mainly positive across the whole arid region; that is, the
frequency of drought without the effect of CO2 is higher than that with CO2. The difference
in drought frequency in most areas can reach more than one time, and the difference in
drought frequency in the northeast can reach more than 4 times greater than that in the
baseline period.

Regarding the differences in the projected frequency of droughts for the future, the
spatial distribution of drought frequency differences in the near-term can be seen in
Figure 7(b1,c1,d1,e1,f1,g1,h1). As shown in Figure 7(b1), the overall difference in drought
frequency under SSP1-1.9 is not large, except in the northern, eastern and southern corners,
where the difference can be more than 2 times greater than in the baseline period. Un-
der SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-3.4, SSP4-6.0 and SSP5-8.5, the positive differences
in drought frequency are mainly in the southern part of the arid region and can reach
more than 3 times greater than in the baseline period in some places (i.e., southernmost,
southeast). However, the differences in drought frequency between the northern and
northeastern areas are mainly negative, except under SSP1-2.6 and SSP3-7.0.

The spatial difference increases during the mid-term (Figure 7(b2,c2,d2,e2,f2,g2,h2)).
Under SSP1-1.9 and SSP1-2.6, positive differences are primarily located in the southern and
southwestern parts of the arid region, at more than 2 times greater than in the baseline
period. The negative differences are mainly in the central and eastern parts of the arid
region, which can also be more than 2 times greater than in the baseline period. For SSP2-4.5
and SSP4-3.4, the difference in drought frequency is mostly positive, mainly distributed in
the southern, eastern and northwestern parts of the arid region. The drought frequency
shows a negative difference in the northeastern arid region only under SSP3-7.0 and SSP4-
6.0, and the maximum positive difference can exceed 5 times greater than in the baseline
period under SSP4-6.0. Under SSP5-8.5, the negative drought frequency difference is more
widespread, mainly located in the central and eastern parts of the arid region, with the
maximum negative difference reaching more than 5 times greater than in the baseline
period, while the positive difference will be approximately two to 3 times greater than in
the baseline period in the southern, western and northwestern parts of the arid region.
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Figure 7. The spatial distribution of drought frequency differences without and with consider-
ation of the effect of CO2 for the baseline period (a), near-term (b1,c1,d1,e1,f1,g1,h1), mid-term
(b2,c2,d2,e2,f2,g2,h2) and long-term (b3,c3,d3,e3,f3,g3,h3).
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In the long-term (Figure 7(b3,c3,d3,e3,f3,g3,h3)), the difference in drought frequency
is relatively small, the absolute value of spatial difference is less than 2 times greater than
in the baseline period, the positive difference is located in the south, and the negative
difference is located in the north, especially concentrated in the northeastern arid region
under SSP1-1.9. Under SSP1-2.6 and SSP2-4.5, the spatial distribution of the positive
drought frequency difference is wider, and covers the arid region’s western, northern,
southeastern and eastern parts. Under SSP3-7.0, SSP4-3.4 and SSP4-6.0, the negative
difference in drought frequency is strengthened, and its range also expands. The negative
differences are distributed in the central and eastern parts, and a small section of the
northern part of the arid region, with the maximum negative difference reaching more than
5 times greater than in the baseline period. The drought frequency difference is mainly
negative, spatially, and even the drought frequency estimated with the effect of CO2 is
more than 5 times greater than that without the effect of CO2. Only in the south-central,
western and northwestern areas of the arid region is the drought frequency greater without
considering the CO2 effect.

3.2.3. Drought Duration

Figure 8 shows a comparison of drought duration under the two conditions with
or without consideration of CO2. For the baseline period, drought duration without
consideration of CO2 is approximately 6.6 (5.3–13.4) months, and while taking CO2 into
consideration, it is approximately 5.5 (4.5–12.4) months; the difference is approximately
1 month.
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In the near-term (Figure 8a), when the role of CO2 is not considered, the drought
duration is the shortest under SSP1-2.6 (9.0 months) and the longest under SSP5-8.5 (13.9
months). In addition, the uncertainty ranges of these two scenarios are also the largest, at
6.4 to 17.6 months and 7.0 to 19.5 months, respectively. When considering the effect of CO2,
the drought duration is the shortest under SSP1-2.6 (6.6 months) and the longest under
SSP1-1.9 (10.3 months), followed by SSP5-8.5 (9.0 months). Overall, droughts that account
for the CO2 effect under all scenarios are shorter than those that do not, with differences of
1.0 (SSP1-1.9) to 4.9 (SSP5-8.5) months.
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In the mid-term (Figure 8b), the duration of drought without considering the effect of
CO2 ranges from 11.0 (SSP4-6.0) to 19.6 (SSP5-8.5) months, nearly double the difference,
and the inter-model uncertainty of drought duration is the greatest under SSP1-2.6, which
is approximately 19.1 months. In terms of the duration of drought considering the effect
of CO2, there is an increase over the base period in all scenarios, with drought duration
ranging from 8.1 (SSP3-7.0) to 10.0 (SSP1-2.6) months, with relatively little variation among
scenarios. Regarding the estimated duration of drought with or without consideration
of CO2 concentration, drought duration with the CO2 effect is shorter, with a minimum
difference of 3.2 months under SSP4-3.4 and a maximum of 9.8 months (almost double)
under SSP5-8.5.

In the long-term (Figure 8c), the drought duration without consideration of the effect
of CO2 increases by 108% to 412% compared to the baseline period, with a maximum of
33.5 months under SSP5-8.5, and the uncertainty of GCMs estimated in different scenarios
is also large, ranging from 11.8 to 28.4 months. However, when considering the role of CO2,
drought duration increases by only 58% to 116% compared with the baseline period. The
duration of drought under SSP3-7.0 is the shortest, at only 8.8 months, and the maximum
under SSP1-1.9 will be 12 months. Comparing the two results, the differences in drought
duration in all scenarios range from 3.4 to 22.9 months. SSP1-1.9 and SSP5-8.5 are the
scenarios with the smallest and largest differences, respectively, and the gap is positively
correlated with the size of the emission scenario.

3.2.4. Drought Acreage

Figure 9 shows a comparison of scenarios considering and not considering the effect of
CO2 on drought acreage, which is divided into four periods for comparison. In the baseline
period, drought acreages without and with the effect of CO2 aer 8.0 million and 5.6 million
km2 per year, respectively. Taking into account the effects of CO2, the drought acreage
decreases by approximately 29%.
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In the near-term (Figure 9a), the drought acreage increases in all scenarios compared
to the baseline period level, regardless of whether the influence of CO2 concentration is
taken into account. The estimated drought acreage without considering the effect of CO2 is
the smallest at 10.9 million km2 under SSP1-2.6 and the largest at 15.1 million km2 under
SSP5-8.5, increasing by 38% and 89% from the baseline period, respectively. Additionally,
the difference in drought acreage between different GCMs is the largest under SSP1-2.6,
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reaching 13.5 million km2. To put this difference into perspective, the estimated drought
area with the CO2 effect is in the range of 7.2 (under SSP3-7.0) million km2 to 11.9 (under
SSP5-8.5) million km2 per year, an increase of 28% to 101% from the baseline period.
Comparing the drought area with and without the effect of CO2, the difference between the
two is the smallest under SSP4-6.0, which has an area of 2.7 million km2, and the largest
under SSP4-3.4 (4.81 million km2).

With regard to the mid-term period (Figure 9b), the estimated drought acreage with
and without the CO2 contribution exceeds the base period level under all future scenarios,
and the uncertainty between GCMs is more acute in SSP1-2.6 than in other scenarios, with
the gap between GCMs reaching 17 million km2 and 16 million km2 without and without
CO2, respectively. Omitting the estimated drought acreage under the scenario in which
the CO2 effect is ignored, nearly half of the scenarios would produce more than twice the
drought acreage in the baseline period, such as under SSP1-1.9, SSP2-4.5 and SSP5-8.5.
The drought acreage under SSP5-8.5 is the largest, reaching 17.9 million km2, while the
smallest is under SSP4-6.0, with 14.1 million km2. Taking the CO2 effect into account, the
drought acreage is 1.5 (SSP4-6.0) to 2.5 (SSP1-1.9) times greater than that in the baseline
period but decreases by 18.2% (SSP1-1.9) to 40.2% (SSP4-6.0) compared to the case without
consideration of CO2.

Note that the drought acreage increases regardless of whether the role of CO2 is
considered in the long-term in comparison with the baseline period, but the drought
acreage is obviously smaller with consideration of the CO2 condition than without, with a
range of differences from 14% (SSP1-1.9) to 43% (SSP3-7.0) (Figure 9c). If the role of CO2
is considered, drought acreage is 1.9 (SSP4-3.4) to 2.3 (SSP5-8.5) times that of the baseline
period, with only SSP4-3.4 and SSP4-6.0 not more than double. While considering the CO2
effect, the maximum drought acreage is approximately 14.59 million km2, far less than the
maximum drought acreage without consideration of the CO2 effect.

3.3. Exposure of Cropland

With or without consideration of the effect of CO2, the results of drought exposure for
cropland are as follows (Figure 10). During the baseline period, cropland exposure was
approximately 92,000 km2 per year, a reduction of approximately 21% compared to the
condition without consideration of the effect of CO2 (116,000 km2 per year).
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In terms of future projections, the cropland exposed to drought increases by 43% to
144% and by 42% to 164%, respectively, without and with the CO2 effect, compared to
the respective baseline period levels under all SSPs in the near-term; additionally, when
the CO2 effect is considered, cropland exposure is lower. Regardless of whether CO2
is taken into account, cropland exposure under SSP1-2.6 is the lowest at 166,500 km2

per year and 130,500 km2 per year, respectively, an increase of two percentage points
from the baseline period for the differences between cropland exposure without and
with consideration of the CO2 effect. Cropland exposure is the highest under SSP5-8.5,
at 284,000 km2 per year and 243,400 km2 per year, respectively. When considering the
difference in cropland exposure due to the inclusion or non-inclusion of the CO2 effect, the
largest difference of approximately 26% occurs under SSP3-7.0, while the smallest difference
of only approximately 14% appears under SSP5-8.5. In addition, the GCM uncertainty is
greatest under SSP1-2.6, at 243,000 km2 per year (Figure 10a).

In the mid-term (Figure 10b), cropland exposure without the CO2 effect is still greater
than that without the CO2 effect in all scenarios. Without considering the CO2 effect, the
maximum and minimum cropland exposure under SSP5-8.5 and SSP4-6.0 is 305,000 km2

per year and 191,000 km2 per year, respectively. Compared with the baseline period, only
the increase rates under SSP3-7.0 and SSP4.60 are less than 100%, and the cropland exposure
in the other scenarios is more than twice that of the baseline period. Taking the CO2 effect
into account, cropland exposure in all future scenarios increases over the baseline period,
with increases ranging from 36% (SSP4-6.0) to 132% (SSP5-8.5). Cropland exposure reaches
approximately 214,000 km2 per year under SSP5-8.5, which is 2.3 times that of the baseline
period. For the differences between cropland exposure with and without consideration
of the effect of CO2, the difference is the smallest under SSP1-1.9, which is approximately
16.7%, and the largest under SSP4-6.0, which can reach approximately 35.4%. The largest
range of GCM uncertainty is under SSP1-2.6, with 232,000 km2 per year and 272,000 km2

per year, respectively, regardless of whether the CO2 effect is considered.
In the long-term (Figure 10c), both with and without CO2 consideration, cropland

exposure to drought increases under all scenarios. However, the relatively lighter exposure
of farmland when considering the CO2 effect remains. When ignoring the CO2 effect, the
exposure of cropland under SSP1-2.6 is the lowest and increases by 81% compared with that
of the baseline period. The rate of increase in cropland exposure in other scenarios exceeds
100% that of the baseline level. The exposure of cropland to drought under SSP5-8.5 reaches
approximately 384,000 km2 per year, 3.3 times that of the baseline period, and the rate of
increase in exposure under SSP4-3.4 is the largest (approximately 475%), with an acreage
of approximately 669,000 km2 per year. When the CO2 effect is considered, compared
with the baseline period, cropland exposure increases by 69% to 164% in the long-term.
The highest drought exposure on cropland occurs under SSP4-3.4, reaching approximately
524,000 km2 per year. Unlike the case that does not consider the CO2 effect, where the
lowest exposure occurs under SSP1-2.6, the lowest exposure is approximately 156,000 km2

per year under SSP3-7.0. In terms of the differences between the two sets of cropland
exposure to drought, the difference between SSP1-1.9 and SSP1-2.6 is the smallest, and
both are less than 50,000 km2 per year. Then, the exposure difference between SSP2-4.5 and
SSP4.6.0 is approximately 100,000 km2 per year, while the largest exposure difference of
145,000 km2 per year is under SSP4-3.4. It is worth mentioning that the main reason for the
largest cropland exposure under SSP4-3.4 is the expansion of cropland acreage. According
to the design of this scenario, the increase in carbon price leads to a significant increase in
the total cropland area, with a rate of increase of 80% from 2010 to 2100 [47]. Meanwhile,
the acreage of cropland in the study area is relatively small under other scenarios, and the
change in cropland exposure is due to the change in the drought itself in this condition.
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4. Conclusions and Discussion

A clear and quantitative understanding of the evolution of drought characteristics
and the change in cropland exposure in the future is of great significance to water resource
management, as well as social and economic development in the arid region of China. In
this paper, seven GCMs, combined with dynamic land-use changes, are applied to study
the future drought characteristics and changes in cropland exposure in the arid region
of China. Furthermore, the projected impact of CO2 concentrations on drought has been
removed, providing a more comprehensive assessment of long-term water management.
The main conclusions are as follows:

(1) In 1961–2014, the SPEI shows an increasing trend (becoming wet), but the rate of SPEI
increase is faster when considering the effect of CO2 than without CO2 (0.12/10a vs.
0.02/10a). The difference in drought intensity (approximately −1.45) is not obvious
regardless of whether the CO2 effect is considered in 1995–2014. Drought frequency
decreases by 0.9 times/10a compared with the scenario in which CO2 is ignored. The
differences in drought duration and acreage caused by the CO2 effect are approx-
imately 1 month and 29%, respectively. The cropland exposure is approximately
92,000 km2/year when the CO2 effect is considered, which is approximately 21% less
than that without CO2.

(2) In the near-term, drought intensity is slightly more severe than in the baseline period,
but weaker than that without the CO2, and the maximum drought intensity difference
is under SSP5-8.5 (11.4%). The decrease in drought frequency without the CO2 effect is
more obvious than that with CO2, especially under SSP5-8.5. The difference between
the arid acreage with and without CO2 is the smallest under SSP4-6.0, while the
largest difference occurs under SSP4-3.4. Cropland exposure without the CO2 effect is
still greater than that without the CO2 effect in all scenarios (16.7–35.4%).

(3) During the mid-term, drought intensity is further enhanced. Ignoring the CO2 effect,
drought frequency decreases compared with the baseline period, but increases with
the CO2 effect. Drought durations with the CO2 effect are shorter than those without
CO2, with differences ranging from 3.2 months (SSP4-3.4) to 9.8 months (SSP5-8.5).
Drought acreage is 1.5 times (SSP4-6.0) to 2.5 times (SSP1-1.9) that of the baseline pe-
riod and 18.2–40.2% less than that without the CO2 effect. Cropland exposure without
CO2 effect is still larger than that with the CO2 effect considered (the differences range
from 16.7% to 35.4%).

(4) Regarding the long-term, the differences in drought intensity with and without the
CO2 effect are the largest in SSP5-8.5 (31.1%). Drought frequency shows a decreasing
trend, and the effect of CO2 on drought frequency increases with increasing emission
concentrations. Drought acreage increases regardless of the CO2 effect, and the
maximum drought acreage considering the CO2 effect is far smaller than that ignoring
the CO2 effect. Cropland exposure to drought increases in all scenarios, and from the
perspective of the difference in cropland drought exposure with and without the CO2
effect, the largest difference is 145,000 km2/year under SSP4-3.4.

The accurate estimation of PET is very important for drought assessment. A previous
study proved that PET in the arid region of China is overestimated, by using the traditional
PM formula according to surface meteorological observations and a variety of Moderate
Resolution Imaging Spectroradiometer (MODIS) products [55]. For plant transpiration,
as an important part of evapotranspiration, the change in CO2 concentration will have
an impact on of vegetation’s physiological characteristics. Previous studies have found
that high CO2 conditions can compensate for most of the impact of temperature rise on
evapotranspiration through numerical experiments, which is consistent with our research
view [30]. This PET overestimation using the traditional PM formula leads to deviations in
drought assessment, and we can see that future drought risk will be more severe than that
of the baseline period; however, the CO2 effect will mitigate the risk slightly, according to
our research. However, there are two main limitations in this paper. First, we followed the
FAO’s hypotheses for the PM formula (I: full evaporation is achieved under optimal soil
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moisture conditions and given climate conditions; II: a crop height of 0.12 m and an albedo
of 0.23 are used as a reference surface for evaporation) and modified only the parameter of
surface resistance (establishing a relationship with CO2 concentration). However, the type,
quantity and distribution density of vegetation may affect PET in the real world. Second,
the CO2 concentration data used are estimated in only the latitudinal direction, and lack a
detailed description in the longitudinal direction [56]; however, there is not much difference
in the spatial distribution of CO2 concentrations in the longitudinal direction for the arid
region of China. Thus, the estimation of PET, as an important cause of drought, needs to
take full account of various influencing factors and of the validation of existing methods in
future research.
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