Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Dynamic Degree of Land Use
2.3.1. Dynamic Degree of Single Land Use
2.3.2. Dynamic Degree of Comprehensive Land Use
2.4. Land-Use Transfer Matrix
2.5. Landscape Ecological Risk Index
2.5.1. Landscape Disturbance Index
2.5.2. Landscape Vulnerability Index
2.5.3. Landscape Loss Index
2.5.4. Landscape Ecological Risk Index
3. Results
3.1. Characteristics of Land Use in Key Areas within the BRI
3.2. Spatial-Temporal Changes of Land Use in Key Areas within the BRI
3.3. Analysis of Land Use Transfer Patterns in Key Areas within the BRI
3.4. Spatial-Temporal Evolution of Landscape Ecological Risk in Key Areas within the BRI
4. Discussion
4.1. Causes of Land Use Change
4.2. Dynamic Analysis of Ecological Risk
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Old Code | Old Type | Content | New Code | New Type |
---|---|---|---|---|
10 | Cultivated land | Land used for planting crops, including paddy fields, irrigated dry land, rainfed dry land, vegetable fields, grass planting land, greenhouse land, land with fruit trees and other economic trees between planting crops, as well as tea gardens, coffee gardens and other shrub economic crops planting land. | 01 | Cultivated land |
20 | Forestland | Land covered with trees with canopy coverage of more than 30% includes deciduous broad-leaved forests, evergreen broad-leaved forests, deciduous coniferous forests, evergreen coniferous forests, mixed forests, and open woodlands with canopy coverage of 10–30%. | 02 | Forestland |
40 | Shrubland | Land covered by shrubby with shrub coverage greater than 30%, including montane, deciduous and evergreen, and desert areas with shrub coverage greater than 10%. | ||
30 | Grassland | Land covered by natural herbaceous vegetation with coverage greater than 10%, including steppe, meadow, savanna, desert steppe, and urban artificial grassland. | 03 | Grassland |
50 | Wetland | Located in the boundary zone between land and water, there is shallow water or soil too wet land, more growth of marsh or wet plants. Including inland marshes, lake marshes, river flooding wetlands, forest/bush wetlands, peat bogs, mangroves, salt marshes, etc. | 04 | Water |
60 | Water body | Land area covered by liquid water, including rivers, lakes, reservoirs, pits, etc. | ||
100 | Glaciers and permanent snow cover | Land covered by permanent snow, glaciers, and ice caps, including mountain snow, glaciers, and polar ice caps. | ||
80 | Artificial surface | The surface formed by artificial construction activities includes all kinds of residential land, industrial and mining facilities, transportation facilities, etc., excluding the contiguous green land and water bodies inside the construction land. | 05 | Construction land |
70 | Tundra | Land covered by lichens, mosses, hardy perennial herbs and shrubs in cold zone and alpine environment, including shrub tundra, grassland tundra, wet tundra, alpine tundra, bare tundra, etc. | 06 | Unused land |
90 | Bare land | Natural covered land with vegetation coverage less than 10%, including desert, sand, gravel, bare rock, saline-alkali land, etc. |
Appendix B
Land Type | Year | Area/k2 | Number | Fragmentation | Abruption | Predominance | Obstruction | Fragility | Damnify |
---|---|---|---|---|---|---|---|---|---|
Cultivated land | 2000 | 80,247.20 | 1814 | 0.0002 | 0.0105 | 0.2068 | 0.0446 | 0.6000 | 0.0268 |
2010 | 78,517.00 | 1802 | 0.0002 | 0.0107 | 0.2025 | 0.0438 | 0.6000 | 0.0263 | |
2020 | 79,294.08 | 2026 | 0.0003 | 0.0113 | 0.2052 | 0.0446 | 0.6000 | 0.0267 | |
Forestland | 2000 | 10,448.37 | 230,762 | 0.2208 | 0.9131 | 0.4481 | 0.4740 | 0.2000 | 0.0948 |
2010 | 10,103.48 | 225,183 | 0.2229 | 0.9328 | 0.4587 | 0.4830 | 0.2000 | 0.0966 | |
2020 | 9135.92 | 209,662 | 0.2295 | 0.9956 | 0.4582 | 0.5051 | 0.2000 | 0.1010 | |
Grassland | 2000 | 61,560.11 | 67,997 | 0.0110 | 0.0841 | 0.2803 | 0.0868 | 0.4000 | 0.0347 |
2010 | 64,629.88 | 63,697 | 0.0099 | 0.0776 | 0.2864 | 0.0855 | 0.4000 | 0.0342 | |
2020 | 61,803.83 | 59,042 | 0.0096 | 0.0781 | 0.2792 | 0.0840 | 0.4000 | 0.0336 | |
Water | 2000 | 4229.44 | 17,190 | 0.0406 | 0.6157 | 0.0421 | 0.2135 | 0.8000 | 0.1708 |
2010 | 3138.66 | 10,893 | 0.0347 | 0.6605 | 0.0289 | 0.2213 | 0.8000 | 0.1770 | |
2020 | 5588.09 | 10,039 | 0.0180 | 0.3561 | 0.0350 | 0.1228 | 0.8000 | 0.0983 | |
Construction land | 2000 | 1089.79 | 899 | 0.0082 | 0.5462 | 0.0044 | 0.1689 | 0.0000 | 0.0000 |
2010 | 1195.52 | 1040 | 0.0087 | 0.5358 | 0.0050 | 0.1661 | 0.0000 | 0.0000 | |
2020 | 1523.97 | 1651 | 0.0108 | 0.5296 | 0.0073 | 0.1658 | 0.0000 | 0.0000 | |
Unused land | 2000 | 210.40 | 9769 | 0.4638 | 9.3197 | 0.0184 | 3.0315 | 1.0000 | 3.0315 |
2010 | 200.77 | 9356 | 0.4671 | 9.5904 | 0.0185 | 3.1143 | 1.0000 | 3.1143 | |
2020 | 439.41 | 6736 | 0.1534 | 3.7127 | 0.0151 | 1.1935 | 1.0000 | 1.1935 |
Land Type | Year | Area/k2 | Number | Fragmentation | Abruption | Predominance | Obstruction | Fragility | Damnify |
---|---|---|---|---|---|---|---|---|---|
Cultivated land | 2000 | 642,467.70 | 185 | 0.0003 | 0.0160 | 0.1128 | 0.0275 | 0.6000 | 0.0165 |
2010 | 643,289.22 | 210 | 0.0003 | 0.0170 | 0.1130 | 0.0279 | 0.6000 | 0.0167 | |
2020 | 617,085.36 | 414 | 0.0007 | 0.0249 | 0.1090 | 0.0296 | 0.6000 | 0.0178 | |
Forestland | 2000 | 184,874.40 | 113,205 | 0.6123 | 1.3761 | 0.3192 | 0.7828 | 0.2000 | 0.1566 |
2010 | 165,943.89 | 113,040 | 0.6812 | 1.5320 | 0.3177 | 0.8637 | 0.2000 | 0.1727 | |
2020 | 165,885.12 | 112,708 | 0.6794 | 1.5303 | 0.3154 | 0.8619 | 0.2000 | 0.1724 | |
Grassland | 2000 | 1,001,815.92 | 54,659 | 0.0546 | 0.1765 | 0.3137 | 0.1430 | 0.4000 | 0.0572 |
2010 | 1,019,185.92 | 53,056 | 0.0521 | 0.1709 | 0.3137 | 0.1400 | 0.4000 | 0.0560 | |
2020 | 1,036,634.31 | 53,063 | 0.0512 | 0.1680 | 0.3161 | 0.1392 | 0.4000 | 0.0557 | |
Water | 2000 | 5446.26 | 3091 | 0.5675 | 7.7189 | 0.0088 | 2.6012 | 0.8000 | 2.0810 |
2010 | 8172.00 | 2201 | 0.2693 | 4.3410 | 0.0070 | 1.4384 | 0.8000 | 1.1507 | |
2020 | 9961.83 | 2544 | 0.2554 | 3.8285 | 0.0082 | 1.2779 | 0.8000 | 1.0223 | |
Construction land | 2000 | 82,155.33 | 314 | 0.0038 | 0.1631 | 0.0152 | 0.0539 | 0.0000 | 0.0000 |
2010 | 83,107.35 | 324 | 0.0039 | 0.1638 | 0.0154 | 0.0542 | 0.0000 | 0.0000 | |
2020 | 90,392.40 | 431 | 0.0048 | 0.1737 | 0.0169 | 0.0579 | 0.0000 | 0.0000 | |
Unused land | 2000 | 370,279.44 | 65,359 | 0.1765 | 0.5221 | 0.2304 | 0.2909 | 1.0000 | 0.2909 |
2010 | 367,340.67 | 66,128 | 0.1800 | 0.5293 | 0.2331 | 0.2954 | 1.0000 | 0.2954 | |
2020 | 367,080.03 | 66,993 | 0.1825 | 0.5332 | 0.2344 | 0.2981 | 1.0000 | 0.2981 |
Land Type | Year | Area/k2 | Number | Fragmentation | Abruption | Predominance | Obstruction | Fragility | Damnify |
---|---|---|---|---|---|---|---|---|---|
Cultivated land | 2000 | 168,396.57 | 538 | 0.0032 | 0.1232 | 0.0215 | 0.0429 | 0.6000 | 0.0257 |
2010 | 173,236.50 | 841 | 0.0049 | 0.1498 | 0.0224 | 0.0518 | 0.6000 | 0.0311 | |
2020 | 171,467.28 | 1194 | 0.0070 | 0.1803 | 0.0224 | 0.0620 | 0.6000 | 0.0372 | |
Forestland | 2000 | 428,648.04 | 327,580 | 0.7642 | 1.1944 | 0.3327 | 0.8070 | 0.2000 | 0.1614 |
2010 | 426,887.82 | 324,858 | 0.7610 | 1.1944 | 0.3287 | 0.8046 | 0.2000 | 0.1609 | |
2020 | 426,930.12 | 327,358 | 0.7668 | 1.1989 | 0.3254 | 0.8081 | 0.2000 | 0.1616 | |
Grassland | 2000 | 1,565,196.75 | 166,378 | 0.1063 | 0.2331 | 0.3374 | 0.1906 | 0.4000 | 0.0762 |
2010 | 1,567,508.31 | 171,794 | 0.1096 | 0.2365 | 0.3415 | 0.1941 | 0.4000 | 0.0776 | |
2020 | 1,566,505.80 | 177,251 | 0.1132 | 0.2404 | 0.3430 | 0.1973 | 0.4000 | 0.0789 | |
Water | 2000 | 26,459.01 | 3480 | 0.1315 | 1.9944 | 0.0063 | 0.6653 | 0.8000 | 0.5323 |
2010 | 18,471.24 | 2192 | 0.1187 | 2.2675 | 0.0042 | 0.7404 | 0.8000 | 0.5923 | |
2020 | 19,776.15 | 2109 | 0.1066 | 2.0774 | 0.0042 | 0.6774 | 0.8000 | 0.5419 | |
Construction land | 2000 | 44,562.60 | 333 | 0.0075 | 0.3663 | 0.0059 | 0.1148 | 0.0000 | 0.0000 |
2010 | 46,161.09 | 339 | 0.0073 | 0.3568 | 0.0061 | 0.1119 | 0.0000 | 0.0000 | |
2020 | 47,721.51 | 442 | 0.0093 | 0.3941 | 0.0063 | 0.1241 | 0.0000 | 0.0000 | |
Unused land | 2000 | 967,535.82 | 205,773 | 0.2127 | 0.4194 | 0.2963 | 0.2914 | 1.0000 | 0.2914 |
2010 | 968,802.66 | 207,851 | 0.2145 | 0.4210 | 0.2972 | 0.2930 | 1.0000 | 0.2930 | |
2020 | 968,730.30 | 213,646 | 0.2205 | 0.4268 | 0.2986 | 0.2980 | 1.0000 | 0.2980 |
Land Type | Year | Area/k2 | Number | Fragmentation | Abruption | Predominance | Obstruction | Fragility | Damnify |
---|---|---|---|---|---|---|---|---|---|
Cultivated land | 2000 | 545,191.74 | 246 | 0.0005 | 0.0188 | 0.1277 | 0.0314 | 0.6000 | 0.0189 |
2010 | 564,322.05 | 334 | 0.0006 | 0.0212 | 0.1325 | 0.0331 | 0.6000 | 0.0199 | |
2020 | 565,452.81 | 576 | 0.0010 | 0.0278 | 0.1332 | 0.0355 | 0.6000 | 0.0213 | |
Forestland | 2000 | 316,866.78 | 113,666 | 0.3587 | 0.6965 | 0.3102 | 0.4504 | 0.2000 | 0.0901 |
2010 | 312,843.42 | 108,056 | 0.3454 | 0.6877 | 0.3082 | 0.4407 | 0.2000 | 0.0881 | |
2020 | 313,368.93 | 110,987 | 0.3542 | 0.6959 | 0.3076 | 0.4474 | 0.2000 | 0.0895 | |
Grassland | 2000 | 462,884.49 | 64,896 | 0.1402 | 0.3603 | 0.2429 | 0.2268 | 0.4000 | 0.0907 |
2010 | 445,574.43 | 63,224 | 0.1419 | 0.3694 | 0.2416 | 0.2301 | 0.4000 | 0.0920 | |
2020 | 444,774.51 | 66,019 | 0.1484 | 0.3782 | 0.2433 | 0.2363 | 0.4000 | 0.0945 | |
Water | 2000 | 12,784.32 | 3182 | 0.2489 | 2.8884 | 0.0096 | 0.9929 | 0.8000 | 0.7943 |
2010 | 13,059.27 | 2745 | 0.2102 | 2.6259 | 0.0090 | 0.8947 | 0.8000 | 0.7157 | |
2020 | 14,803.92 | 3109 | 0.2100 | 2.4656 | 0.0100 | 0.8467 | 0.8000 | 0.6773 | |
Construction land | 2000 | 156,381.21 | 568 | 0.0036 | 0.0998 | 0.0377 | 0.0393 | 0.0000 | 0.0000 |
2010 | 160,309.98 | 572 | 0.0036 | 0.0976 | 0.0387 | 0.0388 | 0.0000 | 0.0000 | |
2020 | 157,126.95 | 765 | 0.0049 | 0.1152 | 0.0383 | 0.0447 | 0.0000 | 0.0000 | |
Unused land | 2000 | 219,983.13 | 106,096 | 0.4823 | 0.9693 | 0.2719 | 0.5863 | 1.0000 | 0.5863 |
2010 | 217,510.02 | 100,762 | 0.4633 | 0.9552 | 0.2701 | 0.5722 | 1.0000 | 0.5722 | |
2020 | 218,564.55 | 102,510 | 0.4690 | 0.9589 | 0.2676 | 0.5757 | 1.0000 | 0.5757 |
Land Type | Year | Area/k2 | Number | Fragmentation | Abruption | Predominance | Obstruction | Fragility | Damnify |
---|---|---|---|---|---|---|---|---|---|
Cultivated land | 2000 | 168,396.57 | 538 | 0.0032 | 0.1232 | 0.0215 | 0.0429 | 0.6000 | 0.0257 |
2010 | 173,236.50 | 841 | 0.0049 | 0.1498 | 0.0224 | 0.0518 | 0.6000 | 0.0311 | |
2020 | 171,467.28 | 1194 | 0.0070 | 0.1803 | 0.0224 | 0.0620 | 0.6000 | 0.0372 | |
Forestland | 2000 | 428,648.04 | 327,580 | 0.7642 | 1.1944 | 0.3327 | 0.8070 | 0.2000 | 0.1614 |
2010 | 426,887.82 | 324,858 | 0.7610 | 1.1944 | 0.3287 | 0.8046 | 0.2000 | 0.1609 | |
2020 | 426,930.12 | 327,358 | 0.7668 | 1.1989 | 0.3254 | 0.8081 | 0.2000 | 0.1616 | |
Grassland | 2000 | 1,565,196.75 | 166,378 | 0.1063 | 0.2331 | 0.3374 | 0.1906 | 0.4000 | 0.0762 |
2010 | 1,567,508.31 | 171,794 | 0.1096 | 0.2365 | 0.3415 | 0.1941 | 0.4000 | 0.0776 | |
2020 | 1,566,505.80 | 177,251 | 0.1132 | 0.2404 | 0.3430 | 0.1973 | 0.4000 | 0.0789 | |
Water | 2000 | 26,459.01 | 3480 | 0.1315 | 1.9944 | 0.0063 | 0.6653 | 0.8000 | 0.5323 |
2010 | 18,471.24 | 2192 | 0.1187 | 2.2675 | 0.0042 | 0.7404 | 0.8000 | 0.5923 | |
2020 | 19,776.15 | 2109 | 0.1066 | 2.0774 | 0.0042 | 0.6774 | 0.8000 | 0.5419 | |
Construction land | 2000 | 44,562.60 | 333 | 0.0075 | 0.3663 | 0.0059 | 0.1148 | 0.0000 | 0.0000 |
2010 | 46,161.09 | 339 | 0.0073 | 0.3568 | 0.0061 | 0.1119 | 0.0000 | 0.0000 | |
2020 | 47,721.51 | 442 | 0.0093 | 0.3941 | 0.0063 | 0.1241 | 0.0000 | 0.0000 | |
Unused land | 2000 | 967,535.82 | 205,773 | 0.2127 | 0.4194 | 0.2963 | 0.2914 | 1.0000 | 0.2914 |
2010 | 968,802.66 | 207,851 | 0.2145 | 0.4210 | 0.2972 | 0.2930 | 1.0000 | 0.2930 | |
2020 | 968,730.30 | 213,646 | 0.2205 | 0.4268 | 0.2986 | 0.2980 | 1.0000 | 0.2980 |
References
- National Development and Reform Commission; Ministry of Foreign Affairs; Ministry of Commerce of China. Vision and Actions on Jointly Building Silk Road Economic Belt and 21st-Century Maritime Silk Road; R. Foreign Languages Press: Beijing, China, 2015. [Google Scholar]
- Li, W.J.; Wang, Y.; Xie, S.Y.; Sun, R.H.; Cheng, X. Impacts of landscape multifunctionality change on landscape ecological risk in a megacity, China: A case study of Beijing. Ecol. Indic. 2020, 117, 106681. [Google Scholar] [CrossRef]
- Ferro-Vázquez, C.; Blanco-Rotea, R.; Sanjurjo-Sánchez, J.; García-Rodríguez, S.; García Quintela, M.V. Territories of Faith: 1000 Years of Landscape Multifunctionality in Santa Mariña de Augas Santas (NW Spain). Land 2021, 10, 992. [Google Scholar] [CrossRef]
- Chu, M.; Lu, J.; Sun, D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Y.; Han, J. Industrial Land Change in Chinese Silk Road Cities and Its Influence on Environments. Land 2021, 10, 806. [Google Scholar] [CrossRef]
- Turner II, B.L.; Meyer, W.B.; Skole, D.L. Global Land Use / Land Cover Change: Towards an Integrated Study. R. Swed. Acad. Sci. 1994, 23, 91–95. [Google Scholar]
- Barbier, E.B. The Economic Linkages between Rural Poverty and Some Evidence from Africa. Agriculture. Ecosyst. Environ. 2000, 82, 355–370. [Google Scholar] [CrossRef]
- Jayne, T.S.; Yamano, T.; Weber, M.T.; Weber, D.T.; Rui, B.; Antony, C.; Ballard, Z. Smallholder Income and Land Distribution in Africa: Implications for Poverty Reduction Strategies. Food Policy 2003, 28, 253–275. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Wang, H.W.; Liu, S.H. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Han, Y.; Yi, D.; Ye, Y.C.; Guo, X.; Liu, S.Y. Response of spatiotemporal variability in soil pH and associated influencing factors to land use change in a red soil hilly region in southern China. CATENA 2022, 212, 106074. [Google Scholar] [CrossRef]
- Wu, H.; Lin, A.Q.; Xing, X.D.; Song, D.X.; Li, Y. Identifying core driving factors of urban land use change from global land cover products and POI data using the random forest method. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102475. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Z.H.; Li, J.N.; Dashtseren, A.; Li, Y.; Altanbagana, M. Comparative analysis of driving forces of land use/cover change in the upper, medium and lower reaches of the Selenga River Basin. Land Use Policy 2022, 117, 106118. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.W.; Mu, H.W.; Wang, B.; Wang, S.H. Cities are going uphill: Slope gradient analysis of urban expansion and its driving factors in China. Sci. Total Environ. 2020, 775, 145836. [Google Scholar] [CrossRef] [PubMed]
- Raffaella, F.; Barbara, M.; Giulia, C. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatial-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 2011, 100, 117–128. [Google Scholar]
- Stych, P.; Kabrda, J.; Bicik, I.; Lastovicka, J. Regional Differentiation of Long-Term Land Use Changes: A Case Study of Czechia. Land 2019, 8, 165. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.Y.; Bao, W.K.; Liu, Y.S. Scenario simulation of land system change in the Beijing-Tianjin-Hebei region. Land Use Policy 2020, 96, 104677. [Google Scholar] [CrossRef]
- Delgado-Artés, R.; Garófano-Gómez, V.; Oliver-Villanueva, J.; Rojas-Briales, E. Land use/cover change analysis in the Mediterranean region: A regional case study of forest evolution in Castelló (Spain) over 50 years. Land Use Policy 2022, 114, 105967. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.W.; Sun, Q.K.; Wang, S.H. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Zhen, Y.; Wu, Z.P.; Yin, Z.H.; Yang, X.Q.; Zhao, X.H. Sichuan Ruoergai county land use change of time and space research. Ecol. Sci. 2022, 9, 41–49. [Google Scholar]
- Kumar, P.; Dobriyal, M.; Kale, A.; Pandey, A.K. Temporal dynamics change of land use/land cover in Jhansi district of Uttar Pradesh over past 20 years using LANDSAT TM, ETM+ and OLI sensors. Remote Sens. Appl. Soc. Environ. 2021, 23, 100579. [Google Scholar] [CrossRef]
- Xie, S.; Liu, L.Y.; Zhang, X.; Yang, J.N. Mapping the annual dynamics of land cover in Beijing from 2001 to 2020 using Landsat dense time series stack. ISPRS J. Photogramm. Remote Sens. 2022, 185, 201–218. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.M.; Wu, D.; Liu, W.W.; Bai, Z.H. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatial-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Setturu, B.; Ramachandra, T.V. Modeling Landscape Dynamics of Policy Interventions in Karnataka State, India. J. Geovisualization Spat. Anal. 2021, 5, 22. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Shooshtari, S.J.; Parteli, E.J.R. Long-term assessment of land-use and climate change on water scarcity in an arid basin in Iran. Ecol. Model. 2022, 467, 109934. [Google Scholar] [CrossRef]
- Yan, H.M.; Du, W.P.; Feng, Z.M.; Yang, Y.Z.; Xue, Z.C. Exploring adaptive approaches for social-ecological sustainability in the Belt and Road countries: From the perspective of ecological resource flow. J. Environ. Manag. 2022, 311, 114898. [Google Scholar] [CrossRef]
- Ostrogović Sever, M.Z.; Barcza, Z.; Hidy, D.; Kern, A.; Dimoski, D.; Miko, S.; Hasan, O.; Grahovac, B.; Marjanović, H. Evaluation of the Terrestrial Ecosystem Model Biome-BGCMuSo for Modelling Soil Organic Carbon under Different Land Uses. Land 2021, 10, 968. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, C.; Boudh, S.; Rai, P.K.; Gupta, V.K.; Singh, J.S. Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands. J. Environ. Manag. 2019, 242, 1–10. [Google Scholar] [CrossRef]
- Xie, H.L.; He, Y.F.; Choi, Y.; Chen, Q.R.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS. Sci. Total Environment. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Cui, H.W.; Wagg, C.; Wang, X.T.; Liu, Z.Y.; Liu, K.; Chen, S.Y.; Chen, J.W.; Song, H.X.; Meng, L.H.; Wang, J.J.; et al. The loss of above- and belowground biodiversity in degraded grasslands drives the decline of ecosystem multifunctionality. Appl. Soil Ecol. 2022, 172, 104370. [Google Scholar] [CrossRef]
- Powers, R.P.; Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land use change scenarios. Nat. Clim. Change 2019, 9, 323–329. [Google Scholar] [CrossRef]
- Gong, J.; Cao, E.J.; Xie, Y.C.; Xu, C.X.; Li, H.Y.; Yan, L.L. Integrating ecosystem services and landscape ecological risk into adaptive management: Insights from a western mountain-basin area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhou, C.H.; Che, L.; Wang, B. Spatial-temporal evolution and influencing factors of urban green development efficiency in China. J. Geogr. Sci. 2020, 30, 724–742. [Google Scholar] [CrossRef]
- Ai, J.W.; Yu, K.Y.; Zeng, Z.; Yang, L.Q.; Liu, Y.F.; Liu, J. Assessing the dynamic landscape ecological risk and its driving forces in an island city based on optimal spatial scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Lee, P.T.W. China’s Belt and Road Initiative. In International Encyclopedia of Transportation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 495–506. [Google Scholar]
- Huang, C.Y.; Wang, C.M.; Li, H.; Luo, J.; Sun, W.Q.; Du, X.Z. Analysis of basic conditions of the power grid interconnection among Xinjiang, Pakistan, and five Central Asian countries. Glob. Energy Interconnect. 2019, 2, 54–63. [Google Scholar] [CrossRef]
- Statistical Bulletin of China’s OfDI from 2013 to 2018. Available online: http://fec.mofcom.gov.cn/article/tjsj/tjgb/ (accessed on 7 October 2021).
- Liu, S.; Zhang, J.Y. Structural differences of China’s direct investment in the five Central Asian countries under the Background of “One Belt and One Road”. J. Hebei Univ. Econ. Bus. Compr. Ed. 2018, 18, 41–48. [Google Scholar]
- Cheng, C.Y.; Ge, C.Z. Green development assessment for countries along the belt and road. J. Environ. Manag. 2020, 263, 110344. [Google Scholar]
- Meng, N. China’s Investment in The Belt and Road Meets the “Wind”. International Business Daily, 17 November 2021.
- Academy of International Trade and Economic Cooperation, Ministry of Commerce (China). Country (Region) Guide for Foreign Investment Cooperation—Kazakhstan. 2020. Available online: https://www.yidaiyilu.gov.cn/zchj/zcfg/159432.htm (accessed on 10 October 2021).
- Academy of International Trade and Economic Cooperation, Ministry of Commerce (China). Country (Region) Guide for Foreign Investment Cooperation—Kyrgyzstan. 2020. Available online: https://www.yidaiyilu.gov.cn/zchj/zcfg/159433.htm (accessed on 10 October 2021).
- Academy of International Trade and Economic Cooperation, Ministry of Commerce (China). Country (Region) Guide for Foreign Investment Cooperation—Tajikistan. 2020. Available online: https://www.yidaiyilu.gov.cn/zchj/zcfg/159435.htm (accessed on 10 October 2021).
- Academy of International Trade and Economic Cooperation, Ministry of Commerce (China). Country (Region) Guide for Foreign Investment Cooperation—Uzbekistan. 2020. Available online: https://www.yidaiyilu.gov.cn/zchj/zcfg/159438.htm (accessed on 10 October 2021).
- Academy of International Trade and Economic Cooperation, Ministry of Commerce (China). Country (Region) Guide for Foreign Investment Cooperation—Turkmenistan. 2020. Available online: https://www.yidaiyilu.gov.cn/zchj/zcfg/159436.htm (accessed on 10 October 2021).
- Chen, X.; Bai, J.; Li, X.; Luo, G.; Li, J.; Li, B.L. Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Curr. Opin. Environ. Sustain. 2013, 5, 116–127. [Google Scholar] [CrossRef]
- Ma, H.t.; Sun, Z. Comprehensive urbanization level measurement and its driving factors in Five Central Asian Countries. Acta Geogr. Sin. 2021, 76, 367–382. [Google Scholar]
- Global Surface Coverage Datasets from 2000, 2010, and 2020 (GlobeLand30). Available online: http://www.globallandcover.com (accessed on 3 December 2021).
- Chen, J.; Ban, Y.; Li, S. China: Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar]
- Cui, X.P.; Guo, Y.X. Nearly 40 a western urban agglomeration of land use structure in time and space dynamic evolution analysis. J. Arid. Zone Resour. Environ. 2022, 4, 16–24. [Google Scholar]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.; Wu, J. Multi-scenario simulation of landscape ecological risk probability to facilitate different decision-making preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Wu, L.N.; Yang, S.T.; Liu, X.Y.; Luo, Y.; Zhou, X.; Zhao, H.G. Response of land use change to human activities in the Beiluohe River Basin since 1976. Acta Geogr. Sin. 2014, 69, 54–63. [Google Scholar]
- Gao, B.; Li, X.Y.; Li, Z.G.; Chen, W.; He, X.Y.; Qi, S.Z. Ecological risk analysis of Jinzhou bay coastal economic development zone based on landscape pattern. Acta Ecol. Sin. 2011, 31, 3441–3450. [Google Scholar]
- Zhang, X.B.; Shi, P.J.; Luo, J.; Liu, H.L.; Wei, W. Ecological risk analysis based on landscape pattern in arid inland river basin: A case study of Shiyang River Basin. J. Nat. Resour. 2014, 29, 410–419. [Google Scholar]
- Hu, H.B.; Liu, H.Y.; Hao, J.F. Impacts of urbanization on landscape structure and ecological risk assessment in Waterhed. Acta Ecol. Sin. 2011, 31, 3432–3440. [Google Scholar]
- Chen, P.; Pan, X.L. Landscape ecological risk analysis of inland Waterhed in arid region: A case study of Sangong River Waterhed in Fukang. Chin. J. Ecol. 2003, 22, 116–120. [Google Scholar]
- Xu, W.X.; Wang, J.M.; Zhang, M.; Li, S.J. Construction of landscape ecological network based on landscape ecological risk assessment in a large-scale opencast coal mine area. J. Clean. Prod. 2021, 286, 125523. [Google Scholar] [CrossRef]
- Li, Q.Q.; Liu, G.L. Is land nationalization more conducive to sustainable development of cultivated land and food security than land privatization in post-socialist Central Asia? Glob. Food Secur. 2021, 30, 100560. [Google Scholar] [CrossRef]
- Hu, G.L.; Liu, M.S. Research on trade potential of Agricultural machinery products between China and Kazakhstan. Heilongjiang Agric. Sci. 2021, 3, 106–114. [Google Scholar]
- Kuang, Y.X. Under the ecological crisis of Kyrgyzstan mountain glaciers. J. Jilin Inst. Educ. Early 2015, 31, 127–129. [Google Scholar]
- Janský, B.; Šobr, M.; Engel, Z. Outburst flood hazard: Case studies from the Tien-Shan Mountains, Kyrgyzstan. Limnologica 2010, 40, 358–364. [Google Scholar]
- Yu, M.; Bai, N.; Jiang, Y. Agricultural cooperation between China and Tajikistan under the background of “One Belt and One Road”. China Econ. Trade Guide Theory Ed. 2017, 29, 21–23. [Google Scholar]
- Mukhamedova, N.; Wegerich, K. The feminization of agriculture in post-Soviet Tajikistan. J. Rural. Stud. 2018, 57, 128–139. [Google Scholar]
- Hofman, I.; Visser, O. Towards a geography of window dressing and benign neglect: The state, donors and elites in Tajikistan’s trajectories of post-Soviet agrarian change. Land Use Policy 2021, 111, 105461. [Google Scholar] [CrossRef]
- Qian, Q.B.; Huang, L.X.; Wang, X.B.; Wang, S.Q. Detecting pivotal countries of China’s OFDI in the “Belt and Road” initiative: The perspective of similarity of doing business. Int. Rev. Econ. Financ. 2022, 77, 296–311. [Google Scholar] [CrossRef]
- Zhou, L.L.; Tong, G.J. Research on the competitiveness and influencing factors of agricultural products trade between China and the countries along the “Belt and Road”. Alex. Eng. J. 2022, 61, 8919–8931. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.M.; Ndayisaba, F.; Liu, T.; Jiapaer, G.; El-Tantawi, A.M.; Maeyer, P.D. Space-time characterization of drought events and their impacts on vegetation in Central Asia. J. Hydrol. 2018, 564, 1165–1178. [Google Scholar]
- Kaplan, S.; Blumberg, D.G.; Elmar, M.; Leah, O. Land-use change and land degradation in Turkmenistan in the post-Soviet era. J. Arid. Environ. 2014, 103, 96–106. [Google Scholar] [CrossRef]
- Guidance on Promoting the Green Belt and Road Initiative. 2017. Available online: https://www.yidaiyilu.gov.cn/ (accessed on 5 October 2021).
Study Area | 2000–2010 | 2010–2020 | 2000–2020 |
---|---|---|---|
Akmola State | 0.36% | 0.43% | 0.14% |
Chuy State | 0.17% | 0.21% | 0.21% |
Dushanbe City | 0.06% | 0.02% | 0.03% |
Tashkent City | 0.25% | 0.04% | 0.13% |
Ahal State | 1.47% | 0.17% | 0.88% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yao, L.; Luo, J.; Liang, W. Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries. Land 2022, 11, 940. https://doi.org/10.3390/land11060940
Zhang X, Yao L, Luo J, Liang W. Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries. Land. 2022; 11(6):940. https://doi.org/10.3390/land11060940
Chicago/Turabian StyleZhang, Xuebin, Litang Yao, Jun Luo, and Wenjuan Liang. 2022. "Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries" Land 11, no. 6: 940. https://doi.org/10.3390/land11060940
APA StyleZhang, X., Yao, L., Luo, J., & Liang, W. (2022). Exploring Changes in Land Use and Landscape Ecological Risk in Key Regions of the Belt and Road Initiative Countries. Land, 11(6), 940. https://doi.org/10.3390/land11060940